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1. Introduction 

During the past years, dramatic progress have been achieved in our knowledge of the 

pathophysiology of dystonia on the basis of imaging and electrophysiological data collected 

in human patients. Converging arguments now support the role of combined corticostriatal 

and cerebellar dysfunctions in the genesis of this movement disorder (1). Several excellent 

reviews have been recently proposed on this topic (2-8). Moreover, animals models of 

dystonia can help us to investigate the pathogenesis since they provide the opportunity to 

dissect more precisely the abnormal neuronal networks leading to primary dystonia and its 

genetic background (9-12).  

However, many points remain to be clarified. Here, we discuss some of the findings 

previously reviewed but will detail more specifically less recognized aspects of the 

pathophysiology of dystonia, such as the link between phenomenology and physiology and 

the lessons that we can get from animal models.  

2. Phenomenological considerations 

Dystonia is defined as a syndrom of sustained muscular contractions leading to repetitive 

movements and abnormal postures. However, a rapid overview of the litterature reveals 

that this term is broadly used in very different contexts and can be associated with various 

pathological conditions. Thus, there is a need for clarification, not only for highlightening 

the concept of dystonia, but above all because of the pathophysiological and therapeutical 

consequences. In dystonia, abnormal posture is linked to repetitive muscular spasms 

triggered or worsened by voluntary movement (13). The overspreading of muscular activity 

to muscles usually not involved in the movement corresponds to a loss of inhibition during 

movement execution (3, 14). However, dystonia can be observed in different conditions such 

as spasticity, primary dystonia, secondary dystonia, levodopa-induced dystonia and off-

dystonia in parkinsonian patients, among others.  

Initially, several types of dystonia have been proposed depending on the age of onset, 
topography of clinical signs, and primary or secondary origin of dystonia (13). Focal 
dystonia is the most frequent form with a categorization depending on localization in the 
facial musculature (blepharospasm, oromandibular dystonia), cervical region (spasmodic 
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torticolis), limb (occupational dystonia e.g. writer’scramp or musician’s cramp) or the larynx 
(laryngeal dystonia). Segmental dystonia involves two or more contiguous regions e.g. the 
cervical region and one limb, and corresponds to the diffusion of the dystonic process to 
close anatomic regions. This point suggests a spreading of abnormal motor command in a 
somatotopic manner. Although multifocal dystonia encompasses non-adjacent body part, it 
is less frequent in clinical practice. Hemidystonia is limited to one hemibody and frequently 
associated with lesions of the controlateral hemisphere. However, as for most of secondary 
dystonia, it is characterized by permanent tonic postures very different from the clinical 
pattern seen in primary dystonia. General dystonia have a broader distribution than focal 
dystonia but also frequently encompasses adjacent parts of the body e.g lower limb and 
trunks and/or upper limbs. Dystonia is primary when no lesions of the central nervous 
system or metabolic abnormalities are found (15) whereas it is associated with other 
neurological troubles in dystonia-plus syndroms (2). In secondary dystonia, lesions 
generally concern the basal ganglia and more particularly the putamen although lesions in 
other regions have been reported (16). 

It is critical to be precise as to which type of dystonia we are dealing with. The fixed focal 
dystonia frequently observed in untreated Parkinson’s disease (off-dystonia) or in various 
neurological disorders encompassing dystonia and parkinsonism is likely to correspond to a 
form of focal akineto-rigid syndrome There are clinical and experimental arguments 
supporting this view. For instance, off-dystonia in Parkinsonian patients is observed in a 
state of low dopaminergic plasma levels either before treatment (off-state) or as a end-of-
dose effect. A fixed focal dystonia, generally in the lower limb, is frequently noticed in 
MPTP-treated monkey at the onset of intoxication and before the development of a full 
akinetic-rigid syndrome in a situation where dopaminergic neurons are only partially 
destroyed (17). In dopa-sensitive dystonia (DRD), tonic postures are frequently encountered, 
sometimes in association with a parkinsonian syndrome ; the use of dopaminergic treatment 
is effective because there is a decrease in the production and consequently the availability of 
dopamine at the nigro-striatal synapsis. In secondary dystonia where most of the lesions 
involve the putamen, a fixed dystonia with a somatotopic organisation is most frequently 
observed. In this case, lesions seriously disrupt the organisation of motor patterns at the 
striatal level, the support of procedural memory. This point explains the inability of patients 
to control accurately the spatio-temporal pattern of agonist and antagonist muscles 
necessary to achieve a smooth and goal-directed movement.  

