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1. Introduction  

The increased incidence of obesity and well-documented co-morbidities, have lead to the 

recognition that obesity is a public health epidemic (Mann, 1974; Larsson et al., 1984). Excess 

adipose tissue is a high risk factor for cardiovascular and metabolic syndrome (Manson et 

al, 1990). These two diseases both rank high on the list of leading causes of morbidity and 

mortality not only in the developed world but now also in the developing world.. 

The now well established relationship between excess adiposity and disease, has spurred 

obesity research which has been supported both by public institutions and private 

companies. In most of adiposity research, the experiment designs require the assessment of 

the adipose load and the development of the associated biological or medical issues. The 

measurement of fat tissue is a fundamental task. Studies covering both the nature history of 

obesity and the development of obesity associated diseases often require repeated longitude 

measurements during the course of the experiments. This is especially true of protocols 

assessing interventions through outcome analysis. This chapter focuses on the measurement 

of adipose tissue in animal models by micro MRI in combination with an automated method 

for adipose measurement. The emphasis is on the logic, development and application of the 

computational methodology for virtual fat extraction. 

1.1 Adipose imaging technique 

Classic adipose measurements have been based on weight or Body Mass Index (BMI).  

Recently imaging technologies have emerged as powerful tools for refined adipose 

assessment (Zhao et al., 2006; Luu et al., 2009). Imaging can provide not only the size of an 

adipose depot, but also its location. Often this more accurate information is of critical 

importance to the adipose researches.   

For adipose measurement, a variety of imaging techniques have been adopted in both 

human beings and small animals. Computed tomography (CT) is a widely used technique. 

It has the merits of high resolution and low cost. It has been developed in both humans 

(Zhao et al., 2006; Ohshima et al., 2008) and animals (Luu et al., 2009; Lublinsky et al., 2009). 

Compared to CT, Magnetic Resonance Imaging (MRI) (Gray, 1991; Gronemeyer, 2000) has 

advantageous in adipose research. Because MRI is radiation free, it is good for radiation 

sensitive research and desirable for longitudinal studies where the effects of radiation 

would be additive. This is especially true at the high resolution covered here.  

www.intechopen.com



 
Advanced Image Acquisition, Processing Techniques and Applications 

 

38

1.2 Animal model and micro MRI 

Experiments on Human subjects have obvious appropriate limitations. The mouse has 
emerged as the human surrogate in a large body of obesity research. In drug development and 
translational medicine research, preclinical research of animal models plays a significant role. 
Thus, researchers studying adipose tissue and the associated disease processes are actively 
pursuing preclinical studies using mouse models (Bechah et al., 2010; Church et al., 2009).  

Micro MRI (small animal MRI) is a powerful tool for in vivo fat measurement using small 
animal models. As described before, micro MRI can provide quantitative information about 
fat volume as well as depot locations (Ranefall et al., 2009). In adipose research it is often 
important to obtain spatial information related to the mechanism of pathogenesis and 
disease onset. 

1.3 Post processing 

1.3.1 Manual measurement 

Although micro MRI provides a powerful imaging tool, the post processing of the image 
dataset is intense time consuming work for both technicans and experts. Especially, for 
accurate abodomial adipose measurement, 3D volume instead of 2D slices are obtained for 
each animal. Therefore, a typical experiment on a group of mice will generate thousands of 
images requiring adipose measurements. This is an obstacle for high throughput and efficient 
discovery. In order to get the exact adipose region, manual drawing Region of Interests (ROI) 
is usually carried out. In such procedures, the errors and variations are inevitable.   

In the case of manual measurements, intra- and inter-operators' variations result in repeated 
measurements and statistical complexity. Furthermore adipose tissue has irreguar shapes 
and located in various depots throughout the body. Thus expertise are required to detect the 
adipose from the organs in the MRI images. All these factors decrease the accuracy for fat 
measurement.    

1.3.2 Automatic measurement 

Considering the above limitation and complexity added by manual analysis, automated or 
semi-automated techniques are urgently demanded for adipose measurements which can 
relieve the researcher from the tedious operational burdens as well as reduce the operator-
dependent errors.  

In order to accomplish automatic measurement, many tasks have to be considered. 

For fat measurement, the total size and locations of the fat tissues is basic information 
needed. From the imaging and image-processing viewpoint, how to extracting the fat pixels 
from the MR image is the first task. 

