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1. Introduction 

Mineral fiber products are the most common group of thermal insulations currently in use. 
Heat transfer in these materials has been the subject of extensive investigations thanks to 
their numerous and varied applications as building and industrial insulations. Early studies 
addressed the problem of energy transport in terms of a simple theoretical model. They 
showed that gas conduction and radiation are the two dominant modes of heat transfer in 
fibrous insulations [Verschoor et.al. (1952), Bankvall (1974), Bhattacharyya (1980), and 
Larkin and Churchill (1959)]. 

Subsequent theoretical studies have been devoted to the solution of the radiative transfer 
equation in semi-transparent absorbing and isotropic scattering media. Tong and Tien (1980) 
developed analytical models for radiation in fibrous insulations. They (1983) modeled the 
radiative heat transfer by the two-flux and linear anisotropic scattering solutions compared 
well with experimental values. Transient heat transfer was also studied in other works Tong 
et. al. (1985-1986), and McElroy (1986). 

Lee (1986, 1988, and 1989) and Lee and Cunnington (1998, and 2000) proposed radiation 
models which rigorously account for fiber morphology and orientation. Later models (1997, 
and 1998) used the radiative properties of the fibers. The contribution of radiative heat 
transfer through foam insulation was examined by Glicksman et al. (1987). Langlais et al. 
(1995) worked with the spectral two-flux model to analyze the effect of different parameters 
on radiative heat transfer. Zeng et al. (1995) developed approximate formulation for coupled 
conduction and radiation through a medium with arbitrary optical thickness. Daryabeigi 
(1999) developed an analytical model for heat transfer through high-temperature fibrous 
insulation. The optically thick approximation was used to simulate radiation heat transfer. 
He (2003) also modeled radiation heat transfer using the modified two-flux approximation 
assuming anisotropic scattering and gray medium. 

Asllanaj, Milandel and their coworkers (2001, 2002, 2004, and 2007) studied different aspects 
of radiative-conductive heat transfer in fibrous media and made great contribution to the 
progress of this field. Yuen et al. (2003) used measured optical properties, the Mie theory, 
and the zonal method, to predict the transient temperature behavior of fibrous insulation. 

Nisipeanu and Jones (2003) applied the Monte Carlo method to model radiation in the entire 
coarse fibrous media. Not only is this method computationally demanding, it also fails to 
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take into account the contribution of conduction in radiation heat transfer. Moreover, it 
assumes random distribution of fibers in the media, while in reality the majority of fibers are 
oriented perpendicular to the heat flux. 

The Monte Carlo method is essentially a time consuming process. As such, it has not been 
widely applied to model radiation heat transfer in previous studies. In the present work, 
however, distribution factors have been used to expedite computation. The number of 
calculations during each iteration is considerably reduced by this method. Radiation is 
coupled with conduction via the source term in the heat conduction equation. In addition, 
the present method considers fiber orientation perpendicular to heat flux, which is a more 
logical assumption than random orientation of fibers.  

2. Physical model and mathematical formulation 

As depicted in Fig. 1, the analytical model assumes that insulation is confined between two 
horizontal plates, having temperatures HT  (top plate) and CT  (bottom plate). Thus, the heat 
flux vector is aligned with the local gravity vector in order to eliminate free convection. Air 
inside the material is considered to be stagnant and dry and at atmospheric pressure. The 
heat transfer mechanism in fibrous insulations therefore includes solid conduction, gas 
conduction and radiation and the total heat flux is given by the sum of radiative and 
conductive heat fluxes: 

 
t c r

q q q   (1) 

 

 

Fig. 1. Problem geometry 

The steady state energy equation for a one-dimensional heat transfer is given by: 

 
( )

( ) 0r
c

dq xd dT
k T

dx dx dx

    
 

 (2) 
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where ( )ck T  is the effective thermal conductivity of the medium. The semi-empirical 

relation suggested by Langlais and Klarsfeld (2004) was used to model ( )ck T  for insulations 

made of silica fibers. The relation is based on experimental data obtained from a Guarded 

Hot Plate apparatus (Saint Gobain Research Center): 

   3 0.81 0.91( ) 10 0.2572 0.0527 1 0.0013c m mk T T T    (3) 

where ρ is the bulk density of the fibrous insulation, and mT is the mean temperature of the 

medium. This relation takes into account both air and fiber conduction as well as the 

contacts between fibers. 