Primary dystonia is clearly an hyperkinetic movement provoked or accentuated by voluntary 
movement.  Fixed posture at rest are observed only in the most evoluated forms of the disease 
such as long-lasting DYT1 dystonia or spasmodic torticollis. A critical feature of mobile 
dystonia is that each patient exhibits his own abnormal motor pattern, repetitive in time and 
space. For instance, a patient with cervical dystonia will have a specific pattern of neck 
posture, a patient with generalized dystonia the same kind of back-arching movements and 
lower limb movements. Similar remarks could be made for levodopa-induced dyskinesia 
(LID) and/or dystonia: each patient exhibits his own pattern of LID.  In addition, we must 
point out the fact that by many aspects, LID are more dystonic in nature than choreic: they 
frequently associate repetitive myoclonic jerks and mobile abnormal postures but are rarely 
eratic as the choreic movements observed in Huntington’s disease. One interpretation of the 
phenomenon could be that in primary dystonia the disorganization of networks controlling 
movement occurs in patch within the striatum (18, 19). 
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3. Lessons form primate models of dystonia: The physiological approach 

Primate models of dystonia are informative, first because of the tight phylogenetic link 
between monkeys and humans, but also because they provide the possibility to obtain 
phenotypes of dystonia in the monkey using a more invasive physiological approach than in 
humans. 

It was found initially that brain regions involved in the regulation of muscular tone, such as 

the red nucleus or dorsomedial mesencephalic tegmentum, provoked the appearance of a 

spasmodic torticollis (20). The head was turning to the side of the tegmental lesion. 

Moreover, electrical stimulations or pharmacological inactivation of the interstitial nucleus 

of Cajal (NIC) induced neck dystonia, a result which can be explained by the role of NIC in 

the control of head posture (21). The cervical dystonia observed in this condition is 

characterized by lateral flexion of the head to the shoulder opposite to the site of the lesion 

and intermittent co-contraction of neck muscles resulting in spasmodic head movements. 

Muscimol (22) or histamine (23) injections within the red nucleus also induced a cervical 

dystonia as well as pharmacological manipulations of vestibular nucleii (24). 

In monkeys, as in humans, systematic treatments acting on the dopaminergic system induce 

dystonia. These models could provide some lights on two aspects of the pathophysiology of 

primary dystonia : 1) the putative role of dopaminergic receptors, 2) the implication of the 

direct and indirect striato-pallidal pathways. Acute dystonia was first reported in the 

primate after haloperidol injections (25) with a response to anti-cholinergic drugs (26, 27) 

and reserpine (28). On the other hand, clozapine (a second generation antipsychotic agent) 

compared to classical neuroleptics (first generation antipsychotic agents) did not provoke 

acute dystonia possibly due to its particular post-synaptic receptor affinity to D1 receptors 

(29). Conversely, injections of D1 agonists induced less frequently acute dystonia than D2 

receptor antagonists (30, 31). Thus, it seems that acute dystonia, frequently hypertonic in its 

clinical expression, is mainly trigerred by the blockade of D2 receptors. Tardive dystonia can 

be induced by a chronic treatment with neuroleptics (32-35). As for acute dystonia, drugs 

that prevent dopamine storage (reserpine), synthesis (-methyl-p-tyrosine) or block 

dopamine receptors decrease tardive dyskinesias (36). However, there is some 

pharmacologic evidences for a peculiar implication of D1 dopaminergic receptors in 

orofacial dystonia (37). The substitution of a D2 antagonist by a D1 antagonist decreases the 

clinical expression of dystonia (38). Thus, in tardive dystonia which is frequently mobile, the 

overactivity of the direct pathways could play a preponderant role. 

When Bicuculline (Bic), a potent antagonist of GABAA receptors, is injected directly within 

the GPi or SNr, it induces at high volumes (10l) a severe parkinsonian syndrome similar to 

that observed in MPTP-treated monkeys. However, when lower volumes (2l) are used, 
abnormal focal postures in the lower limbs close to off-dystonia are observed (39). Severe 
hypertonic postures in controlateral limbs are noticed after GPi injections whereas SNr 
injections generally induce more axial symptoms, particularly in the neck. Thus, this type of 
dystonia characterized by hypertonia and bradykinesia corresponds to a form of focal 
akinetic-rigid syndrome, the somatotopy of which depending on the targeted basal ganglia. 
In MPTP monkeys, chronic treatment with levodopa or apomorphine induces dyskinesia 
(40-42). Metabolic studies relying on 2-Desoxyglucose (2-DG) show an increase of 
GABAergic inhibition of the subthalamic nucleus, suggesting a diminished subthalamo-
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pallidal activity (40-42). This data would suggest an increased activity within the thalamo-
cortical network although thalamotomy did not improve dystonia in MPTP-treated 
monkeys (43, 44). During peak-dose dystonia, an increase in the expression of D1 
dopaminergic receptors was observed and interpreted as an overactivity of the direct 
striato-pallidal pathway. On the other hand, D1 agonists induce less dyskinesias than D2 
agonists (45, 46). 

Bic injection into the STN blocks GABAergic inputs, increases activity and leads to a tonic 
dystonia (42). Conversely, the injection of muscimol, a GABAergic agonist, within the basal 
ganglia output structures, namely the internal pallidum (GPi), and pars reticulata of the 
substantia nigra (SNr) induces a mobile dyskinesias encompassing mixed choreic and dystonic 
features mimicking the hyperkinetic movements observed in idiopathic dystonias (39). The 
mechanism could be related to an inhibition of neuronal activity in these regions (47). 

