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1. Introduction 

The clarification of metabolic dynamics in lesion areas is important. Many approaches, such 
as high performance liquid chromatography mass spectrometry, gas chromatography mass 
spectrometry, immunohistochemistry, are used to define disease-related abnormalities. 
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is 
attracting attention as a new valuable tool. MALDI-IMS is a two-dimensional MALDI mass 
spectrometric technique used to visualize the spatial distribution of molecules without 
extraction, purification, separation, or labeling of biological samples (Cornett et al., 2007; 
Zaima et al., 2010b). MALDI-IMS has revealed the characteristic distribution of several 
biomolecules, including proteins (Caprioli et al., 1997; Groseclose et al., 2007; Morita et al., 
2010), peptides (Chansela et al., 2011; Stoeckli et al., 2002), amino acids (Goto-Inoue et al., 
2010b; Zaima et al., 2010a), lipids (Hayasaka et al., 2009; Murphy et al., 2009; Zaima et al., 
2011a), and carbohydrates (Goto-Inoue et al., 2010b), in various tissues. The versatility of 
MALDI-IMS has opened a new frontier in several fields, such as pharmacology, medicine, 
agriculture, biology, and pathology. In this review, we describe the methodology and 
applications of MALDI-IMS for biological samples. 

2. MALDI-MS 

MALDI-MS was developed from laser desorption/ionization mass spectrometry (LDI-MS). 
The first LDI-MS experiment for high-mass molecules was reported in 1987 (Tanaka et al., 
1987). In this experiment, a powder of cobalt metal in glycerol was used for the observation 
of ions with a mass to charge (m/z) ratio of 34,000. Soon afterward, MALDI-MS results of 
serum albumin (67,000 Da) were reported using nicotinic acid as the matrix (Karas & 
Hillenkamp, 1988). It was reported that MALDI-MS can detect a wide range of molecules 
ranging from small (m/z <1000) to large molecules (m/z >1,000,000) (Yates, 1998). The schema 
of MALDI-MS is shown in Figure 1. 

In routine MALDI-MS analysis (i.e., non-imaging analysis), the analyte can be mixed with 
an excess of matrix. On the other hand, molecular imaging of tissue sections using MALDI-
IMS requires the tissue surface to be homogeneously covered by a matrix. On-tissue 
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application of matrix results in the in situ extraction of molecules from biological tissues. The 
cocrystal of matrix and analyte molecules in tissue is irradiated with a pulsed laser of 
appropriate energy, leading to desorption and ionization of the matrix and analyte 
molecules. The fragmentation of analyte molecules is prevented by the incorporation of the 
analyte molecules into matrix crystals. The role of the optical absorption of the matrix in the 
transfer of energy from the laser beam to the analyte molecules is governed by Beer’s law, as 
described previously (Karas et al., 1985). However, the mechanisms underlying the 
formation of charged matrix and analyte molecules in the MALDI process are not fully 
understood. 

 

Fig. 1. Schema of MALDI-MS. 

The matrix molecules absorb the laser energy and facilitate desorption and ionization of 
analyte molecules in the tissue. The homogeneous matrix cover is important for MALDI-
IMS, because a heterogeneous distribution of matrix results in different ionization 
efficiencies of analyte molecules based on their location.  

3. Methodology of MALDI-IMS 

The important experimental steps for visualizing endogenous molecules or administered 
pharmaceutical agents in tissue using MALDI-IMS are sample preparation (such as fixation, 
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sectioning, and washing), choice of matrix and matrix application, measurement, and data 
analysis. To obtain meaningful biological images, all steps need to be carefully controlled. In 
this section, the basic experimental MALDI-IMS procedures are described. The schema of 
MALDI-IMS is presented in Figure 2. 

 

Fig. 2. Schema of MALDI-IMS.  

After biological study (a), the tissue of interest should be appropriately isolated (b). A thin 

section of isolated tissue is mounted on a glass slide (c), coated with matrix (d), and measured 

by a mass spectrometer (e). The resultant mass spectra (f) can be used for a data mining 

approach (g). Molecules of interest can be visualized (f) and identified by MS/MS on tissue (f). 

3.1 Biological sample preparation 

The samples for MALDI-IMS come from a variety of biological sources, including organs, 

whole animal body dosed with a pharmaceutical compound, or pathological tissues. 

Optimization of the sample preparation procedure according to the chemical and physical 

properties of analytes is important. Here, the basic sample preparation steps for MALDI-

IMS are described. 