3. Radiation modeling 

Radiation heat transfer through the medium considered in this work involves absorption, 

emission and scattering. The radiation modeling introduced here is based on the Monte 

Carlo Ray Trace (MCRT) method [Modest (2003), and Mahan (2002)], a statistical 

approach in which analytical solution of the problem is bypassed in favor of a numerical 

simulation, which is easier to carry out. The probabilistic description of radiation heat 

transfer by the MCRT method [Modest (2003), and Mahan (2002)] is based on the photon 

view of thermal radiation. The general approach in the MCRT method is to emit a large 

number of energy bundles from randomly selected locations on a given surface element 

and then to trace their progress through a series of reflections until they are finally 

absorbed on a surface element [Mahan (2002)]. As radiation heat transfer is a three 

dimensional phenomenon, direct simulation is utilized to model radiation heat transfer in 

fibrous media. 

Equation (2) is a one-dimensional energy equation therefore it should be coupled with one 

dimensional radiative heat transfer equation. Accordingly, results for a three-dimensional 

direct modeling need to be averaged out into a one-dimensional media. The radiative heat 

flux term in Eq. (2) indicates a radiative heat source. Therefore radiative heat sources have to 

be found in parallel planes along the x-axis. The one-dimensional radiation heat transfer 

equation for computing these radiative heat sources can be written as: 

 

   
   

4 4 4 4

4 4 4 4

1 1

( )r H Hi H i iH i i iC i C Ci C

i n

j ji j i ij i i ij i j ji j
j j i

q x D T D T D T D T

D T D T D T D T

     

     
  

   

    
 (4) 

where i indicates the plane number at the location of x, H, and C indicate the hot and cold 

bounding plates. HiD and CiD are the the radiation distribution factor (RDF) of the hot and 

cold bounding plates to the fibers’ plane respectively, iHD and iCD  are the RDF of the 

fibers’ plane to the hot and cold bounding plates respectively. ijD  and jiD are the RDF 

between different elements within the media. ijD  is defined as the fraction of the total 

radiation emitted diffusely from element i and absorbed by element j, due to both direct 

radiation and to all possible diffuse and specular reflections within the enclosure [Mahan 

(2002)]. 
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The first term on the right hand side of Eq. (4) represents the radiative heat flux emitted 

by the hot bounding plate and absorbed by the fibers in plane i, the second term 

represents the radiative heat flux emitted by the fibers in plane i and absorbed by the cold 

bounding plate, and the third and fourth terms represent the resultant interaction 

radiative heat flux between the fibers in plane i and other fibers within the media in 

different planes. 

From Eq. (4), it is clear that the radiative distribution factor is required for two different 

cases; RDF among fibrous planes and the RDF of the fibrous planes to the boundary plates. 

Hence, the problem is to find the radiation distribution factor for these two cases as a 

function of relative distance. 

Application of the reciprocity relation, Eq. (5), readily gives the distribution factors from 

other planes to the source plane. A similar procedure is adopted to compute the RDF of the 

fibers to the bounding plates. 

 i i ij j j jiA D A D   (5) 

where εi and εj are the emissivity of the fibers i and j. Ai and Aj are the surface areas of fibers 

planes i and j. 

It is assumed that for the limited temperature range considered, the radiative distribution 

factor is not a function of temperature. Therefore, it is possible to compute the RDF of the 

fibers for the mean temperature properties and it is not required to recompute distribution 

factors in each iteration procedure. 

In addition, as the fibers are distributed randomly in the plates normal to the heat flux, the 

RDF of the fibers is not a function of their position but of their relative distance. For instance 

it is possible to say that ijD for fiber i has the same value for all fibers j which are located at 

the same distance from fiber i. Therefore, it is only required to compute one fiber’s RDF in 

the assumed simulated cylindrical media and the results can be utilized for the entire 

domain. To compute the RDF of the fibers to the plates, it is possible to compute the RDF of 

the plate to the fibers and apply the reciprocity rule (Eq. 5). 

The following procedure is adopted for computing the RDF of the fibers: 

A simulated cylindrical media with a specific radius and infinite height is assumed in which 

fibers are randomly located parallel to cylinder’s axis as shown in Fig. 2. It is assumed that 

the fibers are distributed randomly with a uniform distribution in the media and the 

number of fibers per volume in the media is a function of the material’s porosity. As the 

average fiber diameter and the porosity of the material are measurable, it is possible to 

define the number of the fibers in the defined cylinder. The radius of the assumed cylinder 

should be long enough so that no emitted energy bundle can escape the media. This length 

is directly related to the optical thickness of the fibers.  

Figure 3 shows the flow chart of the MCRT for the given problem. RDF of the fibers has a 

rapidly decaying exponential behavior. Hence the cylinder defined for the determination of 

the RDF could have a short diameter as compared to the thickness of the real fibrous media. 