A line of evidence also suggest that manipulations of the striatum might induce dystonia. 
Bicuculline injections within the putamen in the cat provoked neck dystonic movements 
directed towards the controlateral side, associated with an increased activity within the 
striatum and concomitent inhibition in the substantia nigra pars reticulata (SNr) (48). Injection 
of the same drug within the putamen also induced contralateral dyskinesia in the monkey (49). 
The blockade of striatal GABAA-receptors in the striatum increases GPI neuronal activity and 
induces EEG spikes in the primary motor cortex (50). Direct electric stimulation of the 
putamen in the monkey using various duration of stimulation trains induces movement 
disorders the nature of which depending on the duration of the stimulation train (51). With 
short duration (100ms), myoclonic jerks of the contralateral hemibody are observed whereas 
dystonic and stereotyped movements are noticed with longer duration trains (>500ms). These 
data suggest that the difference between myoclonus and dystonia relies on the duration of the 
abnormal neuronal activity generated within the putamen. 

An increased activity in the direct striato-pallidal pathway is likely to induce changes in the 
motor thalamus. Lesion studies in humans indicate that dystonia is mainly observed after 
lesions of the caudal motor thalamus (Vc, VIM) but not of the rostral pallidal segment (Vop) 
(52, 53). In monkey, the motor thalamus is a complex structure encompassing several 
regions (54). Its rostral part, corresponding to the ventrolateral pars oralis (VLo) and ventral 
anterior (VA) nucleii, receives inputs from basal ganglia output structures and send 
projections to the supplementary motor area (55). The caudal part corresponding to the 
ventroposterolateral, pars oralis (VPLo) and ventrolateral, pars caudalis (VLc) nucleii 
mainly receive cerebellar inputs. The projections are directed to the primary motor cortex 
(54). Several lines of evidence suggest that the thalamus plays a role in the synchronization 
of cortical activity in time and space (56). Thus, its dysfunction could potentially inducea 
loss of selectivity in the implementation of cortical modules during motor planning. 
Injection of bicuculline within the rostral part (VLo and VA) provoked a mobile 
contralateral dystonia whereas a myoclonic dystonia was observed after injections into the 
caudal region (VPLo, VLc) (57, 58). These bicuculline injections increased the discharge 
frequency of thalamic neurons and decreased the threshold of current necessary to evoke 
motor responses after intrathalamic microstimulation (58). Moreover, a bursty pattern 
correlating with myoclonic jerks was observed for most neurons in the caudal region. These 
results suggest that the tonic and myoclonic components frequently associated in dystonic 
patients could be the result of a dysfunction in both the rostral (pallidal) and caudal 
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(cerebellar) parts of the motor thalamus. These notions are also in congruity with the view 
that an hyperexcitability of thalamo-cortical pathway induces dystonia as proposed by 
Berardelli et al. (59). Interestingly, a greater number of thalamic neurons responded to 
passive joint manipulations after bicuculline injection (58). The data obtained in an acute 
experimental situation reveal the drastic and immediate modifications of somesthesic 
receptive fields that thalamic neurons may exhibit, highlighting the role of the motor 
thalamus in sensori-motor processing.  

Taken as a whole, the results of pharmacological studies in monkeys suggest that in primary 
dystonia there would be an overactivity in the direct striato-palidal pathway, potentially 
associated with a decreased activity in the indirect striato-palidal pathway leading to a 
disrupted activation of the thalamo-cortical projections. 

So far, the only phenotypic model of primary dystonia in the primate was that obtained in 

monkeys trained to perform repetitive movements (60-62). The animals performed the same 

movement of grasping 2 hours a day 5 days a week for 12 to 25 weeks and experienced 

difficulties removing their hands from the handpiece after 5-8 weeks of training, associated 

with a reduction in the number of trials correctly performed (60). The animals also exhibited 

difficulties in hand motor control during feeding, a loss of digital dexterity, evoking 

dystonia. In parallel, a disorganization of hand somatotopy was observed in area 3b of the 

primary somaesthetic cortex (S1). Receptive fields of recorded neurons became larger, 

encompassing more than one digit and segregation between glabrous and hairy skin was 

altered. Moreover, it was found that hand-face border in S1 normally sharp became patchy 

and spread over 1 mm of cortex (60). Thus focal dystonia induced by repetitive behaviors 

generates aberrant sensory representations which interfere with motor control (63). 

Abnormal motor control strengthens sensory abnormalities and the positive feed-back loop 

reinforces the dystonic condition.  