This task require matched and optimized imaging protocols and customized algorithms. 
Based on the observation that fat is relative bright in T1 weighted images, the adipose 
tissues are often extracted from the images by applying a threshold to the intensities 
(Ranefall et al., 2009; Sijbers et al.,1998; Chae et al., 2007). To deal with the inhomogenity of 
the MR images due to the inhomogeneitis in the magnatic field, local and adaptive threshold 
methods have been adapted (Sijbers et al.,1998; Chae et al., 2007). Beyond threshold based 
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methods; fuzzy logic methods have been applied. In fuzzy logic, each pixel is assigned a 
fuzzy membership to indicate the probability that the pixel is fat. Then the fat is extracted by 
minimizing the membership function instead of being based solely on a threshold (Positano 
et al., 2004; Positano et al., 2009). More mathematically complex models have been created to 
compensate for the inhomogeneities in the intensity images (Hou, 2006; Vovk et al., 2007). 
But methods based only on intensity are in general limited because other tissues or objects 
in the background exhibit similar intensities and complicate the separation. An exmaple can 
be seen in Figure.1, where the fat and non-fat region are close in intensity. (Tang et al., 2011) 

 

Fig. 1. The similar intensity of fat and non fat pixels in this case in the bladder. (Tang et al., 2011) 

As a result, image acquisition techniques have been proposed to provide better discrimination. 
For example, the water-saturation technique (Dixon et al., 1984;  Reeder et al., 2005; Peng et al., 
2005). However, analogous techniques have not been implemented for small animals at micro 
MRI due to magnetic field inhomogeneities at high field that can lead to artifacts and due to 
the increased difficultly of implementing strictly analogous pulse programs. 

For fat measurement, the location of fat depots has been shown to provide important 
information relevant to disease states. For example, the amount of abdominal visceral fat 
has been shown to be related to hypertension and cardiovascular disease, cerebrovascular 
disease, insulin resistance and type 2 diabetes (Ross et al., 2002; Snijder et al., 2006). Thus, an 
important issue in fat analysis is to assign the fat depot type to associated anatomical 
location, which usually includes the subcutaneous fat and visceral fat. To identify different 
fat depots, one common methods is based on region growing algorithms (Siegel et al., 2007; 
Ranefall et al., 2009), which start from the seed points planted in the different fat depots and 
grow to include nearby pixels with similar intensity into the same group and therefore 
depot. But the region growing method is difficult to apply in thin mouse with scattered fat 
tissues. Automated placement of the seed is still an unmet challenge in most cases. 

In order to separate the visceral and subcutaneous fat, curve deformation methods (Positano 
et al., 2004; Positano et al., 2009; Zhao et al., 2006) have also been reported. These methods 
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deform a curve inwards from skin contour to locate a muscle layer. Because the muscle layer 
lies between the subcutaneous and visceral fat, the different fat depots are separated by 
default. 

1.4 Automatic fat measurement on micro MRI 

Fat measurements using imaging technique have been established in humans (Siegel et al., 

2007; Ohshima et al., 2008) at lower field strengths, fat measurement in mice models using 

micro MRI has not been adequately addressed.  

Here we summarize our fat measurement system using micro MRI. As the schematic 

representation illustrated in Figure 2, the system includes an imaging and post processing 

module. In the imaging module, the mice are subject to a MRI scanning on the abdominal 

region with multiple echo sequence. In the post processing module, fat is first extracted 

from the multiple echo images with a multi-part algorithm based both on intensities and 

each pixels T2 translation relaxation time. In our system, the fat extraction is accomplished 

by adopting a fuzzy c mean clustering algorithm in the T1 weighted image and then 

selecting clusters into fat regions aided by the additional T2 information.   

For fat depot recognition, we developed a method which utilizes a knowledge-based 

framework for image post acquisition image processing, which takes advantages of the a 

priori anatomical knowledge and automatically segments each depot into visceral fat or 

subcutaneous fat using fuzzy logic techniques.  

 

Fig. 2. The schematic representation of adipose measurement system using micro MRI 
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In this chapter, we will describe how we perform the fat measruement in typical mouse 
model of obseity, detailing how to perform the imaging, fat extraction and depot separation. 
Most of the content of this chapter comes from our groups previous and ongoing research 
work (Tang et al., 2010; Tang et al., 2011). For each section, section 2 presents the imaging 
protocol and animal groups for image acquisition; section 3 introduces the fat extraction 
method; section 4 describes the depot separation algorithm. In section 5, the automatic 
results is compared to manual reference for validataion. After that, the conclusion and 
acknowledgement is given in section 6 and section 7 respectively. 

