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1. Introduction 

The interactions of light with a leaf are determined by the three-dimensional internal and 
external leaf structure as well as photosynthetic pigment content within the cells (Gamon 
and Surfus, 1999). The three-dimensional structure and pigment content of a leaf is 
determined by a number of factors including plant species and varieties within species 
(genetics), leaf age, and growth conditions including abiotic and biotic stress factors, 
hormonal activity, and light history (Gamon and Surfus, 1999; Nath et al., 2003). Stresses 
such as water loss, suboptimal temperatures, high soil salinity, disease, arthropod feeding 
damage, nutrient deficiency, chemical pollution, and micronutrient toxicities may alter the 
internal structure of leaves (Gausman, 1985). 

During the past fifty years, remote sensing applications in agriculture have proven their 
effectiveness as non-destructive, rapid, and relatively inexpensive techniques for obtaining 
information about plants and crop status (Johannsen et al., 1999). Successful use of remote 
sensing in agriculture has been predicated on knowledge regarding the nature of 
electromagnetic radiation (EMR) and its interactions with vegetation. EMR is characterized 
by both electrical and magnetic properties and by both particles and waves, which are most 
commonly measured in micrometers (µm) or nanometers (nm). The totality of EMR emitted 
by the sun forms the electromagnetic spectrum, which extends from short-wavelength high-
energy gamma and x-rays (< 300 nm) to long-wavelength low-energy microwaves and radio 
waves (> 1 mm) (Figure 1). Reflected EMR of greatest value in remote sensing of vegetation 
includes the visible spectrum (400 to 700 nm), which constitutes the basis for conventional 
photography, and the near- and mid-infrared regions (700 to 3,000 nm), which are not 
detectable by the human visual system. Extensive reviews of the theory and use of color-
infrared (CIR) imagery to detect visible and invisible wavebands are provided in Avery and 
Berlin (1992), Campbell (2002), Jensen (2004, 2006), Lillesand et al. (2007), and Wilke and 
Finn (1996). 

It has long been known that the degree to which incident EMR is absorbed, transmitted, or 
reflected by vegetation is governed by the presence of phototsynthetic pigments 

www.intechopen.com



 
Advanced Image Acquisition, Processing Techniques and Applications 

 

124 

(chlorophyll a, b; carotenes; xanthophylls; phaeophytin a, b) and the structure of cells within 
the spongy mesophyll layer of leaves (Gates et al., 1965; Gausman et al., 1969; Myers, 1970). 
A typical "spectral profile" of healthy foliage usually indicates a relatively low reflectance of 
blue and red wavelengths (400 to 500 nm and 600 to 700 nm, respectively), a slight increase 
in reflectance of green wavelengths (500 to 600 nm), and a substantial increase in reflectance 
of near-infrared (700 to 1,300 nm) and mid-infrared (1,300 to 3,000 nm) wavelengths (Figure 
1). Reflectance of blue and red wavelengths (both of which are used to drive photosynthesis) 
is largely an effect of chlorophyll absorption, while reflectance of near-infrared (NIR) 
wavelengths is largely determined by the configuration and condition of air spaces within 
the spongy mesophyll layer of leaves (Lillesand et al., 2007). Water content of leaves appears 
to be the principal determinant of mid-infrared (MIR) reflectance. EMR in the green region 
of the spectrum is not absorbed to any extent by most plant species and is thus transmitted 
or reflected in relatively large quantities, hence the slight increase in reflectance of EMR near 
the center portion of the visible spectrum (Figure 1).   

 

Fig. 1. The electromagnetic spectrum and a typical spectral reflectance curve for healthy 
plant tissues (A). Spectral reflectance curves for foliage of healthy and nitrogen deficient 
cucumber (Cucumis sativus) plants (B). Spectral reflectance curves for healthy foliage of C. 
sativus plants and those with "light", "medium", and "heavy" feeding damage by carmine 
spider mites (Tetranychus cinnabarinus) (C). Figure adapted from Summy et al. (2003) (A, B,) 
and Summy et al. (2007) (C), respectively. 

Physiological stress in plants is commonly characterized by significant changes in 
reflectance of EMR in one or more regions of the spectrum. In subtle forms of stress in which 
leaf structure or water content has been altered without adversely affecting photosynthesis, 
changes in reflectance may be restricted to wavelengths in the NIR and/or MIR regions, 
neither of which is detectable by the human eye (Figure 2). Senescence, nutrient stress, 
pathogens, and insect predation have been shown to result in significant reductions of NIR 
reflectance by affected foliage (Wiegand et al., 1972; Murtha, 1978). In more advanced or 
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severe forms of stress in which absorption by photosynthetic pigments has been seriously 
impeded or halted, increases in reflectance of photosynthetically active EMR (blue and red 
wavelengths) are inevitable and are responsible for many of the visible symptoms of plant 
stress, e.g., chlorosis. This classic symptom of plant stress occurs when reflectance of red 
wavelengths increases to levels equivalent to those of green wavelengths and is perceived 
by the human visual system as yellow. 

 

Fig. 2. Structure of a typical plant leaf showing patterns of transmission (green and NIR), 
absorption (blue and red), and reflectance (green and NIR) of incident electromagnetic 
radiation in various regions of the spectrum. 

Use of remote sensing technology for detection and monitoring of plant stress caused by 

diseases and other factors has traditionally involved one or both of the following 

approaches: 1) in situ collection of spectral measurements using field spectroradiometers at 

ground level, and/or 2) acquisition of various types of imagery using sensors (e.g., cameras 

or scanners) mounted in aircraft or satellite platforms (see reviews in Avery and Berlin, 

1992; Jensen, 2006; Lillesand et al., 2007; Cracknell and Hayes, 2007). This manner of data 

acquisition is conducted “at a distance” from the target and involves reflectance from either 

whole plants or plant canopies under natural lighting conditions. This conventional 

approach has yielded a wealth of information relating to characteristics of and temporal 
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changes occurring in the earth’s land and water surfaces, but is subject to one major 

constraint, i.e., a requirement for suitable weather conditions (e.g., clear sunny skies) for the 

acquisition of most types of imagery (Gandy et al., 2011).      

In certain types of studies, however, the use of leaf samples (rather than whole plants or 

canopies) and artificial lighting sources (rather than sunlight) may be required to obtain 

spectral data required to analyze certain variables or parameters. For example, Gandy (2010) 

evaluated the relationship between foliar reflectance by common sunflower (Helianthus 

annuus L.) and arsenic content of individual leaves. The experimental design of this 

particular study involved the acquisition of spectral measurements for excised individual 

leaves under an artificial lighting source in the laboratory followed by the immediate 

preservation of sample leaves for subsequent chemical analyses. Studies of this type, which 

involve “close-up” remote sensing under laboratory conditions require prior knowledge of 

several effects including: 1) the spectral properties of a suitable artificial lighting source in 

relation to sunlight, 2) the spectral effect(s) of various background materials and 3) the 

effects of leaf excision and handling methods on leaf tissues to ensure that spectral 

measurements obtained from excised leaf samples are biologically meaningful (for recent 

studies on these factors, see articles by Jensen (2007), Summy et al. (2003a, 2004, 2011), and 

Gandy et al. (2011)). 