3.1.1 Sample condition for MALDI-IMS 

Collection and treatment procedures need to be sufficiently fast to prevent rapid tissue 

degradation, because the sample degradation process starts immediately after the cessation 

of blood flow. The most preferred sample for MALDI-IMS is a chemically unmodified fresh-

frozen one. Fresh-frozen samples can be prepared using dry ice, liquid nitrogen, or liquid 

nitrogen-chilled isopentane, and can be preserved in a deep freezer until required. The 

samples should be well sealed to prevent drying during storage, and it is important to 

ensure that the tissue section morphology is well preserved before MALDI-IMS. 
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3.1.2 Fixation and embedding 

Fixation of samples, such as formalin fixation, is preferably avoided because the protein 
crosslinking introduced by formalin fixation makes MALDI-IMS analysis difficult. 
However, many medical samples are routinely formaldehyde-fixed and paraffin-embedded 
(FFPE) just after dissection. To address this problem, the on-tissue proteolytic digestion 
method, in which proteins are denatured and digested by enzymes, has been developed 
(Djidja et al., 2009; Groseclose et al., 2007; Lemaire et al., 2007; Morita et al., 2010). The on-
tissue proteolytic digestion method includes a paraffin removal step using xylene and 
ethanol. In the paraffin removal step, lipophilic molecules are lost; therefore, FFPE samples 
cannot be used for lipid imaging. When the samples are formaldehyde-fixed without 
paraffin-embedding, lipid imaging can be performed (Zaima et al., 2011c). However, the 
detected ion intensities of lipids in formaldehyde-fixed samples are lower than those in 
fresh-frozen ones are. 

Embedding of the tissue samples in supporting material, such as an optimal cutting 
temperature (OCT) compound, allows the maintenance of tissue morphology and precise 
sample sectioning. However, supporting materials are often ionized during MALDI-MS 
analysis and sometimes act as ion suppressors of molecules of interest (Schwartz et al., 
2003). Therefore, samples should not be embedded if precise sample sections can be 
prepared without embedding. When it is difficult to prepare a sample section, the use of 
carboxymethylcellulose (CMC) or gelatin as embedding material is recommended. Sodium 
CMC (2%) is reported to be used as an alternative embedding compound that does not 
interfere with the detection sensitivity of biomolecules in MALDI-IMS analysis (Stoeckli et 
al., 2006; Zaima et al., 2010a). Chen et al. reported that gelatin provides a cleaner signal 
background than OCT (Chen et al., 2009). Researchers should ensure compatibility between 
the supporting material and the biomolecules of interest.  

3.1.3 Sectioning 

The basic sectioning procedure for MALDI-IMS samples is same as that for pathological 
examination. Sections for MALDI-IMS can be prepared using a cryostat. The sample stage 
temperature is typically maintained between -5 and -20°C. To obtain high quality sections 
from tissues with high fat content (e.g., brain), or atherosclerotic lesions, breast tissue, or 
lipid storage disease samples lower temperatures are required. In general, 5–20-μm-thick 
sections are prepared for the analysis of low-molecular-weight molecules. The use of thinner 
tissue sections (2–5 μm thick) has been recommended for the analysis of high-molecular-
weight molecules (range, 3–21 kDa) (Goodwin et al., 2008). Sections are usually thaw-
mounted on a stainless steel conductive stage or on commercially available indium-tin oxide 
(ITO)-coated glass slides. We recommend the use of ITO-coated glass slides because these 
transparent slides enable microscopic observation of the section after MALDI-IMS. Use of 
adhesive film is suitable for samples for which thaw-mounted preparation of sections is 
challenging (e.g., bone or whole-body sections) (Stoeckli et al., 2006; Zaima et al., 2010a). The 
procedure for sectioning using adhesive film is shown in Figure 3. The prepared section 
should be immediately dried in a vacuum desiccator to avoid moisture condensation that 
could cause delocalization of analyte molecules in the tissue. Moisture condensation can be 
avoided by placing the prepared section in a dry and cold container until return to room 
temperature. 
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Fig. 3. Procedure for sectioning using adhesive film.  

Attachment of adhesive film to the sample block (a). The end of the adhesive film must be 

anchored with tweezers to prevent adhesion of the film to the sample stage (b). After the 

sample section is obtained (c), the sample section on the adhesive film is attached to a glass 

slide (d).  