4. Lessons from rodent models of dystonia: The genetic approach 

Models of dystonia in the rodent provide valuable tools for exploring the contribution of 
genetic factors in the pathophysiology of dystonia. They can be divided into those that 
mimic the dystonic phenotype and those that duplicate the genetic abnormalities (2). In 
genotypic models, the mutations that produce dystonia in humans have been introduced 
into mice. Several models have been developed (11). Mouse models of DYT1 include both 
transgenic mice expressing human mutant torsin A (hMT) (64, 65), and heterozygous knock-
in mice in which the GAG mutation has been introduced in the mouse torsin A gene (Dyt1) 
(66, 67). These mice do not have obvious dystonic features (65, 66) but exhibit some learning 
motor deficit (64). In striatal explant slices from transgenic hMT mice, cholinergic 
interneurons manifest an abnormal physiology: they respond to dopamine receptor (D2) 
activation with an increase in spiking, rather than an inhibition as observed in normal mice 
(68). Genotypic mouse models have also been generated for DYT5, DYT11 and DYT12 (2).  

The role of dopaminergic dysfunction in dystonia is supported by several studies in the 
rodent (1). In a transgenic model of dopa-responsive dystonia, a depletion of tyrosine 
hydroxylase was found in the striatum (69). There was a marked posterior to anterior 
gradient with a predominant loss of striosome tyrosine hydroxylase expression in the 
remaining tyrosine hydroxylase staining areas at an early stage of the postnatal 
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development. A DYT1 mouse model had a decreased amphetamine-induced dopamine 
release and evidence for an increased dopamine turnover was found (70). 

In phenotypic models, mutations that produce dystonic movements occur naturally (12). 

The dt/dt rat has an autosomal, recessive condition with dystonic posturing appearing 10 

days after birth encompassing twisting movements of the neck, padding motions of the 

limbs and postural instability of increasing severity (71). Purkinje cell soma are smaller (10) 

and the defective protein, caytaxin, is a lipophilic binding protein that is expressed at high 

levels in cerebellar neurons during development (11, 72). This protein might be involved in 

signalling pathways that use calcium and phosphatidyl-inositol, and in regulating the 

synthesis of glutamate. Cerebellectomy eliminates the motor syndrome and rescues animals 

from juvenile lethality. In the df/dt mouse model, neuronal degeneration results from loss 

of a cytolinker protein (dystonin), which is expressed in the central and peripheral nervous 

systems and resembles the proposed function of torsinA (73). The tottering mice carry a 

homozygous mutation in a P/Q-type calcium channel expressed abundantly within 

Purkinje cells (10). The animals exhibit episodic dyskinetic attacks reminiscent of the attacks 

experienced by patients with paroxysmal non-kinesigenic dyskinesia (2). At the most 

advanced stages of attacks, tottering mice assume prolonged twisting postures involving the 

whole body and a mild ataxia. Lethargic mice also exhibit paroxysmal dyskinesia triggered 

by procedures that promote motor activity (12). In these animals, cytochrome oxydase 

histochemistry revealed increased activity in the red nucleus. Surgical removal of the 

cerebellum worsens ataxia but improved dyskinesias. 

Thus, lesions of the cerebellum in rodents models of dystonia abolish the motor disorder 

suggesting that the cerebellum is necessary for the expression of dystonia (12). Morevover, it 

was shown in the dt rat that abnormal signaling in cerebellar cortex can lead to abnormal 

cerebellar output (11, 74). Moreover, microinjections of low doses of kainic acid into the 

cerebellar vermis of the mice elicited reliable and reproductible dystonic postures of the 

trunk and limbs (75). Peripheral administration of 3-nitropropionic acid to rodents, as in the 

primate, induced a dystonic phenotype associated to striatal lesions (76). In comparison 

with controls, hMT1 mice show increased glucose utilization (GU) in the inferior olive (IO) 

medial nucleus (IOM), IO dorsal accessory nucleus and substantia nigra compacta, and 

decreased GU in the medial globus pallidus (MGP) and lateral globus pallidus (77). They 

also showed increased CO activity in the IOM and Purkinje cell layer of cerebellar cortex, 

and decreased CO activity in the caudal caudate-putamen, substantia nigra reticulata and 

MGP. These findings suggest that the DYT1 carrier state increases energy demand in the 

olivocerebellar network and the IO may be a pivotal node for abnormal basal ganglia-

cerebellar interactions in dystonia (77). 

The dtSZ/dtSZ hamster, which manifests as an autosomal recessive condition with episodes of 
generalized dystonia induced by stress is a robust model of paroxysmal non-kinesigenic 
dyskinesias (78, 79). Attacks can last for hours and appear to be age-dependent (10). A line of 
evidence suggests a GABA-mediated neurotransmission defect and drugs that target these 
molecules are able to relieve the dystonic symptoms (80). The dtSZ hamster also exhibit highly 
irregular pattern of electrical activity within the striatum and globus pallidus (81).   

The interaction between the basal ganglia and cerebellum in the expression of dystonic 
movement has been studies in two rodent models of dystonia (82). One of the model 
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involved tottering mice, the other one was obtained by local application of kainic acid into 
the cerebellar cortex. Subthreshold lesions of the striatum exaggerated dystonic attacks in 
both models. In tottering mice, microdyalisis of the striatum revealed that dystonic attacks 
were associated with a significant reduction in extracellular dopamine. This interesting 
result demonstrates the functional interactions between cerebellar and basal ganglia circuits 
in dystonia.  