One factor of major importance in “close-up” remote sensing is the naturally wrinkled or 
curved surfaces (e.g. Gaussian curvature) of plant leaves, which may adversely impact the 
ability to obtain consistent data between plant species and plant samples. Gaussian surfaces 
are represented universally in nature. In general, simple structures, such as spheres, 
cylinders, and cones, exhibit constant and positive, or synclastic, Gaussian curvature. 
However, plant leaves are complex, paraboloid or free-form surfaces that exhibit synclastic 
and negative, or anticlastic, Gaussian curvature simultaneously at both "global" and "local" 
levels. In general, synclastic Gaussian curvature indicates that leaf growth has occurred in 
the center, where the edges have remained relatively fixed producing a convex, or cupped 
structure (Nath et al., 2003; Liu et al., 2010) (Figure 3). A leaf with synclastic Gaussian 
curvature exhibits increased scattering of reflected light. Light scattering (Figure 3) occurs 

when reflected light (θr) deviates significantly from its incident angle (θi  θr). This is type of 
curvature is exhibited by leaves of Cucumis sativus L. (cucumber) and Glycine max (L.) 
Merrill (soybean). Anticlastic Gaussian curvature is characterized by slower growth of the 
central portion of the leaf structure relative to the edges, e.g. the leaf may be either slightly 
concave, yet the edges take on a wavy or uneven appearance (Nath et al., 2003). This type of 
curvature may also be seen in C. sativus and G. max, but is more often observed in elongated 
leaf types as seed in Lycopersicon esculentum, Citrus spp., and Ficus spp., and monocots, 
including Sorghum bicolor (L.) Moench and Zea mays L. Stressors may increase synclastic and 
anticlastic Gaussian leaf curvature, thus increasing the need to compress the reflective 
Gaussian surface so as to measure treatment differences in imagery as opposed to 
reflectance artifacts due to curvature of the leaf. Although a typical plant canopy may 
contain many different leaf surfaces each existing at different angles and exhibiting different 
levels of Gaussian curvature, we have not attempted to address that level of complexity in 
this chapter. In order to assess the contributions of individual leaves to whole plant remote-
sensing data, these should be reliably mounted using an in situ image acquisition system 
(Figure 4) in which (1) significant turgor loss is not observed (after leaf excision) and (2) light 
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scattering (defined herein as variability in angles of reflectance) is reduced after flattening. 
Both factors (1) and (2) could potentially influence the interpretation of remotely sensed 
data (Daughtry and Biehl, 1985). The purpose of the studies described in this chapter was to 
design and evaluate an image acquisition system where individual leaves can be remotely 
sensed under artificial lighting while mitigating turgor loss and leaf curvature. 

2. Previous work 

One of the principle advantages of CIR imagery is its ability to capture NIR wavelengths not 
visible by the human visual system. CIR photographs and digital CIR images consist of 
three broadband layers sensitive to EMR in the green, red and NIR regions of the spectrum. 
A ratio of NIR and red wavebands (a simple vegetation index) can be used to enhance 
acquired CIR imagery and facilitate quantitative comparison of images obtained from 
different treatments. This capability has been used to detect and monitor a variety of stress 
factors in agricultural crops, including damage caused by excess salt and moisture (Myers et 
al., 1963; Everitt et al., 1981; Yousef et al., 2011), nutrient deficiencies (Thomas and Oerther, 
1977; Summy et al., 2003b; Yousef et al., 2011), and a variety of agricultural pests and plant 
diseases (Colwell, 1956; Brenchley, 1964; Norman and Fritz, 1965; Hart and Myers, 1968; 
Hart et al., 1973; Blazquez et al., 1979; Blazquez and Horn, 1980; Blazquez et al., 1988; Payne 
et al., 1971; Toler et al., 1981; Everitt et al., 1994; Everitt et al., 1996; Summy et al., 2003a 
Summy and Little, 2008; Summy et al., 2010). 

Fungal pathogens of glasshouse plants represent a major constraint for optimum production 
and product quality. Significant changes in the reflected wavelengths of the near-infrared 
portion of the electromagnetic spectrum occur when reflectance measurements are obtained 
from plants infected by fungal pathogens and also from plants covered with sooty mold. 
Summy and Little (2008) collected data from several species of citrus seedlings (Citrus 
sinensis, C. aurantium, C. paradisi and Poncirus trifoliata), Bo seedlings (Ficus religiosa), and 
cantaloupe (Cucumis melo reticulata) propagated under natural lighting conditions in the 
glasshouse. Spectroradiometric measurements and color infrared (CIR) images of control, 
honeydew only, and sooty molded leaves from F. religiosa, C. sinensis, C. aurantium, and P. 
trifoliata were obtained. C. paradisi infected with the greasy spot fungus (Mycosphaerella citri) 
was also imaged under glasshouse lighting. Similar data was obtained from healthy foliage 
of C. melo reticulata and foliage with various levels of powdery mildew (Sphaerotheca 
fuliginea) infection. 

Summy and Little (2008) assessed the relative levels of visible and near-infrared (NIR) 
reflectance from plants infested with sooty mold (coated with insect honeydew) and 
infected with fungal pathogens versus respective controls, under glasshouse conditions. 
Both “control” and “treated” whole plants and single leaves were imaged using 
conventional color and color infrared (CIR) photography  

Although differences were observed when looking at leaves that were coated in honeydew 
only, accumulations of honeydew on leaf surfaces generally presented the same trends 
between plant species and different depositors. For example, NIR/red ratio images showed 
a significant decrease in reflectance when comparing sooty-molded plants versus “clean” 
controls. This relationship was sustained in three of the citrus species tested (P. trifoliata, C. 
aurantium, and C. sinensis) as well as “bo” tree seedlings (F. religiosa). This trend is 
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accentuated when observing the individual contributions of particular leaves with varying 
levels of sooty mold after being mounted on the in situ image acquisition system. The reason 
for the decrease in NIR reflectance is due to the growth of dematiaceous (dark) fungal 
hyphae on the honeydew substrate. The resulting “mat” of fungal hyphae absorbed NIR 
light as opposed to reflecting it. Dematiaceous hyphae, which characterize the Capnodiaceae 
(including Capnodium spp.), contain significant amounts of melanin giving the sooty mold 
its dark color. Melanin is a polymer of indoles and tyrosine conversion intermediates that 
function in fungi and animals to absorb light and protect against irradiative damage (Riley, 
1998). Therefore, it is not surprising that reflectance should decrease significantly from 
sooty-mold infested plant leaves. In fact, the absorption maxima of melanins derived from 
several dematiaceous ascomycetes and deuteromycetes have been shown to absorb red (400 
to 500 nm), infrared (> 700 nm), and UV-B (280 to 315 nm) wavelengths (Bell and Wheeler, 
1986; Babitskaya and Shcherba, 2002). 