2. Image acquisition 

2.1 Imaging sequence on micro MRI 

The experiments were performed on micro MRI scanner (70/16 Bruker PharmaScan, 
Germany). The field strength of the instrument is 7.05 Tesla and the maximal gradient 
strength is 400mTesla/m.  

To provide adequate signal to noise and coverage, slices were collected with 1mm thickness. 
An optimized Bruker multiple-slice-multiple-echo (MSME) sequence (TR=5300ms, 
TE=12~120ms, 10 echoes) was adopted to get the high signal to noise ratio. The field of view 
was 3*3cm and matrix size was 256*256, in-plane resolution was 117um.  

In the imaging, we focus on the abdominal fat. For this purpose, mice were placed prone in 

a semi cylindrical holder. In previous research (Luu et al., 2009), the abdominal region has 

been defined from L1 to L5 of the spine in the CT images. Because in the MRI, bone 

hypointense is not as easily differentiated as it is in the CT, we define the abdominal region 

in micro MRI using the kidneys as a reference.  Data starts at the slice at the top of the left 

kidney and ends at the end of right kidney.  

2.2 Animal population 

In order to validate the measurement system, the experiments were tested on an animal 
population with 26 wild type C57BL/6 mice. 

There are 4 groups in the mice population with different adipose ratio, which is 

differentiated by feeding strategies. Mice received regular chow or a high fat diet 

respectively. In the regular chow group, mice were placed into 3 litters with different sibling 

numbers that provided different nutritional conditions due to competition or lack of 

competition. The details of animal experiments are listed in Tab.1 including large litter (LL), 

normal litter (NL), small litters (SL) and high fat (HF) groups. (Tang et al., 2011)  

 

Group Mouse num (Male, Female) Feed Little Sibling num 

LL M=6 F=1 Chow LL 12 

NL M=4 F=1 Chow NL 7 

SL M=7 F=2 Chow SL 3 

HF M=2 F=3 High Fat LL,NL,SL 5 

Table 1. Animal population for the experiments  (Tang et al., 2011) 
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3. Adipose extraction  

3.1 Principle 

In the MR image, due to the high proton density, fat tissues usually has relative high 

intensity values. But only intensity information is not sufficient to allow segmentation due 

to complicated mechanisms resulting in high intensities in other organism as well. Therefore 

in the multi-component method, we combine pixel intensity information with transverse 

relaxation time to aid in the automated extraction of the fat tissues. 

The basic idea is illustrated in Figure 3 (Tang et al., 2011). Here the first echo image is 

selected because of its high signal to noise ratio(SNR) compare to other echo images. In the 

first echo image, instead of the explicit threshold, the fuzzy c means (FCM) clustering 

approach (Dunn, 1973) is adopted to classify all pixels into groups. With the cluster image, 

we can first exclude the mouse body from the background by sorting the average intensity 

in each cluster. The cluster with their average intensity less than minimium threshold is 

considered to be background.  

To deal with problem of the non fat tissue with high intensity in the T1 weighted image, the 

T2 parametric image based primarily on relaxation is explicitedly calculated from the 

multiple echo images. Because the T2 value reflects the transverse relaxation time of tissues, 

the T2 parametric image can help to separate the fat and non-fat tissues. An example is 

displayed in Figure 4, where the T2 parametric image exhibits a larger range of statitstially 

distinguishable values and thus aids us in seperating the fat from the non-fat tissues.  

Prior to the fat extraction, an image filter is applied to the image data to reduce the noise 

level. All the technical details are summarized as following. 

 

Fig. 3. The schematic representation of adipose measurement system using micro MRI.(Tang 
et al., 2011) 
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Fig. 4. The fat and non fat tissues in T2 parameter image.(Tang et al., 2011) 

3.2 Image filter 

The pre-processing step is necessary for reducing noise and thus enhance the image in 

specific ways. Filtering technique are often used for this purpose. Most image filters replaces 

the signal of a pixel according to the neighbouring pixels. Filtered image can be regarded as 

a convolution between original image and the kernel. The filter kernel, typically a matrix, 

represents the number of pixels nearby taken into account.  