However, some forms of focal dystonia could be related to different mechanisms. 
Blepharospasm corresponds to involuntary spasms of bilateral eyelid closure. The increased 
spontaneous blink rate may result from the increased excitability of the trigeminal system 
which is dependent on the basal ganglia (83, 84). It seems that reduction in dopamine 
induces a reduction in nucleus raphe magnus activity via the subtantia nigra pars reticulata 
and superior colliculus (85, 86). Schicatano and collegues created a two component model of 
benign blepharospasm based on the combination of a permissive condition (dopamine 
depletion) and a precipitating event (corneal irritation and dry eye caused by partial lesion 
of the zygomatic branch of the facial nerve). They considered that spasms of eye lid closure 
was an exaggeration of the normally compensatory  process evoked by eye irritation (87). In 
this situation, there was a dysfunctional sensorimotor integration in which the central 
nervous system either misinterpret sensory signals or misrepresents the desired movement. 

Taken as a whole most of these rodent models reveal that dysfunctional cerebellar output is 
sufficient for the expression of generalized dystonia. However, it is important to be aware 
that the organization and physiology of the central nervous system is quite different 
between rodents and primates. For instance, the main basal ganglia output structure is 
represented by the subtantia nigra pars reticulata (SNr) in the rodent, a region involved in 
the control of the axial musculature, whereas it is the internal pallidum (GPi) in the primate, 
a region associated with the development of sophisticated hand dexterity. It is likely that the 
respective roles of the basal ganglia and cerebellum in motor control are different between 
rodents and primates. 

5. Loss of inhibitory control 

Electrophysiological studies are easier to perform in humans than in animals but must be 
based on non invasive techniques that limits exploration to a specific brain region. Two 
main techniques have been used : 1) Transcranial magnetic stimulation (TMS) of the cerebral 
cortex, 2) neuronal recordings in the basal ganglia during surgery.  

Concerning the TMS, an excellent review has been recently proposed (Hallett, 2011) and 
here we we will only focus on specific segments. A line of evidence suggests that inhibition 
processes are defective during movement execution in dystonia. The loss of selectivity and 
overflow of muscular activity to muscles not usually involved in the on-going movement is 
clearly increased by voluntary action (3, 14, 88, 89). TMS allowed to show a decrease in both 
intra-cortical inhibition and silent period (3, 4). The coupling of a peripheral stimulation 
delivered prior to TMS shocks (PAS) at different intervals between the two stimuli also 
revealed an abnormal inhibition in dystonia (3, 8, 90, 91). As mentionned by Hallett (3), the 
results obtained with TMS are valuable, but they remain at a phenomenological level and 
focused the primary cortex whereas there have been only few data reporting stimulation of 
the premotor cortex (92) or cerebellum (93). 
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While dystonia is mainly a motor problem, mild sensory abnormalities have been reported 
in patients with hand dystonia both in the spatial (94-97) and temporal (98-100) domains. 
Kinesthesia is also impaired (101-103) and abnormal somatotopy was demonstrated by 
somatosensory evoked potential mapping based on EEG (94), MEG (94, 104, 105) and fMRI 
(106-108). As for motor control, a loss of lateral inhibition in sensory processing in space and 
time was reported (109-111). Moreover, the existence of bilateral abnormalities in the 
dystonic and non dystonic sides, suggests that this phenomenon is an endophenotypic trait 
(104) leading to changes in sensorimotor integration (3, 105). 

Single unit recording of pallidal or thalamic nucleii have been performed in dystonic 
patients candidate to deep brain stimulation (DBS). They revealed interesting but 
contradictory data. A trend for low firing rate with a bursty pattern and oscillations was 
reported in the internal pallidum (112-116) and subthalamic nucleus (117). However, the 
role of anaesthesia was debated because some authors found no difference between dystonic 
and PD patients (118, 119). The current pathophysiological model of dystonia was also 
questioned by data showing that pallidal DBS was able to inihibit a subpopulation of motor 
thalamic neurons (120) and the abscence of difference between GPe and GPi firing rate (119). 
However, clear correlation between abnormal neuronal activitiy and EMG activity was 
reported in the basal ganglia and thalamus of patients with dystonia (116, 121-123). 
Moreover, single unit recording performed in cerebellar relays of the thalamus revealed 
abnormal firing pattern and increased response to peripheral inputs in dystonic patients 
(123-125). The technique of local field potentials (LFPs) allows to study local populations of 
neurons within a given brain region. Low oscillatory activity was recorded in the GPi of 
dystonic patients (126). This activity was found to be correlated with dystonic EMG (112, 
114, 127) and single unit neuronal activity (112, 128). The conclusion was that the frequency 
of synchronization in the basal ganglia is a critical problem in dystonia, as in other 
movement disorders (129).   