Summy and Little (2008) also tested leaves of varying ages from trifoliate orange (P. 
trifoliata) and sour orange (C. aurantium). In the case of trifoliate orange, there was no 
difference between NIR/red ratio images of 20 d or 35 d old leaves. However, sour orange 
differed in that the greatest NIR/red ratios were seen in 20 d old leaves and differed 
significantly from the 10 d and 35 d leaves.  

A number of studies have demonstrated the ability to detect the red and NIR reflectance 
changes of plant tissues associated with fungal pathogens in the field (Colwell, 1956; 
Brenchley, 1964; Norman and Fritz, 1965). However, there is very little information 
concerning pathogen detection using CIR imagery and analysis in the glasshouse setting. 
Summy and Little (2008) considered two examples of foliar diseases: (1) powdery mildew of 
cucurbits (Sphaerotheca fuliginea) and (2) greasy spot of citrus (Mycosphaerella citri).  

The powdery mildew diseases are characterized by extensive white fungal growth on the 
upper surface of the plant leaf. The “powdery" appearance is due to the production of 
numerous conidia and conidiophores. It is hypothesized that incident radiation that comes 
in contact with the fungal structures is both scattered and absorbed. Scattering may be due 
to the random placement of conidiophores on the leaf surface leading to an infinite number 
of angles at which light may be reflected. Absorption may occur due to small water droplets 
that are trapped between the fungal hyphae and the conidiophores. Summy and Little 
(2008) showed a significantly reduced NIR/red ratio and lower NIR reflectance in leaves 
infected with powdery mildew. This is an area requiring further study. 

Decreases in NIR/red ratios in the case of leaf chlorosis appear to be quite common whether 
the stress is abiotic or biotic in nature. Chlorosis (see above) is a primary symptom that 
accompanies pseudothecium (fungal sexual fruiting structure) development in the greasy 
spot disease of citrus. Summy and Little (2008) indicated that red reflectance increases as 
greasy spot severity increased, whereas NIR reflectance did not appear to change 
appreciably, thus the NIR/red ratios decreased.  

Color infrared (CIR) and multispectral imagery have been used for many years to assess 
damage caused by insect and mite infestations in conventional (outdoor) agricultural crops, 
but have not been used for this purpose to any extent within the commercial glasshouse 
environment or to evaluate individual leaves. In an effort to evaluate the potential of CIR 
imagery for detection and monitoring of arthropod infestations on glasshouse plants, 
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Summy et al. (2010) assessed spectral changes in foliage occurring in response to damage 
caused by three common glasshouse pests: 1) citrus mealybug, Planococcus citri 
(Pseudococcidae), 2) California red scale, Aonidiella aurantii (Diaspididae) and 3) carmine 
mite, Tetranychus cinnabarinus (Tetranychidae). Damage caused by each of these 
representative pest species resulted in distinct spectral signatures that were distinguishable 
from those of healthy foliage in both spectroradiometer measurements and CIR imagery (see 
examples in Figure 1). Potential applications of CIR imagery for the detection and 
monitoring of insect and mite infestations on glasshouse are discussed below. 

Ornamental plants and vegetable crops produced commercially under glasshouse 
conditions are subject to infestation by most, if not all, of the insect and mite pests that are 
associated with these same crops in conventional (outdoor) plantings. Pest infestations 
developing on glasshouse crops commonly occur under near-optimal environmental 
conditions, which may include an absence of natural enemies (predators, parasites and 
pathogens) that provide a measurable degree of control in field infestations. As a result, 
insect and mite infestations developing within the protected glasshouse environment 
commonly exhibit relatively high rates of increase that provide a potential to cause levels of 
damage equivalent to or greater than those occurring in conventional field situations. Thus, 
effective management of such pests is predicated, in part, on the availability of efficient 
survey methodology designed to provide the glasshouse manager with timely and accurate 
information regarding the occurrence and current status of pest infestations, and the need 
(or lack thereof) for suppression measures. In order to be feasible, any such survey 
methodology must provide accurate information in near real-time and must be usable under 
all weather and lighting conditions. In addition, such methodology should be relatively 
inexpensive and simple to use. 

Citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae), is one of the most serious 
insect pests associated with citrus and numerous ornamentals grown under glasshouse 
conditions. Damage results from the combined effects feeding activities (i.e., extraction of sap 
via sucking mouthparts) and excretion of copious quantities of honeydew (a sugary waste 
product), which accumulate on leaves and serve as a medium for sooty mold fungus. Dense 
deposits of sooty mold fungi may attenuate a significant portion of the electromagnetic 
radiation (EMR) incident on leaves. This is an effect that tends to severely retard 
photosynthesis. Field populations of P. citri on citrus in southern Texas and other areas are 
normally regulated at subeconomic densities by a complex of predators and parasites (Ancisco 
et al., 2002), although these are typically lacking in glasshouse infestations. 

Summy and Little (2008) provided a comprehensive discussion of the spectral changes in 
foliage associated with the accumulation of honeydew and development of sooty mold 
deposits on foliage of citrus and other plants. One particularly important trend reported in 
that study relates to the observation that honeydew accumulations on foliage tend to 
increase NIR reflectance (with little or no apparent effects in reflectance in the visible 
region), whereas sooty mold deposits tend to decrease NIR reflectance and increase 
reflectance of wavelengths in the blue and red regions of the spectrum. Leaves contaminated 
with honeydew and sooty mold deposits were distinguishable from undamaged leaves in 
CIR imagery, and their presence on foliage was particularly evident in ratio (NIR/R) 
images. The capability of CIR and derivative imagery to detect honeydew deposits on 
foliage should be particularly useful in detection of incipient (low-density) infestations of P. 
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citri and other “honeydew excretors,” including the soft scales (Coccidae), aphids 
(Aphididae), and whiteflies (Aleyrodidae). 

Summy et al. (2010) found that although uninfested mature and immature Citrus sinensis 

leaves were distinguishable in the conventional color (RGB) image, no differences in 

coloration were evident among a series of mature leaves exhibiting a range of scale insect 

(A. aurantii) densities. These observations were consistent with spectroradiometer 

measurements, which detected no significant differences in reflectance of visible 

wavelengths among the series of infested mature leaves. In the CIR composite image, the 

presence of scale armor on infested foliage was indicated by a distinct speckling pattern. 

Although spectral curves for infested leaves indicated a significant reduction in NIR 

reflectance with increases in scale densities, only subtle differences in coloration of infested 

foliage were evident in the CIR composite image. However, evidence of physiological stress 

in infested leaves was evident in a ratio image which indicated high ratios of NIR:R in 

uninfested leaves and low ratios in infested leaves. Similar trends were evident in imagery 

of a Valencia orange tree acquired at a distance of 2.5 m under natural lighting conditions. 