3.1.4 Washing 

Washing is required for peptide or protein analysis because their detection is often 

prevented by large amounts of easily ionized lipid species. Lipid removal simplifies mass 

spectra in the range of m/z 400–1000; thus, lipid removal enables the detection of low-mass 

peptides that are usually masked by lipid peaks. The washing method should be optimized 

for the target imaging molecules. Several washing protocols using organic solvents have 

been reported (Aerni et al., 2006; Andersson et al., 2008; Groseclose et al., 2007; Lemaire et 

al., 2006; Schwartz et al., 2003). 

Washing is also used for removing the matrix from the tissue section after MALDI-IMS 

analysis. The matrix can be removed using the solvent that is used for preparing the matrix 

solution. For example, 2,5-dihydroxybenzoic acid (DHB) can be rapidly removed by 

methanol. Matrix removal enables the microscopic observation of a tissue section followed 

by pathological staining, such as hematoxylin and eosin (HE) staining, toluidine blue 

staining etc.  
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3.2 Matrix application 

The matrix plays a central role in MALDI-MS soft ionization (Karas & Hillenkamp, 1988; 
Karas & Kruger, 2003). Biomolecules are softly ionized in the cocrystal with the matrix, 
which absorbs the laser beam energy and protects biomolecules from the disruptive energy. 
Protonated ion ([M + H]+) or deprotonated ion ([M − H]−) molecules are generally detected. 
Sodium adduct ion ([M + Na]+) and potassium adduct ion ([M + K]+) are often observed by 
biological sample analysis. It is very important to choose appropriate matrices for obtaining 
meaningful biomolecular images. An overview of the matrices used for IMS can also be 
found in other reviews (Chughtai & Heeren, 2010; Kaletas et al., 2009).  

3.2.1 Choice of matrix 

The choice of matrix used for MALDI-IMS depends on the mass range and chemical properties 
of the analytes. Among the many kinds of matrices, sinapinic acid (3,5-dimethoxy-4-
hydroxycinnamic acid [SA]) is generally used for high-molecular-weight molecules, such as 
proteins, while α-cyano-4-hydroxycinnamic acid (CHCA) is often used for medium-molecular-
weight molecules, such as peptides. 2,6-dihydroxyacetophenone (DHA), DHB, or 9-
aminoacridine (9-AA) is generally used for low-molecular-weight molecules, such as 
pharmaceutical compounds, lipids, or metabolites (Hattori et al., 2010; Hayasaka et al., 2009; 
Khatib-Shahidi et al., 2006; Sugiura et al., 2009; Woods & Jackson, 2006).  

The development of new matrices is still being reported. We and other research groups 
recently reported the use of nanoparticles as new matrices (Hayasaka et al., 2010; McLean et 
al., 2005; Moritake et al., 2009; Su & Tseng, 2007; Sugiura & Setou, 2010). For example, iron 
oxide nanoparticles enable the visualization of sulfatide and phospholipid distribution (Ageta 
et al., 2009; Taira et al., 2008), silver nanoparticles can be used for the analysis of fatty acids 
(Hayasaka et al., 2010), and gold nanoparticles are appropriate for the sensitive detection of 
glycosphingolipids, such as sulfatides and gangliosides (Goto-Inoue et al., 2010a).  

3.2.2 Matrix application 

There are various methods for applying the matrix onto the section, such as deposition, 

spraying, and sublimation. The matrix application method also influences analyte extraction 

efficiency. Compared to other methods, the deposition of matrix solution using automatic 

depositing robotic devices, such as a chemical inkjet printer (ChIP-1000; Shimadzu 

Corporation, Kyoto, Japan), increases signal sensitivity, but decreases spatial resolution (Aerni 

et al., 2006; Chansela et al., 2011; Morita et al., 2010). The other limitation of the inkjet printer is 

capillary clogging, which occurs when highly concentrated matrix solutions are used. 

Spraying is the most frequently used method in MALDI-IMS. Using this method, an entire 

tissue section can be homogeneously coated with relatively small crystals in a short time 

without special equipment. For its operation, several instruments, including Thin layer 

chromatography (TLC) sprayers and artistic airbrushes, are available; we use a metal airbrush 

with a 0.2-mm nozzle because of its simple and easy-to-handle design. This method requires 

skillful operation because some airbrush parameters are hand-operated. If there is an excess of 

matrix solution on the tissue, an inhomogeneous crystal can be formed with analytes that have 

migrated from their original location; on the other hand, if not enough matrix solution is 

sprayed and it evaporates without sufficiently moisturizing the tissue section, analytes cannot 
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be adequately extracted from the tissue section. The operation should be performed at a 

constant room temperature and humidity. Beginners are recommended to practice spraying 

until homogeneous matrix spraying can be reproducibly achieved. Sublimation is a new 

method for applying matrix to tissue sections (Hankin et al., 2007). Using this technique, a 

matrix can be applied uniformly over a large sample plate in a few minutes without solvents. 