Thus, electrophysiological data revealed an impaired surround inhibition in several régions 

including the cerebral cortex, thalamus and basal ganglia with a trend for low and bursty 

firing rate in the GPi in line with the current models of dystonia (18, 19, 59). It is noteworthy 

that an abnormal pattern in the thalamus was observed in relays receiving cerebellar inputs 

(124). 

6. Neuronal networks (imaging data) 

Most of structural MRIs studies failed to show robust evidence of neural degeneration in 

patients with primary dystonia (130) although subtle grey and white matter micro-structural 

alterations were reported (131). Contradictory results have been found with voxel-based 

morphometry. Some studies noticed increased volumes in the sensorimotor cortex (132), 

putamen (133), globus pallidus (134) and cerebellum (135), but other decreased volumes in 

the putamen (136) sensorimotor cortex (137), cerebellum and thalamus (136, 137). These 

results must be interpreted in a phenomenological perspective since dfferent types of 

dystonia may yield different results.  

Diffusion-weighted imaging (DWI) is sensitive to the random motion of water molecules 
and provide an estimate of the micro-structural integrity of the brain parenchyma and the 
directionality of molecular diffusion. The last parameter, also called anisotropy, is measured 
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using indices such as fractional anisotropy (FA). Changes in FA are interpreted as “micro-
structural” changes in axonal amounts, axonal integrity, myelination, and has also been 
used to trace specific fiber tracts and to quantify abnormalities along them (4). DTI 
tractography is interesting in primary dystonia because this neurodevelopment disorder 
might disrupt cortico-striatal and/or cerebello-thalamic pathways. Indeed, abnormalities 
have been reported in the cortex (138-140), basal ganglia (141, 142), internal capsule (143), or 
thalamocortical pathways (144). 

Initial PET studies with [O15]H2O revealed an overactivity in the cerebral cortex (particularly 

the rostral supplementary motor area i.e. pre-SMA), basal ganglia, cerebellum, and 

thalamus. The role of the caudal supplementary motor area (SMAp) and primary sensory-

motor cortex was debated. Metabolism was deceased during execution of a learned 

movement (145-147) but increased when primary dystonia occurs at rest or in secondary 

dystonia (148). These abnormalities were also found in non-symptomatic patients carrying 

the DYT1 gene (149). In line with electrophysiological studies, abnormal sensory processing 

was reported in focal hand dystonia (150), blepharospasm (151), and cervical dystonia (152). 

Similar results were also obtained in non-manifesting DYT1 carriers (153, 154). The loss of 

inhibition in motor control was supported by the finding that an impaired GABA was 

observed in the striatum of dystonic patients (155).  

The involvement of the dopaminergic system in primary dystonia was also demontrated 

with imaging techniques. Indeed, reduced D2 receptor availability in the striatum was 

reported in DYT1 (156-160) as well as in DYT6 patients (158). This data is compatible with 

dysfunction or loss of D2-bearing neurons, increased synaptic dopamine levels, or both. 

These changes, which may be present to different degrees in the DYT1 and DYT6 genotypes, 

are likely to represent susceptibility factors for the development of clinical manifestations. 

Moreover, abnormalities in motor sequence learning associated with increased cerebellar 

activation during task performance was observed in non-manifesting carriers of the DYT1 

and DYT6 mutation but did not correlate with striatal D2 receptor binding (161). In a recent 

study, sequence learning deficits and concomitant increases in cerebellar activation were 

found to be specific features of the DYT1 genotype versus DYT6 carriers (162).  

Disruption in information processing within the cortico-striato-pallido-thalamo-cortical and 

cerebello-thalamo-cortical pathways at rest was analyzed using sophisticated statistical tools 

(5). FDG-PET studies revealed abnormal functional connectivity with a specific pattern 

characterized by relative increase of metabolic activity in the posterior putamen/globus 

pallidus, cerebellum and SMA in DYT1 patients. In DYT6 patients, slight different results 

were obtained since opposite patterns of tracer uptake in the putamen were observed (154, 

163, 164). In blepharospasm, there was a predominent role of the thalamus and 

midbrain/brainstem rather than basal ganglia and cortex. Thus, it appears clearly that 

different types of dystonia may be associated with different metabolic patterns (5). 

Among a larger number of fMRI studies, the most commonly affected regions included 
various portions of the cerebral cortex, basal ganglia, and cerebellum (4, 5). Most studies 
reported either normal or increased basal ganglia activation during motor or sensory tasks. 
In the cortex, activation level was variably altered, depending on the task, the type of 
dystonia, and whether patients expressed dystonia during task performance or not. The 
primary sensory cortex was activated frequently (165-167) but not always (107, 166, 168). 
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Dystonic movements were commonly associated with overactivation in the sensorimotor 
cortex (166, 167, 169, 170), whereas activation levels may be normal (171) or decreased (168) 
during non-dystonic movements. However, reduced sensorimotor activation also may occur 
during dystonic movements (165, 166). The abnormal fMRI signals for representation of 
digits in the primary sensory cortex (107, 108) or other body parts in the basal ganglia (171) 
have been interpreted as a loss of neuronal selectivity. It is noteworthy that although fMRI 
presumably monitors neuronal activation, results only partially correlate with PET studies 
of blood flow. 