The presence of scale armor on leaves was detectable in the conventional color image and 

was very conspicuous in the CIR composite image. Although differences in leaf coloration 

were very subtle in both RGB and CIR images, a ratio image indicated high NIR:R ratios for 

uninfested or lightly-infested leaves, and lower ratios for heavily infested leaves, many of 

which exhibited ratios similar to those of background reflection. 

Spider mites (Acari: Tetranychidae) rank among the most chronic and potentially 
destructive pests of vegetable crops and ornamentals grown in commercial glasshouses. 
Damage results from the destruction of leaf epidermal tissue, which produces a distinctive 
“mottled” appearance of infested foliage. As a result of their short developmental times and 
high fecundities, spider mite infestations tend to increase rapidly to damaging levels, which 
may result in substantial damage and/or defoliation of glasshouse plants. A number of 
predaceous mites, e.g., Phytoseiulus persimilis (Acari: Phytoseiidae), have been shown to be 
effective in spider mite control and are produced commercially for this purpose (Yepsen, 
1984), although these typically require introduction into the glasshouse environment. 

Summy et al. (2010) found that differences in coloration between undamaged Cucumis 

sativus leaves and those exhibiting a slight degree of carmine spider mite (T. cinnabarinus) 

damage were very subtle and difficult to distinguish in RGB imagery, while leaves 

exhibiting moderate and intense damage were distinguishable. Similar trends were evident 

in the CIR composite image. These observations were consistent with spectroradiometer 

measurements, which indicated significantly higher levels of reflectance of visible 

wavelengths from the damaged leaf relative to the undamaged control, and a substantial 

and progressive increase in reflectance of visible wavelengths as the extent of tissue damage 

increased. Although an analysis of variance detected one significant difference in reflectance 

at 850 nm, the similarity of NIR reflectance among the remaining groups (i.e., undamaged 

controls and those exhibiting slight and intense damage) suggests that mite feeding injury 

did not influence this parameter. 

Summy et al. (2010) showed that the rapidity at which mite damage increased between two 
late sampling dates exemplifies the destructive potential of spider mites in the glasshouse 
environment and the need to detect such infestations while they are still at the incipient 
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stage, i.e., have not increased to damaging levels. Such infestations exhibit an aggregated 
distribution and may occur at densities too low to produce symptoms that are readily 
detectable through visual inspection or use of conventional photographic techniques. Leaves 
exhibiting a low intensity of spider mite damage were difficult to distinguish from 
undamaged foliage using either conventional RGB or CIR imagery alone; the two were 
highly distinguishable in a simple ratio image.  

Summy et al. (2010) found that increases in the intensity of mite damage to leaves were 
accompanied by progressively higher levels of visible (blue, green and red) reflectance with 
little or no change in NIR reflectance. The effects of these spectral changes were clearly 
evident in the ratio image in which increasing intensity of mite damage was accompanied 
by progressively decreasing ratios of NIR to red wavelengths. The significance of this trend 
relates to the fact that the undamaged control and the slightly damaged leaf, which were not 
readily distinguishable in either the RGB or CIR images, were clearly distinguishable in the 
ratio image. 

Numerous studies have indicated the occurrence of spectral changes in stressed plants 
including those due to nitrogen deficiency and soil salinity in conventional crops. Blackmer 
et al. (1996) detected nitrogen deficiency in corn (Z. mays) in the green region of the 
spectrum at a wavelength of 550 nm. Osborne et al. (2002) predicted the nitrogen 
concentration form corn canopies by using reflectance in the green and red regions of the 
spectrum. Gausman et al. (1985) stated that soil salinity stress in cotton (Gossypium spp.) 
plants cause spectral changes and can be detected using CIR imagery. Leone et al. (2000) 
was able to detect soil salinity in pepper plants (Capsicum annuum L.) using spectral 
reflectance measurements. Nonetheless, very limited research has been conducted to 
evaluate the potential of using remote sensing techniques in detecting nitrogen deficiency 
and soil salinity stresses in greenhouse crops. 

 

Fig. 3. Reduction of light scattering [i] results when leaves exhibiting synclastic Gaussian 
curvature are compressed [ii]. Compression of the leaves using the in situ image acquisition 
template results in light reflected at angles (θr) equivalent or nearly so to incident light (θi), 
which improves the quality of sample detection via image acquisition or spectroradiometry.  
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3. Methodology 

In order to assess the contributions of individual leaves to whole plant remote-sensing 

data, leaf samples were mounted using an in situ image acquisition system in which 

significant turgor loss is not observed (after leaf excision) and light scattering (defined as 

the variability in angles of reflectance) is reduced after compression of a reflective 

Gaussian surface (Figures 3 and 4). Light scattering occurs when reflected light deviates 

significantly from its incident angle (θi  θr; where θi = angle of incidence, θr = angle of 

reflectance) (Figure 3).  

 

Fig. 4. Diagram of the in situ image acquisition template used to examine individual leaves 

acquired from healthy and stressed whole plants (A). Photo of the image acquisition 

template demonstrating the use of the [i] VNIR sensor, [ii] glass plates, and [iii] remote 

cosine receptor used to collect spectrophotometric data (B). A CIR camera may be mounted 

at the same level as the spectroradiometer VNIR sensor shown above [i]. 

For the studies described in Summy and Little (2008) and Summy et al. (2010), vertical CIR 

images of individual leaves mounted using a plexiglass template were acquired under 

natural and artificial lighting conditions (500 W halogen lamps) at a distance of 1.5 m using 

a DuncanTech MS3110 digital CIR camera. CIR imagery acquired in this manner was 

imported into an image-processing package (Idrisi32® or Kilamanjaro®) after being 

converted to “.TIF” files and separated into NIR, red, and green bands using Adobe 

Photoshop 7. CIR imagery was evaluated to determine the degree to which the color 

rendition of infected and infested plants of a given species or cultivar differs from healthy 

controls in the raw (unprocessed) CIR imagery. Conventional CIR photography was also 

used for some experiments. In this case, a 35 mm Nikon SLR camera equipped with a 

Wratten 15 (yellow) filter and loaded with Kodak Ektachrome Professional Infrared EIR film 
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were used to obtain the CIR images described in this chapter. All RGB "control" images were 

captured using a Sony Mavica CD400 digital camera. 

In order to obtain NIR/red ratios, simple vegetative indices were generated utilizing the red 

and NIR bands of images that had been converted from digitized CIR images in Idrisi32®. 

The resulting images represent a ratio of NIR and red at each pixel. Ratio images were 

contrast stretched where necessary in order to eliminate approximately 20% of the 

unrepresentative wavelengths. To statistically compare NIR/red ratio images, contrast 

stretched ratios images were layered with a stratified spatial sample of random points. For 

individual leaves, 20 random points were selected. NIR/red ratio random point means, 

from template-mounted leaves, were compared using ANOVA and a means separation test 

(Tukey’s Honestly Significant Difference (P < 0.05)). 