There are two typical filters including the linear and nonlinear filters used in image 

processing. The linear filter only takes into consideration the relative position in kernel, and 

remains constant throughout the whole image filtering. Nonlinear filters are relative to the 

target pixel and the coefficients are calculated as a function of local variations of the signal 

(Bonnya et al., 2003). For example, in the linear filter class, average and Gaussian filers are 

often used. Among the nonlinear filters, the median filter is popular. A selective blurring 

filter (Wang et al., 1981) is often used, which emphases the pixels with similar intensity to 

the target pixel. A bilateral filter (Tomasi&Manduchi, 1998) is an edge preserving technique 

proposed recently and has been widely used in image processing. In comparison to the 

selective blurring filter, not only the intensity similarity but also the spatial similarity is 

taken into account. 

In this section, we try to give some examples of common filters for the adipose image and 

finally choose the bilateral filter for our system. Figure 5. shows the different results from 

both linear and nonlinear filters. For better insight, an amplified region of the whole image 

was displayed.  
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Fig. 5. The image of adipose tissue after the application of common image filters. (Tang et 
al., 2010) 

3.3 Cluster image 

Clustering is an important technique for image analysis, which can sort all the pixels in the 
image into different clusters according to their similarities. In our measurement system, the 
fuzzy c means (FCM) clustering approach (Dunn et al., 1973 ) was adopted to classify all pixels 
into groups and produce the cluster images. In this clustering, as shown in Figure 3 , the first 
echo image was chosen because of its relatively high SNR compared to later echo images. 

In clustering, the cluster number is an important parameter. In the previous research 
(Positano et al., 2004; Positano et al., 2009; Ranefall et al., 2009), the cluster number was 
usually defined to be three, corresponding to background, fat and muscles. Nevertheless, in 
the real anatomy, more organs and tissues are included in the MR image. Three clusters do 
not well describe the discrepancies between different tissues. We found that increasing the 
cluster number was necessary to more accurately describe the full data. The fat tissue may 
display in multiple clusters and it becomes difficult to correctly select the appropriate 
cluster using intensity-only images. In our method, the clusters are recognized by their T2 
values, which allowed us to increase the number of clusters.  

3.4 T2 time 

Transverse relaxation time (T2) is an important clue for adipose extraction in our system. To 
accurately measure the T2 time for each pixel of the parametric image, a curve is fitted to the 
decay of intensity with increasing TE (Vander et al., 2000). For the fitting of fat data, we used 
the weighted least square method with baseline subtraction and least point requirement. 
The fitting model and comparison of the fitting methods are described as follow. 
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3.4.1 Fitting model 

The transverse relaxation time measurement of fat appears to satisfy a mono-exponential 

physical model known as: (Sijbers et al., 1998) 

 Si(S0,T2)=S0*exp(-Tei/T2) (1) 

with Tei=i*te and S0 is the pseudo-proton density, which is relative to the true proton 

density, T1 value and receiver coil response. 

3.4.2 Fitting methods 

T2 value can be calculated by fitting the experimental data to above model in equation (1). 

To accomplish the fitting, a fitting method should be adopted. Here we have a comparison 

of the least square and weighted square method.  

A least square method (LS) is the common way of fitting the curve, which consists in 

minimizing the quadratic distance between the fitted curve and the curve represented by 

the raw data.  

 2 2
0 2

1

[ exp( / )]
N

i i
i

I S Te T


    (2) 

Where Ii is the scanned intensity of intensity images in ith echo. 

Weighted least square method (WLS) takes other factors into account using the weight with 

merit function:  

 2 2 2
0 2

1

[ exp( / )]
N

i i i
i

w I S Te T


    (3) 

Where wi, the weight of ith point, should represent the confidence of the signal. As the low 

intensity signals are more likely to be noise and according have less certainty, here wi was 

simply set as proportion to the intensity. 

In figure 6, the calculated T2 and S0 in fitting model are compared using both least square 

and weighted least square methods. We can see that weighted least square method presents 

a more consist result compared to least square method. Therefore, we adopted the weighted 

least square method in our system.  

3.5 Adipose separation 

With T2 reference, the fat regions are extracted in the cluster image by comparing the 

clusters' similarities in T2 values. In order to take T2 into account, the average T2 values are 

calculated for each cluster. A similarity threshold Ts is defined:  

 Ts=|T2cluster-T2fat|/T2fat (4) 

Here the T2cluster is the average T2 value in each cluster from non-empty pixels and T2fat is 

the T2 value of fat.   
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Fig. 6. Comparison of Methods for T2 fitting in the MR images(Tang et al., 2010) 

Because the T2 value is related to the magnetic field strength, we suggest that the fat T2 

could be defined by drawing a ROI in the known fat region or based on phantoms using the 

exact same imaging acquisition protocol and instrument.  