Additionally, previous reports demonstrated that this method increases analyte signal and 

that the fine microcrystals formed from the condensed vapor reduce the image resolution 

limitation caused by crystal size (Dekker et al., 2009; Vrkoslav et al., 2010).  

3.3 Measurement and data analysis 

3.3.1 Measurement 

MALDI-IMS should be performed as soon as possible after matrix application, regardless of 
the coating method. The procedure to obtain a good spectrum in MALDI-IMS is almost the 
same as that for traditional MALDI-MS; mass range, detector gain, and laser power must be 
optimized. From the mechanical setting perspective, there are 3 differences between 
MALDI-MS and MALDI-IMS. The first difference is the above-mentioned matrix 
application. The second difference is the need for focusing of the laser beam. To obtain 
meaningful biological images by MALDI-IMS, the laser spot size should be reduced to 10–50 
μm. The third difference is that a two-dimensional region must be set for analyses. The scan 
pitch, which signifies the distance between laser irradiation spots, must be fixed. The 
limitation of the scan pitch, which decides the spatial resolution of the image, depends on 
the laser spot size and mechanical movement control of the mass spectrometer sample stage. 
We have developed a new instrument (Mass Microscope) that can move the sample stage by 
1 μm, and in which the finest size of the laser diameter is approximately 10 μm (Harada et 
al., 2009). The measurement time depends on the number of data spots, the frequency of the 
laser, the number of shots per spot, and the time required to move the sample stage. For 
example, when researchers select the region of interest as a 1 × 1 mm2 area with a 10-μm 
scan pitch (10,000 data points), it takes about 1 h to complete the measurement using a mass 
microscope equipped with a 1000-Hz laser (100 shots/data point). 

MALDI-IMS ionizes numerous compounds in a tissue at the same time. Sometimes, we detect 
multiple molecules with the same m/z value. In such cases, a new imaging technique, “MS/MS 
imaging,” is effective. Using this technique, we can separate each ion derived from their 
specific fragment ions. Some reports have described the use of MS/MS imaging for IMS of 
endogenous metabolites and an exogenous drug (Khatib-Shahidi et al., 2006; Porta et al., 2011). 
Additionally, the combination of ion-mobility separation with MALDI-IMS provides a unique 
separation dimension to further enhance the capabilities of IMS (Jackson et al., 2007; McLean et 
al., 2007; Stauber et al., 2010). It can be used to produce images without interference from 
background ions of similar mass, and this can remove ambiguity from imaging experiments 
and lead to a more precise localization of the compound of interest.  

3.3.2 Data analysis 

A large amount of data (a few gigabytes) is obtained from MALDI-IMS; therefore, 
visualization software packages that can rapidly and efficiently analyze enormous spectra 
have been developed. BioMap (a free software; Novartis, Basel, Switzerland), FlexImaging 
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(Bruker Daltonics, Bremen, Germany), and ImageQuest (Thermo Fisher Scientific, CA, USA) 
are generally used for visualization. For biomarker analysis of the MALDI-IMS dataset, data 
mining should be used (Hayasaka et al., 2011; Zaima et al., 2011b; Zhang et al., 2004). Data 
mining software effectively reduce the number of biomarker candidates (Hayasaka et al., 
2011; Zhang et al., 2004). We previously reported the use of principal component analysis 
(PCA) to discover different biomolecules in starvation-induced fatty livers and normal livers 
(Zaima et al., 2009). Hierarchical clustering was also used to analyze the data obtained from 
gastric cancer and non-neoplastic mucosa tissue sections (Deininger et al., 2008). Several 
studies have reported the discovery of biomarkers using MALDI-IMS (Bakry et al., 2011; 
Ducret et al., 2006; Hong & Zhang, 2011; Solassol et al., 2009; Zaima et al., 2011b). 