Spectral measurements of healthy plants and plants within treatment or exposure groups 

(abiotic and biotic stressors) were obtained under natural and artificial lighting conditions 

using a FieldSpec VNIR spectroradiometer equipped with a remote cosine receptor 

(Analytical Spectral Devices, Boulder, CO) to measure incident radiation between the 

ultraviolet (350 nm) and NIR (1100 nm) regions of the electromagnetic spectrum. The 

spectroradiometer was equipped with ViewSpec Pro software (Analytical Spectral Devices, 

Boulder, Colorado). Measurements of radiance were converted to percent reflectance using 

a Spectralon® reference plate, and reflectance of selected wavelengths in the blue (450 nm), 

green (550 nm), red (650 nm) and NIR regions (850 nm) were compared using ANOVA and 

a means separation test (Tukey's HSD, P < 0.05). 

The in situ image acquisition system used in these studies (Figure 4) consisted of a black, 

plastic plant growth flat filled with distilled water (in order to absorb light and prevent 

background reflection in images) and two 0.3 x 22 x 30 cm glass plates. Individual leaves 

were pressed between the glass plates and then remotely sensed using spectroradiometry 

and CIR imagery (Figure 4). The glass plates used in the “template system” were evaluated 

for irradiance levels (350 to 1150 nm) to check the relative amount of light attenuation that 

might occur in various wavebands due to the layer of glass covering a leaf held on the 

template (Figure 4). 

To test the effect of leaf excision, L. esculentum and C. sativus non-excised and excised leaves 

were measured with the Field Spec Dual VNIR spectroradiometer when pressed between 

the glass plates on the in situ image acquisition system. Measurements were taken at 0, 1, 2, 

3, 4, and 5 minutes after excision. Mean NIR/red ratio values were derived from ratio 

images (simple vegetation indices, see below) of excised and non-excised L. esculentum and 

C. sativus leaves that either were or were not flattened using the image acquisition system 

(Tables 1 and 2). Individual leaves were flattened between two glass plates using the in situ 

image acquisition system previously described. Spectoradiometer data and CIR imagery 

were obtained and analyzed. Measurements were taken 10 and 12 minutes after excision. 

The quality and interpretability of CIR imagery acquired under an artificial (quartz halogen) 

lighting source is comparable to that acquired under natural lighting conditions, which 

clearly demonstrates that ambient lighting conditions do not pose a major constraint to the 

use of this technology for monitoring pest infestations in the glasshouse environment 

(Summy et al., 2004). 
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4. Results and progress 

Leaves may be excised and data obtained without loss of spectral and image data quality if 

data is obtained in a relatively brief period of time. Leaf excision did not significantly reduce 

spectroradiometric values from either C. sativus or L. esculentum compared to non-excised 

leaves. Also, NIR/red ratio means did not differ when comparing non-excised and excised. 

There was a significant difference between spectroradiometric and NIR/red ratio values 

between compressed and non-compressed leaves using the in situ image acquisition system, 

whether comparing differences in Gaussian leaf curvature or plant stressors. Specifically, 

leaf compression generally reduced variability (standard deviations) among the quantitative 

spectroradiometric and imagery data, which improved the ability to differentiate treatment 

effects (Tables 1 and 2).  

 

Treatment NIR/red ratio (Mean  SD) 

Non-excised, non-flattened   2.69  0.33 a* 

Non-excised, flattened 2.49  0.21 b 

Excised, flattened 2.40  0.15 b 

Table 1. Mean NIR/red ratio values derived from ratio images of excised and non-excised C. 

sativus leaves flattened or not flattened using the in situ image acquisition system. *Values 

followed by different letters are significantly different at P < 0.05 (Tukey's HSD). 

 

Treatment NIR/red ratio (Mean  SD) 

Low curvature, non-flattened   2.57  0.67 a* 

High curvature, non-flattened   2.18  0.55 bc 

Low curvature, flattened   2.31  0.26 ab 

High curvature, flattened 1.93  0.21 c 

Table 2. Mean NIR/red ratio values derived from ratio images of excised L. esculentum 

leaves exhibiting low or high Gaussian curvature flattened or non-flattened using the in situ 

image acquisition system. *Values followed by different letters are significantly different at 

P < 0.05 (Tukey's HSD). 

 

Treatment NIR/red ratio (Mean  SD) 

Healthy, non-flattened   2.59  0.14 a* 

-N, non-flattened 1.46  0.19 c 

Healthy, flattened 2.19  0.15 b 

-N, flattened 1.37  0.16 c 

Table 3. Mean NIR/red ratio values derived from ratio images of healthy or N deficient (-N) 

excised C. sativus leaves flattened or non-flattened using the in situ image acquisition 

system. *Values followed by different letters are significantly different at P < 0.05  

(Tukey's HSD). 
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Use of the in situ image acquisition system successfully aided the acquisition of color 

infrared imagery and spectroradiometric data from Citrus spp., Ficus religiosa, C. sativus, and 

L. esculentum exposed to biotic stressors, including fungi and insects. The in situ image 

acquisition system described in this chapter and utilized in Summy and Little (2008) and 

Summy et al. (2010) showed two important features that suggest a potential application to 

understanding the contributions that individual leaves make to a holistic remote sensing 

image. Leaves may be excised and data obtained without loss of spectral quality if data is 

obtained in a relatively brief period of time. Water potential in leaves is regulated by two 

mechanisms: (1) opening and closing of the stomata and (2) internal osmotic pressure 

differentials in the vasculature of the plant (and associated cells) (Gutschick, 1999). Leaf 

excision did not significantly reduce spectroradiometric values from either L. esculentum or 

C. sativus compared to non-excised leaves (Figure 5). Also, NIR/red ratio means did not 

differ when comparing non-excised and excised (Table 1). 

 

 
 

Fig. 5. False-colored near-infrared/red ratio images of non-excised Cucumis sativus leaves 

(A) non-flattened and (B) flattened using the in situ image acquisition system (see Fig. 4). 

Near-infrared/red ratio images of excised (left-side of panels) and non-excised (right-side of 

panels) Lycopersicon esculentum leaves before (C) and after (D) flattening, respectively. Near-

infrared/red ratio images of healthy C. sativus leaves (left-side of panels) and those 

exhibiting nitrogen deficiency (right-side of panels) before (E) and after flattening (F). 

There was a significant difference between spectroradiometric and NIR/red ratio values 

between leaves that were and were not flattened using the “template system” whether 

comparing differences in leaf curvature or plant stress (Figures 5 and 6; Tables 1, 2, and 3). 