The similarity threshold in Equation (4) defines a T2 range. The clusters with T2 value in the 

defined range are considered as fat tissues. Because the T2 values of fat and non-fat tissues 

are generally distinguishable, a reasonable threshold can be found for each specific 

application. 

Instead of the threshold, a more complicate strategy can also be designed using a confidence 

image. More details can be found in our previous work (Tang et al., 2010).  
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4. Depot recognition  

The definition of fat depots distribution and volume plays a great role in disease studies. In 
this study, we present a method to analysis the total adipose tissue (TAT), which employee 
a knowledge-based framework to separate the subcutaneous adipose tissue (SAT) from the 
visceral adipose tissue(VAT). 

4.1 Principle 

The basic procedures of depot separation are illustrated in Figure 7. Before the knowledge is 
applied, a morphological operation is performed to decompose the fat tissues. Then the 
unconnected parts are labelled and a knowledge-based method is adopted to recognize each 
object to be different depots. 

 
 

Fig. 7. The procedures of the depot recognition (Tang et al., 2011) 

4.2 Decomposition 

In the extracted fat image, the subcutaneous adipose tissues and visceral adipose tissues 
sometimes are accidently connected, which will complicate the depot recognition in further 
processing. Here a morphological opening operation (Gonzalez & Woods, 1992) is employed 
to decompose the adjoining parts. The morphological opening is composed by erosion and 
then dilation operations respectively. In our application, because some slim sections are 
erased by opening operation as well, the erased sections from pre- and post-morphological 
operation are saved for later placement into the mostly probable depot. 

4.3 Knowledge based recognition 

After decomposition, unconnected fat tissues are labelled as individual regions. To sort 
these individual regions into their likely respective fat depots, we employ a knowledge- 
based framework. Considering the variance of each feature, the descriptors are expressed by 
fuzzy logical (Zadeh, 1965). In the fuzzy set, each feature is assigned a grade of membership 
between 0 and 1. Using the fuzzy set to present the probability of belonging to different 
depots allows the anatomical variance to be contained in our system.  
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4.4 Parameters 

Four parameters were adopted which contained the a priori knowledge of anatomical 

features. The parameters are described below and displayed in Figure. 8. (Tang et al., 

2011) 

4.4.1 Parameter 1: Orientation 

Previous research indicates that the abdominal fat in mice tends to accumulate in a bilateral 

pattern (Calderan et al., 2006). Taking advantage of this a priori information, we 

implemented an orientation parameter dividing the body into bilateral regions and 

dorsal/ventral regions (Figure 9). The orientation parameter for each individual region in a 

polar system with its origin located at the geometrical centroid of the body area is as the 

mean of the maximum and minimum angles.  

Orientation=(maximum angle + minimum angle)/2 

4.4.2 Parameter 2: Minimum distance 

We define the feature of location, for each pixel inside the body area, which represents its 

distance to the nearest body contour. As Figure. 9 shows, a distance map is displayed for the 

inside the body area with the intensity corresponding to the distance. For example, the 

bright pixel near the centroid denotes a long distance to the body contour. The minimum 

distance parameter describes how close the outer edge of the fat region is to the body 

surface and is defined as the minimum value of the distance map in an individual region. 

This parameter is important for distinguishing the subcutaneous from visceral fat.  

4.4.3 Parameter 3: Maximum distance 

Similar to minimum distance, maximum distance is used to express the location feature that 

describes how far the fat tissues are away from the body surface. It is defined as the 

maximum value of the distance map in an individual region.  Both minimum distance and 

maximum distance have three membership functions defining a confidence score for small, 

medium and large distance. Taking into consideration the observed regional variances 

(Calderan et al., 2006), different strategies are used in the bilateral and dorsal/ventral 

regions.  

4.4.4 Parameter 4: Elongatedness 

Elongatedness describes the shape of the object. Derived from empirical observations, in the 

band-like region near the body surface, the subcutaneous fat segments are usually slender 

along the surface; therefore a priori shape information is exploited in a location feature. An 

elongatedness parameter is defined to be the ratio of the length to thickness. 