4. Instruments 

The requirement for performing IMS is the availability of an x-axis-y-axis moving stage with 
electronic controls. Most modern MS instruments produced by major MS hardware companies 
(i.e., Shimadzu, ThermoFisher Scientific, Bruker Daltonics, Applied Biosystems, Waters) can be 
adapted for MALDI-IMS. Time of flight (TOF) is the most widely used technology. TOF 
analyzers allow the separation of ionized accelerated molecules according to their m/z ratio. 
TOF-MS offers suitable performance for MALDI-IMS, namely, good transmission ratio (50–
100%), sensitivity, mass range, and repetition rate. However, TOF-MS lacks the capability to 
perform effective tandem MS experiments. This disadvantage of TOF-MS was overcome with 
the introduction of hybrid analyzers, such as a combination of quadrupole mass analyzer and 
TOF (so-called qTOF), combination of quadrupole ion trap (QIT) and TOF (so-called QIT-
TOF), combination of ion mobility spectrometry (IMS) and TOF (so-called IMS-TOF), or a 
combination of two TOF mass spectrometers (so-called TOF-TOF). These combination systems 
revolutionized the application of TOF-MS systems for structural analysis with tandem MS. In 
general, the first system is used to select a precursor ion for fragmentation, while the second 
TOF system is employed for fragment analysis. Other mass analyzers (and their 
combinations), such as linear ion trap (LIT) (Landgraf et al., 2009; Wiseman et al., 2006; Zaima 
et al., 2010a), triple quadrupole (QqQ) (Hopfgartner et al., 2009; Porta et al., 2011), and Fourier 
transform ion cyclotron resonance (FTICR) (Taban et al., 2007), are used for MALDI-IMS. The 
advantages of commercially available LIT instruments are miniaturization, capability of 
sample analysis on nonconductive glass slides, MALDI performance at intermediate pressure, 
and superior performance on multistage MS. The QqQ system allows quantitative analysis 
and single or multiple reaction monitoring (SRM/MRM). The FTICR system offers very high 
mass resolving power and high mass measurement accuracy. 

5. Applications of MALDI-IMS 

5.1 Imaging mass spectrometry-based histopathologic examination 

Recently, we applied MALDI-IMS for pathologic examination of atherosclerotic aorta (Fig. 
4). We named it imaging mass spectrometry-based histopathologic examination (IbHE) 
(Zaima et al., 2011c). IbHE revealed the characteristic distribution of biomolecules in smooth 
muscle cells, lipid-rich regions, and calcified regions of an atherosclerotic lesion obtained 
from aortic roots of apolipoprotein E (ApoE)-deficient mice. We found that 
phosphatidylcholine (PC), which contains arachidonic acid (20:4) (m/z 804.5), was 
distributed in the smooth muscle cells of the atherosclerotic lesion. Cholesterol linoleate (CE 
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18:2) (m/z 671.6) and cholesterol oleate (CE 18:1) were characteristically distributed in lipid-rich 
regions, and the ion at m/z 566.9 was localized in the calcified region. These biomolecules were 
hardly detected in the normal aortic roots of ApoE-deficient mice. We applied this method to 
other vascular diseases, such as varicose veins, arteriovenous fistulae, abdominal aortic 
aneurysm, and triglyceride deposit cardiomyovasculopathy, and observed the characteristic 
distribution of biomolecules (Tanaka et al., 2010; Tanaka et al., 2011). In the analysis of several 
vascular diseases with atherosclerotic lesions, we often observed ectopic TG distribution. 
Although the role of TG in the evolution of atherosclerosis remains unknown, there is a 
possibility that TG plays an important role in the evolution of some kinds of atherosclerosis, as 
we previously found that characteristic atherosclerosis accumulated TG in aortic lesions, while 
the accumulated cholesterol was normal (Hirano et al., 2008). The reexamination of vascular 
diseases by IbHE may result in new findings, because IbHE can visualize the localization of 
low-molecular-weight molecules, which are rarely visualized by other techniques. We believe 
IbHE is of considerable value as a new histopathological examination because IbHE can 
visualize metabolic abnormalities in disease. 

 

Fig. 4. Representative molecular images of specific ions in a mouse atherosclerotic lesion. 