This considerably reduces simulation time.  
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Fig. 2. Simulated cylindrical fibrous media for computing the radiation distribution factor of 
the fibers 
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Fig. 3. Flow chart of the MCRT method for computing the fibers radiation distribution factor 
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The same procedure can be used to compute the distribution factor of the fibers to the 
bounding plates. In this case the radiant fiber is assumed to be at the center of a semi 
cylinder, on the boundary surfaces, as shown in Fig. 4. The plate is assumed to be opaque. 
The RDF of the plate to the fibers is determined by direct Monte Carlo simulation, and by 
employing the reciprocity rule the RDF of the fibers to the plates can readily be computed. 
Figure 5 shows the flow chart of the MCRT for the given problem. 

The Mie scattering phase function is applied to determine the direction of the scattered 
radiant from fibers [35]. The Mie phase function depends on the mean diameter, index of 
refraction of the fibers and the prominent wave length of the media. 

 

 

 
 

 

Fig. 4. Simulated semi cylindrical fibrous media for computing the radiation distribution 
factors of the fibers to the plate 

4. Computational procedure 

Considering the nature of the problem which involves combined radiation and conduction 
equations; the solution of the coupled equations involves an iterative procedure. Therefore, 
in every iterations the conduction and radiation equations should be solved. Since RDFs 
need not be recomputed in every iteration, the computations are considerably more efficient 
as compared to those methods in which radiation is fully coupled (such as: discrete ordinate 
method, spherical harmonics, or zonal method). 

To solve the energy equation, the simple implicit (Laasonen) method [Anderson (1984)] is 
used to discretize implicit time and space derivatives. This method has a first-order accuracy 
with a truncation error of O[Δτ, (Δx)2] and is unconditionally stable. Several grids were tried 
with 500, 1000, 2500, 5000, and 10000 nodes; comparing the results obtained showed that the 
5000 node grid was sufficient for this case study. 
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Fig. 5. Flow chart of the MCRT method for computing the fibers radiation distribution factor 
to the plate 
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The flow chart of the corresponding method is given in Fig. 6. The iterations continue until 
convergence of the iterative procedure. The convergence criterion is based on the rms of the 
difference between temperatures of two subsequent iterations as defined below: 

  
2

1 4

1

1
10

n
P P
j j

j

T T
n

 


   (6) 

 

 

Fig. 6. Flow chart for the solution of the coupled equations 

where P
jT indicates temperature inside the media at location i and at iteration p, and n 

indicates the number of grid nodes. 

The real condition of the Heat Flow Meter (HFM) apparatus was used in the proposed model. 
The boundary temperatures were 0 C  and 20 C . The thickness of the media was taken as 
5cm . The experiments conducted at Building and Housing Research Center (BHRC) showed 
that the mean diameter of fibers from samples studied was seven microns. The averaged 
index of refraction for glass is considered to be 41.49 1 10 i  , where i is imaginary unit 
(derived from the Hsieh and Su, [Hsieh (1979)]. As the mean temperature is 283K, from 
Wien’s displacement law [Siegel, and Howell (2002)], the wavelength from which the largest 
amount of radiative energy is transmitted is 10 m  . Therefore, the radiative properties 
are the same as the properties proposed by Roux [Roux (2003)] in this wavelength. A 
boundary surface emissivity of 0.9 (as declared by Netzsch, the manufacturer of the HFM 
apparatus) is used for these computations. 
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5. Discussion 

5.1 Numerical results 

Figure 7(a) shows the cross section of the simulated fibrous media for a density of 
500 3( / )kg m  and Fig. 7(b) shows the cross section contour of the radiation distribution  

(a)  

(b)  

Fig. 7. (a) Cross section of the simulated cylindrical fibrous media for 3500 /kg m  ,  
(b) Cross section contour of the radiation distribution factor for 3500 /kg m   
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factor for the same density. Figure 7 clearly shows that the radiative distribution factor 

decays rapidly, obviating the need for determination of the RDF for the entire media.  

The results of the effective thermal conductivity, ke, (Eq. (7)), radiative conductivity, kr, (Eq. 
(8)), and the air and glass fiber conductivity, kc, (Eq. (9)) computed with the current method 
for different densities between 5 and 500 3( / )kg m are shown in Fig. 8. 