However, it is difficult to visualize the differences when comparing NIR/red ratio images 

though changes in the uniformity of the images are observed. This increase in uniformity of 

the flattened leaves is demonstrated by the decrease in variability (eg. standard deviations) 

among quantitative data derived from the NIR/red ratio images (Tables 1, 2, and 3). 
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Fig. 6. Examples of false-colored NIR/red waveband ratio images of excised leaves from 

healthy and stressed plants acquired using the in situ image acquisition template. (A) 

Healthy [i], insect honeydew-coated [ii], and sooty mold infested [iii] 'Valencia' orange 

[Citrus sinensis] leaves; (B) Healthy [i], honey-dew coated [ii], and sooty mold infested [iii] 

Ficus religiosa leaves; (C) 'Valencia' orange leaves non-infested [i, ii] and infested [iii, iv, v] 

with California red scale insect armor [Aonidiella aurantii]; (D) Healthy [i, ii], and sooty mold 

and citrus mealy bug [Planococcus citri] infested [iii-vii] trifoliate orange [Poncirus trifoliata] 

leaves. The leaflets in item v represent the highest level of infestation; (E) Healthy [i] and 

diseased [ii-iv; greasy spot, Mycosphaerella citri] grapefruit leaves. Severe chlorosis in item iv 

resulted in a NIR/red ratio coded as black in the false-colored image; (F) Healthy [i] and 

spider mite [Eutetranychus banksi] damaged [ii-iv] cucumber leaves [C. sativus] leaves. 

www.intechopen.com



Accurate Spectral Measurements and Color Infrared Imagery of  
Excised Leaves Exhibiting Gaussian Curvature from Healthy and Stressed Plants 

 

137 

5. Opportunities and constraints 

The common use of NIR/red ratio images to detect plant stress is based on the well known 

fact that stressed plants commonly exhibit both a decrease in NIR reflectance and an 

increase in reflectance of red wavelengths. Thus, NIR/red ratios tend to be relatively high 

within areas of imagery representing healthy plant foliage, and generally decrease within 

areas exhibiting physiological stress. The main exception to this is significant honeydew 

deposition on leaf surfaces. Ratio images compiled during the research described clearly 

demonstrate the potential usefulness of this image enhancement technique for identifying 

certain types of biotic plant stress. 

Damage caused by each of the representative pest species discussed herein was 

accompanied by distinct spectral changes that were readily distinguishable (from healthy 

foliage) in CIR and/or derivative imagery. By providing a capability to identify small and 

localized areas of foliar damage (e.g., feeding injury by spider mites) and/or the presence of 

characteristic pest products on plants (e.g., honeydew), CIR imagery appears to have 

considerable potential for the detection of incipient infestations of several major groups of 

glasshouse arthropod pests. Moreover, use of a suitable artificial lighting source (e.g., quartz 

halogen lamps) facilitates the acquisition of CIR imagery that is equivalent in quality and 

interpretability to imagery obtained under optimal natural lighting conditions, and thus 

mitigates a major problem (i.e., poor or unpredictable ambient lighting) that has long 

represented one of the principal constraints to use of remote sensing in conventional 

outdoor crops. 

Overall it appears that excising and flattening leaves do not severely affect 

spectroradiometric and CIR image quality. Thus, one of the principal advantages of this 

method is that it provides a means by which to experimentally compare reflectance values 

and image ratios (NIR/red) in “side-by-side” comparisons without the vagaries caused by 

leaf curvature or reflectance from adjacent or underlying leaves. Summy and Little (2008), 

Summy et al. (2010), and Yousef et al. (2011) discuss the use of this template system for the 

direct comparison of leaves exhibiting signs and symptoms of sooty mold and fungal 

pathogens, insect infestations, and nutrient deficiencies and toxicities. 

6. Future directions 

In order to effectively use a template system such as that described herein for obtaining 

accurate spectral measurements of excised leaves, the user must ensure that the excision 

process and handling methods for leaf samples do not adversely affect leaf tissues or cause a 

degree of desiccation sufficient to affect spectral reflectance (Foley et al., 2006). Although 

much emphasis has been placed on laboratory handling methods, the procedures used to 

store samples for transport to the laboratory are equally important. One recent study 

demonstrated that excised foliage of giant reed, Arundo donax, placed within paper bags and 

stored in a refrigerated ice chest desiccated rapidly and exhibited substantial changes in 

spectral properties within a period of 24 hours following collection.  In contrast, samples of 

A. donax foliage stored within clear plastic zip-lock bags exhibited little evidence of 

desiccation or significant changes in spectral properties for 72 to 96 hours after collection 

(Summy et al., in press) (Figure 7). The development of field collection and transport 
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methodology for plant foliage is critical to obtaining accurate spectral measurements in the 

laboratory and represents a fruitful area of future research.   

 

Fig. 7. Samples of Arundo donax leaves maintained in plastic zip-lock bags (left) and paper 
bags (right) following a 96-hour observation period (from Summy et al., in press). 

7. Acknowledgements 

This book chapter is Contribution No. KAES 12-084-B from the Kansas Agricultural 
Experiment Station, Manhattan. 

8. References 

Ancisco, J.R., French, F.V., Skaria, J.W., and Holloway, R. (2002). IPM in Texas citrus. Texas 
Cooperative Extension Service, B-6121. Texas A&M University, College Station, 
Texas, USA 

Avery, T.E., and Berlin, G.L. (1992). Fundamentals of remote sensing and airphoto 
interpretation, 5th ed. Prentice Hall, ISBN 0-02305-035-7, Upper Saddle River, New 
Jersey, USA 

Babitskaya, V.G., and Shcherba, V.V. (2002). The nature of melanin pigments of several 
micro- and macromycetes. Applied Biochemistry and Microbiology, Vol. 38, No. 3, pp. 
411-451 

Bell, A.A., and Wheeler, M.H. (1986). Biosynthesis and function of fungal melanins. Annual 
Review of Phytopathology, Vol. 24, No. 1, pp. 411-451 

Blackmer, T.M., Schepers, J.S., Varvel, G.E., and Walter-Shea, E.A. (1996). Nitrogen 
deficiency detection using reflected shortwave radiation for irrigated corn 
canopies. Agronomy Journal, Vol. 88, No. 1, pp. 1-5 

Blazquez, C.H., and Horn, F.W. (1980). Aerial color infrared photography: applications in 
agriculture. National Aeronautics and Space Administration, Reference Publication 
1067, Washington, D.C. 