Visualization of biomolecules in atherosclerotic roots (a-j). Scale bar, 100 μm. Specific ion 
images of region 1 (a and b) and the combined image of m/z 671.6 and 673.6 (c). Specific ion 
images of region 2 (d and e) and the combined image of m/z 804.5 and 832.5 (f). Specific ion 
images of region 3 (g) and the monochrome image of m/z 566.9 (h). Comparison of HE staining 
(i) and the merge images of regions 1, 2, and 3 (j). An image of non-atherosclerotic aortic roots 
of mice at 12 weeks of age (k-m). Scale bar, 200 μm. HE staining after IMS (k). Oil red O 
staining (l). Immunostaining of α-actin, which is a marker for smooth muscle cells (m). Merge 
image of CE (18:2) and CE (18:1) (n). Merge image of PC (diacyl 16:0/20:4) and PC (diacyl 
18:0/20:4) (o). Ion image of m/z 566.9 (p). “Reprinted from Atherosclerosis, 217. 2, Zaima et al., 
Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions, 430., 
Copyright (2011), with permission from Elsevier.” 
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5.2 IMS for exogenous drugs 

MALDI-IMS is a powerful tool for visualizing the distribution of exogenous drugs and their 
metabolites. Porta et al. reported the visualization of the distribution of cocaine and its 
metabolites down to a concentration of 5 ng/mg in intact single hair samples from chronic 
users (Porta et al., 2011) (Fig. 5). 

 

Fig. 5. Imaging of cocaine in hair samples H7 and H5. (H7 and H5 are sample names used in 
this article) 

Optical image of hair sample H7 (a). MALDI-SRM/MS image based on the SRM trace of COC 
(m/z 305 > m/z 182) for five replicates of single hair samples from individual H7 (b) and 
single hair analysis from individual H5 (c). The quantitative results from LC-SRM/MS routine 
analysis were as follows: 130 ng/mg (H7, whole sample); 4.9 ng/mg (H5, segment 0–10 mm), 
and 8.5 ng/mg (H5, segment 10–50 mm). SRM; selected reaction monitoring. “Reprinted with 
permission from Porta et al., 2011. Copyright 2011 American Chemical Society.” 

MALDI-IMS is also applicable to pharmacokinetic analysis. As a Food and Drug 
Administration (FDA)-mandated pharmacokinetic test, whole-body autoradiography 
(WBA) is widely performed to determine spatial and quantitative information about a drug 
compound. Although much information can be acquired by WBA, it has several limitations. 
First, WBA requires the compound of interest to be radioactively labeled. Furthermore, the 
detected signal does not distinguish between the original radiolabeled compound and its 
metabolites that have retained the radiolabel. To complement the disadvantage of WBA, 
MALDI-IMS and WBA have recently been used together. The combination of MALDI-IMS and 
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WBA makes it possible to obtain more reliable data for absorption, distribution, metabolism, 
and excretion of drugs (Atkinson et al., 2007; Caprioli et al., 2008; Clench et al., 2008; Stoeckli et 
al., 2006). The application of MALDI-IMS to pharmacokinetics in a whole-body mouse section 
was first reported by Rohner et al. in 2005 (Rohner et al., 2005). In this study, they showed a 
good correlation between WBA and MALDI-IMS data. Figure 5 shows the simultaneous 
visualization of drug and metabolites in a whole-rat sagittal tissue section (Khatib-Shahidi et 
al., 2006). Khatib-Shahidi et al. visualized the temporal distribution of dosed olanzapine (brand 
name Zyprexa) (8 mg/kg) and its metabolites. In this study, MALDI-IMS was further 
extended to detect proteins from organs present in a whole-body section.  

 

Fig. 6. Detection of drug and metabolite distribution at 6 h post-dose in a whole-rat sagittal 
tissue section by a single IMS analysis. 

Optical images of a 6 h post-olanzapine (OLZ)-dosed rat tissue section across 4 gold MALDI 
target plates (A). Organs are outlined in red. MS/MS ion image of OLZ (m/z 256) (B). 
MS/MS ion image of N-desmethyl metabolite (m/z 256) (C). MS/MS ion image of 2-
hydroxymethyl metabolite (m/z 272) (D). Scale bar, 1 cm. “Reprinted with permission from 
Khatib-Shahidi et al., 2006. Copyright 2006 American Chemical Society.”  
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6. Conclusions 

MALDI-IMS can be applied to pathological examinations leading to the discovery of 
potential targets for new drugs, and for the distributional analysis of exogenous drugs in 
animal and human tissues. We recently used MALDI-IMS in the discovery of metabolites 
that have pharmacological effects on natural resources. MALDI-IMS will become an 
essential tool for molecular imaging in pharmacology in the near future. 
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