  
( )

t

H C

q
T T

 ek  (7) 

 
( )

r

H C

q
T T

 rk  (8) 

 
( )

c

H C

q
T T

 ck  (9) 

 

Fig. 8. Effective thermal conductivity, air/fiber conductivity and the radiation conductivity 
of glass fiber for different densities and mean temperature of 10°C 

Total heat flux, conduction and radiation heat flux of fiber glass under steady state 
condition for 350 /kg m   and 37.5 /kg m  according to the position in the medium, are 
shown in Figs. 9(a) and 9(b), respectively. As is seen in Fig. 9(a, b) total heat flux for 

37.5 /kg m  is 33.8% greater than the total heat flux for the 350 /kg m  . In addition, the 
radiation heat flux is 12.6% of the total heat flux for 350 /kg m  , and 45.2% of the total 
heat flux for 37.5 /kg m  . 
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(a) 

 
(b) 

Fig. 9. Total heat flux, conduction and radiation heat flux of fiber glass at steady state 
condition and mean temperature of 10°C, according to the position in the medium: 

(a) 
3

/50 mkg , (b) 
3

/5.7 mkg  
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The temperature profiles within the medium for mean temperature of 10°C, and 
350 /kg m  and 37.5 /kg m  are shown in Fig. 10. 

 

 

 

 

 

Fig. 10. Temperature profiles within the medium for mean temperature of 10°C, and 
3

/50 mkg and 
3

/5.7 mkg  

5.2 Experimental measurements 

A large number of experiments were performed at BHRC on mineral wool insulations for 
determination of thermal conductivity and microstructural analysis. The stereo-microscopy 
observations of the samples showed that most of the fibers are oriented parallel to the faces 
and the boundaries (Fig. 11). Thus, the direction of heat flow is perpendicular to the 
direction of the majority of fibers. Accordingly the model’s assumption of parallel 
cylindrical fibers is well justified.  
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Fig. 11. Stereo micrograph of glass wool 

Scanning electron microscopy (SEM) showed that the diameter of the fibers is 6.2-8.8 
microns. The mean diameter of fibers determined with SEM is about 7 μm. As the diameters 
of these fibers are much smaller than their length, the length can be assumed infinite in the 
model in comparison to the diameter. 

The effective thermal conductivity of more than 300 different samples of glass fiber 
products with densities ranging from 6 to 3120 /kg m  were measured. The conductivity 
measurements were carried out at BHRC with a heat flow meter (HFM) apparatus 
according to EN12667 (2001). The HFM apparatus used is a single-specimen symmetrical 
device that consists of two heat flow meters and allows the detection of the heat transfer 
rate on both the hot and cold sides of the specimen. The cold and hot plate temperatures 
were set at 0 C  and 20 C , respectively. The samples were dried in a ventilated oven and 
then brought into equilibrium with laboratory air temperature. To prevent moisture from 
migrating to the specimens during the test, specimens were enclosed in a vapor-tight 
envelope. The accuracy of thermal conductivity determination was better than 3%. 
Measurement repeatability was found to be better than 1% both when the specimen was 
maintained in the apparatus and removed and mounted after a long interval. For bulk 
density determination the accuracy in the measurements of specimen length, width, and 
thickness were better than 1%. The maximum uncertainty in measured specimen 
thickness due to departures from a plane was 0.5%. The maximum uncertainty in the 
determination of specimen mass was 0.5%. 

5.3 Comparison of numerical and experimental results 

The numerical model was validated by comparing the predicted effective thermal 
conductivity with measured data from the research at BHRC, those obtained in Technical 
Research Institute of Sweden (SP) [Jonsson (1996)], and those presented in ASHRAE 
handbook [ASHRAE (1997)] for fibers with 5.6 μm diameter. 

The comparison of the effective thermal conductivity of glass fiber having different densities 
obtained from the proposed model and the experimental results, are shown in Fig. 12. It can 
be seen that in lower densities, where radiation is dominant, experimental results conform 
excellently to the model predictions. Table 1 shows the percentage of difference between the 
results of the proposed model and the experimental results. The model predictions are in 
good agreement with measurement results. 
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Fig. 12. Comparison of effective thermal conductivity between current method and 
experimental results of SP [Jonsson (1996)] and ASHRAE [ASHRAE (1997)] and those 
obtained in a research project at BHRC 

 

Experiments done by 
Density Range 

(kg/m3) 
Percent difference of proposed 

model and experiments 

SP [40] 10-140 3.3 % 

ASHRAE [41] 8-160 2.6 % 

BHRC 6-120 1.3 % 

Table 1. Percent difference between effective thermal conductivity of the model and the 
experiments by SP, ASHRAE and performed in a research project at BHRC 

6. Conclusion 

This chapter introduces a new numerical modeling of steady state heat transfer for 
combined radiation and conduction in a fibrous medium for the prediction of the effective 
thermal conductivity. Radiant heat transfer in mineral wool insulations is modeled by the 
statistical-based Monte Carlo method. A finite difference approach has been developed to 
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solve the governing coupled radiation and conduction heat transfer equations. The 
numerical model was validated by comparison with effective thermal conductivity 
measurements at different densities. The proposed method is easy to code and 
computationally efficient. The model is able to sort out individual contributions of 
conduction and radiation heat transfer mechanisms in these materials. 
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