Elongatedness=length/thickness 

Where (length=maximum angle-minimum angle) and (thickness=maximum distance-

minimum distance). 
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Fig. 8. The description of the parameters. (Tang et al., 2011) 

 

Fig. 9. The bilateral region and dorsal/ventral region. (Tang et al., 2011) 
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4.5 Inference rules 

Utilizing the defined parameters, the depot can be recognized by classical If-Then rules and 

a min-max fuzzy inference scheme. Tissues are assigned to either the bilateral region or 

dorsal/ventral region (Fig.9) according to their orientations. Then three rules are employed 

to distinguish the depots: 

Rule1: If maximum distance is small, then it is subcutaneous fat.  
Rule2: If minimum distance OR maximum distance is large, then it is visceral fat. 
Rule3: If minimum distance is small AND maximum distance is medium AND shape is 
elongated, then it is subcutaneous fat. 

With defined rules, the min-max fuzzy inference scheme will automatically calculate the 
weights for each rule and assign the depot type in term of the weighted centroid (Zadeh, 1965).   

5. Validation  

To validate the measurement performed by the automatic process, we compared the 

automated results to the manual results from multiple observers. 

5.1 Manual reference 

In order to take inter-operator variations into account, two independent technicians 
performed the manual segmentations using a customized software tool developed in 
Matlab. In the software, two basic functions were provided including threshold and ROI 
analysis. The technicians first select the fat regions by adjusting a threshold. Then multiple 
manual ROI operations were performed to add or delete the fat regions based on the users 
experience. The total segmented fat is TAT. To segment the subcutaneous and visceral fat, 
operators carefully delineated a contour between these two depots. Finally, the fat inside the 
contour is considered as VAT and the rest of the fat is SAT.  

5.2 Quantification results 

The first comparison is for the segmented adipose size, which were performed in TAT, VAT 
and SAT respectively for all mice. A linear regression with 95% confidence (P<0.001) was 
calculated for each comparison. For the first manual result, the R2 for TAT is 0.953 with the 
regression function y=1.088x+0.4407; R2 for VAT is 0.9627 with the regression function 
y=1.058x+1.769; R2 for SAT is 0.8221 with the regression function y=1.042x+0.8719.  For the 
second manual result, the R2 for TAT is 0.912 with the regression function y=1.009x+6.583; 
R2 for VAT is 0.9154 with the regression function y=0.9889x+6.924; R2 for SAT is 0.8986 with 
the regression function y=1.037x+0.3821. The agreement in the R2 value denotes the linear 
relationship between the automatic and manual results, and the concordance in the slope of 
the function provides confidence that the relationship will hold true in a variety of 
conditions. The agreement between the automatic results and manual results is comparable 
to the difference between correlation coefficients of the two manual results, which for TAT: 
R2=0.9514, VAT: R2=0.9195 and SAT: R2=0.8767.  

A second comparison was performed to evaluate the voxel-by-voxel overlap of the 

segmented TAT, SAT and VAT respectively. To qualify these spatial similarities, we 
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adopted the dice coefficient, which is customarily used to compare the segmentation results 

in medical imaging.   

As Equation 5 shows, the Dice Coefficient (DC) describes the average ratio of the 
intersection between the results (R1) and results (R2). For example, a complete overlap of 
the segment results will make the DC to be 1.  

 1 2

1 2

2 R R
DC

R R





 (5) 

We calculated the DC in the 26 mice for TAT, VAT and SAT respectively. The average value 
between automatic result and two manual results are for TAT: DC=0.8839, for VAT:DC= 
0.8795 and for SAT:DC=0.873. The detailed statistic DC value (mean value ± standard 
deviation) for each result is displayed in Table 2. (Tang et al., 2011) 

 
 

DC TAT VAT SAT 

A vs. M1 0.9087±0.0438 0.8999±0.0467 0.8783±0.0546 

A vs. M2 0.8591±0.0558 0.840±0.0634 0.8677±0.0435 

M1 Vs.M2 0.8846±0.052 0.8717±0.0598 0.8847±0.0491 

Table 2. Dice Coefficient (DC) of automatic (A), first manual result (M1) and second manual 
result (M2). (Tang et al., 2011) 

6. Conclusion  

In this chapter, we introduce a adipose measurement system for small animal using micro 

MRI. We have presented the imaging protocol and technical detail of the post-processing 

methodology. The parameters are well defined yet adjustable and tuneable to new 

applications. By decreasing the amount of manual operation needed, we hope this technique 

can reduce the threshold for obesity researchers to use MRI in their research. 
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