Blazquez, C.H., Edwards, G.J., and Horn, F.W. (1979). Aerial color infrared photography - a 
management tool. Florida State Horticultural Society Proceedings, Vol. 92, No. 1, pp. 
13-15 

Blazquez, C.H., Lowe, O., Sisk, J.R., and Bilbrey, M.D. (1988). Use of aerial color infrared 
photography, dual color video, and a computer system for property appraisal of 

www.intechopen.com



Accurate Spectral Measurements and Color Infrared Imagery of  
Excised Leaves Exhibiting Gaussian Curvature from Healthy and Stressed Plants 

 

139 

citrus groves. Photogrammetry Engineering and Remote Sensing, Vol. 54, No. 2, 
pp. 233-236 

Brenchley, G.H. (1964). Aerial photography for the study of potato blight. World Review of 
Pest Control, Vol. 3, No. 1, pp. 68-84 

Campbell, J.B. (2002). Introduction to remote sensing, 3rd ed. Guilford Press, ISBN 1-57230-640-
8, New York, New York, USA 

Colwell, R.N. (1956). Determining the prevalence of certain cereal diseases by means of 
aerial photography. Hilgardia, Vol. 26, pp. 223-226 

Cracknell, A.P., and Hayes, L. (2007). Introduction to remote sensing, 2nd ed. CRC Press, 
ISBN 0-84939-255-1, Boca Raton, Florida, USA 

Daughtry, C.S.T., and Biehl, L.L. (1985). Changes in spectral properties of detached birch 
leaves. Remote Sensing of the Environment, Vol. 17, No. 3, pp. 281-289 

Everitt, J.H., Drawe, D.L., Little, C.R., and Lonard, R.I. (2011). Grasses of south Texas: a guide to 
their identification and value. Texas Tech University Press, ISBN 0-89672-668-1, 
Lubbock, Texas, USA 

Everitt, J.H., Gerbermann, A.H., and Alaniz, M.A. (1981). Microdensitometry to identify 
saline rangelands on 70 mm color infrared film. Photogrammetric Engineering and 
Remote Sensing, Vol. 47, pp. 1357-1362 

Everitt, J.H., Lonard, R.I., and Little, C.R. (2007). Weeds in south Texas and northern Mexico: a 
guide to identification. Texas Tech University Press, ISBN 0-89672-614-2, Lubbock, 
Texas, USA 

Foley, S., Rivard, B., Sanchez-Azofeifa, and Calvo, J. (2006). Foliar spectral properties 
following leaf clipping and implications and implications for handling techniques. 
Remote Sensing of the Environment, Vol. 103, pp. 421-425 

Forterre, Y., Skotheim, J.M., Dumais, J., and Mahadevan, L. (2005). How the Venus flytrap 
snaps. Nature, Vol. 433, pp. 421-425 

Gamon, J.A., and Surfus, J.S. (1999). Assessing leaf pigment content with a reflectometer. 
New Phytologist, Vol. 143, No. 1, pp. 105-117 

Gandy, Y.P.P. (2010). Spectral reflectance as an indicator of foliar concentrations of arsenic in 
common sunflower, Helianthus annuus. M.S. Thesis, The University of Texas - Pan 
American, Edinburg, Texas, USA 

Gandy, Y.P., Mamachen, A., Mamachen, A., Lieman, J., Persans, M., Parson, J., Ibrahim, E., 
Summy, K.R., and Little, C.R. (2011). Techniques to facilitate the acquisition of 
accurate spectral measurements and multispectral imagery of plant foliage under 
artificial lighting conditions. Subtropical Plant Science, Vol. 63, No. 1 (in press) 

Gates, D.M., Keegan, J.J., Schleter, J.C., and Weidner, V.R. (1965). Spectral properties of 
plants. Applied Optics, Vol. 4, No. 1, pp. 11-20 

Gausman, H.W., Allen, W.A., and Cardenas, R. (1969). Reflectance of cotton leaves and their 
structure. Remote Sensing of the Environment, Vol. 1., No. 1, pp. 110-122 

Gausman, H.W. (1985). Plant leaf optical parameters in visible and near-infrared light. 
Graduate Studies, Texas Tech University, No. 29. Texas Tech University Press, ISBN 0-
89672-132-9, Lubbock, Texas, USA 

Gutschick, V.P. (1999). Biotic and abiotic consequences of differences in leaf structure. New 
Phytologist, Vol. 143, No. 1, pp. 3-18 

www.intechopen.com



 
Advanced Image Acquisition, Processing Techniques and Applications 

 

140 

Hart, W.G., and Myers, V.I. (1968). Infrared aerial color photography for the detection of 
populations of brown soft scale in citrus groves. Journal of Economic Entomology, 
Vol. 61, No. 3, pp. 617-624 

Hart, W.G., Ingle, S.J., Davis, M.R., and Magnum, C. (1973). Aerial photography with 
infrared color film as a method of surveying for citrus blackfly. Journal of Economic 
Entomology, Vol. 66, No. 1, pp. 190-194 

Jensen, J.R. (2004). Introductory digital image processing: a remote sensing perspective, 3rd ed. 
Prentice Hall, ISBN 0-13145-361-0, Upper Saddle River, New Jersey, USA 

Jensen, J.R. (2006). Remote sensing of the environment: an Earth resource perspective, 2nd ed. 
Prentice Hall, ISBN 0-13188-950-8, Upper Saddle River, New Jersey, USA 

Johannsen, C.J., Carter, P.G., Morris, D.K., Erickson, B., and Ross, K. (1999). Potential 
applications of remote sensing. Site-specific Management Guidelines Series, SSMG-22. 
Potash and Phosphate Institute, South Dakota State University, Brookings, South 
Dakota, USA 

Lee, K., Avondo, J., Morrison, H., Blot, L., Stark, M., Sharpe, J., Bangham, A., and Coen, 
E. (2006). Visualizing plant development and gene expression in three 
dimensions using optical projection tomography. The Plant Cell, Vol. 18, No. 9, 
pp. 2145-2156 

Leone, A.P., Menenti, M., and Sorrentino, G. (2001). Reflectance spectrometry to study crop 
response to soil salinity. Italian Journal of Agronomy, Vol. 4, No. 2, pp. 75-85 

Lillesand, T.M., Kiefer, R.W., and Chipman, J. (2007). Remote sensing and image 
interpretation, 6th ed. John Wiley and Sons, Inc., ISBN 0-47005-245-7, New York, 
New York, USA 

Liu, Z., Jia, L., Mao, Y., and He, Y. (2010). Classification and quantification of leaf curvature. 
Journal of Experimental Botany, Vol. 61, No. 10, pp. 2757-2767 

Myers, V.I. (1970). Soil, water and plant relations. pp. 253-297 In Remote sensing with special 
reference to agriculture. National Academy of Sciences, Washington, D.C., USA 

Myers, V.I., Ussery, L.R., and Rippert, W.J. (1963). Photogrammetry for detailed detection of 
drainage and salinity problems. American Society of Agricultural Engineers, Vol. 6, 
No. 4, pp. 332-334. 