Thus, imaging studies point to the role of combined corticostriatal and cerebellar pathways 
in the pathophysiology of dystonia. Anatomical  disruption of the cerebellar outflow was 
found in non manifesting carriers and manifesting mutation carriers, and a second 
downstream disruption in thalamo-cortical projections appeared clinically protective in 
non-manifestationg carriers (5). 

7. Plasticity in dystonia: A central mechanism  

Dystonia seems to be a motor circuit disorder rather than an abnormality of a specific brain 
region (7). There are lines of evidences showing that dytonia is associated with abnormal 
plasticity (6, 172-174). On a phenomenological point of view, primary dystonia, appears in 
the young age when procedural motor learning and plasticity are optimal (6, 172-174). Even 
in secondary dystonia, the delayed appearence of symptoms after brain lesion suggests 
some form of plasticity (175) as well as the delayed therapeutic effect of pallidal stimulation 
in primary dystonia (176, 177). Long term potentiation (LTP) and long term depression 
(LTD) are the most widely recognized physiological models of plasticity. In humans, the 
physiological basis of LTP and LTD is limited to TMS and transcranial direct current 
stimulation (TDCS) of the cerebral cortex (7). Two main techiques have been used to study 
plasticity at the cortical level: repetitive TMS (rTMS) with variable frequencies inducing 
either LTP or LTD (172, 178) and paired-associative stimulation (PAS) combining electrical 
stimulation of a peripheral nerve and cortical TMS (172, 179, 180). It was shown that the 
sensorimotor cortex (SM) exhibited an exaggerated responsiveness to rTMS responding 
protocols (90, 181-184). Associative plasticity (LTP, LTD, PAS) is enhanced with a loss of 
spatial specificity explained by a failure of surround inhibition (3, 7). Morever, 
somatosensory evoked response in SM was more enhanced by PAS in dystonic patients than 
in normal controls (182) revealing an increased susceptibility to peripheral events. Another 
way to test cortical plasiticity is to use theta burst stimulation (TBS) which relies on short 
trains of pulses (5Hz) with an high intra-burst frequency (50Hz). TBS after-effect was 
enhanced in dystonic patients but not in their symptomatic relatives (185). Moreover, in 
dystonic patients, cortical responses to 1Hz rTMS is unaffected by pre-conditionning with 
anodal TDCS contrarily to normal controls (179, 181). In dystonia, there would be an 
increased tendency to form associations between sensory inputs and motor inputs which 
may lead to de-differentiation of motor representations in accordance with the theory of 
synaptic homeostatis (7, 186, 187). 

The question remains to whether the loss of surround inhibition and synaptic homeostasis is 
a trait of the whole sensorimotor system or the result of dysfuntionning of specific regions 
such as the striatum and the cerebellum. The processing of sensory inputs is for instance 
altered either in the basal ganglia  (187), the thalamus (124) and cerebral cortex (3). 
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Moreover, pharmacological manipulations of the thalamus induce immediate changes in the 
receptive fields of thalamic neurons (58) probably mimicking the effect of plasticity occuring 
in dystonic patients. Thus, abnormal plasticity seems to be an endophenotypic trait of 
dystonia (6, 7, 179).  

Several lines of evidence suggest that dystonic symptoms are generated by an abnormal 
functionning of the putamen, a basal ganglia region involved in motor control (188). The 
striatofugal medium spiny cells (MSC) receive strong cortical glutamatergic inputs and 
represent the main projection neurons of the striatum. They are modulated by a complex 
interneuronal network in which local cholinergic interneurons (Ach-I), GABAergic 
interneurons and mesencephalic dopaminergic inputs play critical roles. In the current 
accepted model of dystonia, there is an imbalance between the direct and indirect striato-
pallidal output pathways (189). Use-dependent long lasting changes in synaptic efficacy at 
cortico-striatal synpases has been proposed as a model of motor learning and memory (7). 
As in humans, LTP and LTD can be obtained by high frequency stimulation of cortico-
striatal afferents. Moreover, LTP can be reversed by low frequency afferent stimulation 
(synaptic depotentiation). These phenomena are modulated by striatal interneurons. A 
series of elegant experiments performed in a rodent genetic model of DYT1 dystonia 
recently revealed the close interaction between cholinergic and dopaminergic transmission 
(68, 190, 191). In trangenic mice expression of the mutant form of the torsinA, increased 
long-term potentiation (LTP) but decreased long-term depression (LTD) and depotentiation 
(SD). Hence, these phenomena were reversed by lowering endogenous Ach level or by 
antagonizing muscarinic M1 receptors (191). On the other hand, no difference was found in 
electrophysiological and morphological characteristics of MSC and Ach-I between mutant 
and non-mutant mice (190, 191). These results may provide an explanation for the efficacy of 
anticholinergic drugs in dystonia. Thus, long-term modifications of synaptic strength at the 
cortico-striatal synapse exhibit a highly dynamic organization ensuring the maintenance of a 
synaptic homeostasis within basal ganglia circuitry (7).  