Murtha, P.A. (1978). Remote sensing and vegetation damage: a theory for detection and 
assessment. Photogrammetry, Engineering & Remote Sensing, Vol. 44, No. 9, pp. 1147-
1158 

Nath, U., Crawford, B.C.W., Carpenter, R. and Coen, E. (2003). Genetic control of surface 
curvature. Science, Vol. 299, No. 5611, pp. 1404-1407 

Niklas, K.J. (1999). A mechanical perspective on foliage leaf form and function. New 
Phytologist, Vol. 143, No. 1, pp. 19-31 

Norman, G.G., and Fritz, N.L. (1965). Infrared photography as indicator of disease and decline 
in citrus. Florida State Horticultural Society Proceedings, Vol. 75, No. 1, pp.  59-63 

Osborne, S.L., Schepers, J.S., Francis, D.D., and Schlemmer, M.R. (2002). Detection of 
phosphorus and nitrogen deficiencies in corn using spectral radiance 
measurements. Agronomy Journal, Vol. 94, No. 6, pp. 1215-1221 

Payne, J.A., Hart, W.G., Davis, M.R., Jones, L.S., Weaver, D.J., and Horton, B.D. (1971). 
Detection of peach and pecan pests and diseases with color infrared 
photography. Proceedings of the 3rd Bienniel Workshop on Color Aerial Photography 

www.intechopen.com



Accurate Spectral Measurements and Color Infrared Imagery of  
Excised Leaves Exhibiting Gaussian Curvature from Healthy and Stressed Plants 

 

141 

in the Plant Sciences, Falls Church, Virginia, USA, American Society of 
Photogrammetry 

Perez, J.L., French, J.V., Summy, K.R., Baines, A.D., and Little, C.R. (2009). Fungal 
phyllosphere communities are altered by indirect interactions among trophic 
levels. Microbial Ecology, Vol. 57, No. 4, pp. 766-774 

Riley, P.A. (1998). Melanin. International Journal of Biochemistry and Cell Biology, Vol. 29, No. 
11, pp. 1235-1239 

Prusinkiewicz, P., de Reuille, P.B. (2010). Constraints of space in plant development. Journal 
of Experimental Botany, Vol. 61, No. 8, pp. 2117-2129 

Summy, K.R., Lieman, J., Gandy, Y.P., Mamachen, A., Mamachen, A., Goolsby, J., and 
Moran, P.J. (2011). Effects of leaf excision and sample storage methods on spectral 
reflectance by foliage of giant reed, Arundo donax. Subtropical Plant Science, Vol. 63, 
No. 1 (in press) 

Summy, K.R., and Little, C.R. (2008). Using color infrared imagery to detect sooty mold and 
fungal pathogens of glasshouse-propagated plants. HortScience, Vol. 43, No. 5, pp. 
1485-1491 

Summy, K.R., Little, C.R., French, J.V., Setamou, M., Mata, J., and Everitt, J.H. (2007). Use of 
ratio images to detect subtle forms of plant stress caused by foliar feeding 
arthropods. Proceedings of the 21st Biennial Workshop on Aerial Photography, 
Videography, and High Resolution Digital Imagery for Resource Assessment. ISBN 1-
60560-375-9, Terre Haute, Indiana, May 2007 

Summy, K.R., Little, C.R., Everitt, J.H., Mazariegos, R.A., French, J.V., Setamou, M., and 
Mata, J. (2010). Detection of incipient pest infestations on glasshouse crops using 
multispectral imagery and a common vegetation index. Subtropical Plant Science, 
Vol. 62, No. 1, pp. 56-62 

Summy, K.R., Little, C.R., Mazariegos, R.A., Everitt, J.H., Davis, M.R., French, J.V., and Scott, 
A.W. (2003a). Detecting stress in glasshouse plants using color infrared imagery:  
a potential new application for remote sensing. Subtropical Plant Science, Vol. 55, 
No. 1, pp. 51-58 

Summy, K.R., Little, C.R., Mazariegos, R.A., Everitt, J.H., Davis, M.R., French, J.V., and Scott, 
A.W. (2003b). Technical feasibility of color infrared imagery for monitoring 
physiological stress in glasshouse crops. Proceedings of the 19th Biennial Workshop of 
Color Photography, Videography and Airborne Imaging for Resource Assessment. ISBN 1-
57083-074-6, Logan, Utah, October 2003 

Summy, K.R., Little, C.R., Mazariegos, R.A., Hinojosa-Kettelkamp, D.L., Carter, J., Yousef, S., 
and Valdez, R. (2004). Evaluation of artificial lighting sources for the acquisition of 
color infrared imagery under glasshouse conditions. Subtropical Plant Science, Vol. 
56, No. 1, pp. 44-51 

Thomas, J.R., and Oerther, G.F. (1977). Estimation of crop conditions and sugar cane yields 
using photography. American Society of Sugar Cane Proceedings, Vol. 6, No. 1, pp. 93-99 

Toler, R.W., Smith, D.B., and Harlan, J.C. (1981). Use of aerial color infrared photography to 
evaluate crop disease. Plant Disease, Vol. 75, No. 1 pp. 24-31 

Wiegand, C.L., Gausman, H.W., Allen, W.A. (1972). Physiological factors and optical 
parameters as bases of vegetation discrimination and stress analysis. Proceedings of 
the seminar on: Operational Remote Sensing Seminar, Houston, Texas. American 
Society of Photogrammetry, Falls Church, Virginia, USA 

www.intechopen.com



 
Advanced Image Acquisition, Processing Techniques and Applications 

 

142 

Wilke, D.S., and Finn, J.T. (1996). Remote sensing imagery for natural resources monitoring. 
Columbia University Press, ISBN 0-23107-928-1, New York, New York, USA 

Yepsen, R.B. (1984). The encyclopedia of natural insect & disease control. Rodale Press, ISBN 0-
87857-488-3, Emmaus, Pennsylvania, USA 

Yousef, S., Summy, K.R., and Little, C.R. (2011) Detection of salt toxicity and nitrogen 
deficiency in Cucumis sativus L. using spectroradiometry and color infrared 
imagery. Journal of Plant Nutrition, Vol. 34, No. 8, pp. 1236-1244 

www.intechopen.com



Advanced Image Acquisition, Processing Techniques and

Applications I

Edited by Dr. Dimitrios Ventzas

ISBN 978-953-51-0342-4

Hard cover, 170 pages

Publisher InTech

Published online 14, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

"Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that

provides image processing principles and practical software implementation on a broad range of applications.

The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing.

An important feature of the book is its emphasis on software tools and scientific computing in order to enhance

results and arrive at problem solution.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Christopher R. Little and Kenneth R. Summy (2012). Accurate Spectral Measurements and Color Infrared

Imagery of Excised Leaves Exhibiting Gaussian Curvature from Healthy and Stressed Plants, Advanced Image

Acquisition, Processing Techniques and Applications I, Dr. Dimitrios Ventzas (Ed.), ISBN: 978-953-51-0342-4,

InTech, Available from: http://www.intechopen.com/books/advanced-image-acquisition-processing-techniques-

and-applications-i/accurate-spectral-measurements-and-color-infrared-imagery-of-excised-leaves-exhibiting-

gaussian-curv



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