As we saw previously, strong evidences have recently emerged suggesting that the 
cerebellum also actively contributes to the pathophysiology of dystonia. Indeed, dystonia 
can be associated with cerebellar dysfunction in different forms of genetic ataxia and the 
neuronal network involved in primary dystonia consistently encompasses the cerebellum (4, 
5). Conversely, the cerebellum has the ability to inhibit cortical activity, control sensori-
motor integration and play a part in maladaptative neural plasticity (4). The fundamental 
mechanism may be the ability of the cerebellum to control cortico-striatal long-term 
depression, a mechanism thought to underlie neural plasticity. As previously noticed, the 
paradox is that most of genetic rodent model of dystonia associated with cerebellar 
dysfunctionning do not exhibit a clear phenotype of dystonia (2).  

8. Conclusion and perspectives 

Primary dystonia is a developement disorder with a strong genetic basis but the phenotype 
is likely to be triggered by risk factors such as environment insults, increased sensory inputs 
or physiological stress (2). Several lines of evidence suggest that dystonia corresponds to a  
disruption in the homeostatic regulation of neural plasticity within the sensorimotor 
circuitry (1, 3). However, the term dystonia encompasses a broad spectrum of disease and it 
is important to take up its pathophysiology on the basis of clear phenomenological 
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considerations. In addition, different pathophysiological mechanisms may underlie similar 
phenotypes whereas different genotypes (e.g. DT6 and DYT1) may share similar functional 
abnormalities (1).  

Imaging data support  the hypotheses of the respective roles of basal ganglia and cerebellum 
by showing that dystonia disrupts the whole motor circuits involved in motor learning (5). 
Disruption in surround inhibition and aberrant plasticity are critical features of dystonia but 
we do not know whether this phenomenon occurs in a critical region (striatum, cerebellum) 
or is a feature of the whole sensorimotor network. How and where cerebellar circuits 
interact with basal ganglia circuits still remains a partially unsolved question. The thalamus 
which receive inputs from both systems in anatomically close nucleii could potentially play 
a critical rôle in the intégration of pallidal and cerbellar inputs. Indeed, disruption in 
sensory information and increased activity were reported in this region either in dystonic 
patients and in a primate model of the disease.  

We began to have an idea of the disrupted networks within the striatum based on 
experimental models of dystonia showing that plasticity is impaired by an abnormal 
functionning of acetylcholine interneurones and their paradoxical response to D2 
dopaminergic stimulation (7). The net result is a disequilibrium between LTP and LTD, the 
bases of plasticity at the cortico-striatal synapsis. The impairment of surround inhibition 
could also be related to decreased GABA transmission within the striatum as suggested by 
data obtained in human patients (3, 155) but also by the loss of parvalbumin-reactive 
GABArgic interneurones in a hamster model of paroxysmal dystonia (192). The cellular 
mechanisms leading to a dysfunctionning of the cerebellum remains less clear but some 
observations in rodent models suggest a possible dysfunctionning of Purkinje cells 
potentially related to some forms of channelopathy (11). Thus, animal models are promising 
although none of them can perfectly mimic the complexity of the clinical features observed 
in humans (1, 12). A problem in the genotypic rodent models is that they do not induce a 
phenotypic of dystonia. As stated above, it is possible that this discrepancy is due to the 
different organization of the subcortico-cortical networks between rodents and primates. 
However, the rodent models may be particularly challenging to make the gap between 
genes and the functional brain abnormalitites associated with primary dystonia (2). They 
can also be useful to develop experimental therapeutics. In primates, most models have 
focused on basal ganglia dysfunction. However, the elegant model proposed by Mink 
several years ago on this basis (18, 189) still lacks a direct experimental demonstration in the 
monkey. It will be probably necessary in the near future to develop more sophisticated 
models of dystonia in the sub-human primate to test directly some pathophysiological 
hypotheses concerning the disruption of information processing within the striato-pallidal 
and/or cerebello-cortical pathways. 

Finally, a great challenge will be to understand how the ubiquitous cellular mechanisms 
disrupted by genetic mutations might explain the focal phenotypic expression of dystonia. 
As recently pointed by Pisani and collegues, dystonia would represent a high priority for 
medical reseach in the field of movement disorders for several reasons (193). First, this 
pathological model is unique because it represents a window to study the role of plasticity 
in the development of the central nervous system. Second, it provides the opportunity to 
explore the subtle interactions between the basal ganglia and cerebellum networks in motor 
control. Third, there is a fascinating challenge to undestand how the genetic defects will be 
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translated into phenotypic effects. Finally, the development of new therapeutics may 
necessitate novel strategies based on original technologies. There is no doubt that a large 
collaboration of scientists with different expertises will be necessary to achieve this goal. 
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