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1. Introduction 

The tumor suppressor gene p53 plays an important role in determining radiosensitivity. The 
normal p53 gene product accumulates after exposure to ionizing radiation, and causes 
growth arrest or promotes cell death through the apoptosis pathway (Figure 1). Mutation of 
the p53 gene is the most common genetic alteration observed in human cancers (Nigro et al. 
1989). It has been widely reported that cells with mutant p53 are more resistant to ionizing 
radiation or DNA-damaging agents (Fan et al. 1994; Wattel et al. 1994; Lee et al. 1993; 
Hamada et al. 1996). On the other hand, there have been reports of cells harboring mutant 
p53 that are sensitive to ionizing radiation and anticancer drugs (Biard et al. 1994; Fan et al. 
 

 

Fig. 1. Pathway of p53. From irradiation by ionizing radiation to growth arrest or apoptosis 
of the cell through p53. 
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1995), although specific details of the mutations were not discussed. Mutant forms of p53 

differ in their properties according to the points of the mutation. For example, Crook et al. 

using a large series of p53 mutants, found that not all transcriptionally active mutants 

retained the ability to suppress transformation, and that some tumor-derived point 

mutations conferred both transforming and transactivating activity (Crook et al. 1994). Some 

mutant forms of the p53 gene do not merely induce the functional equivalent of p53 loss 

(Harvey et al. 1995). The radiosensitivity of cells may depend on the type of p53 mutation 

they harbor. It is important to determine which mutations affect the radiosensitivity of 

tumor cells, because tumor cell radiosensitivity has substantial clinical relevance in the 

context of tumor radiotherapy.  

2. Mutation in p53 

We prepared 15 types of cells harboring mutant forms of p53 (T123A, L130V, Q143A, V157F, 

H168R, R175H, I195T, C242F, G244C, G245S, R273H, C277F, R280T, R282W and E286K) to 

examine their radiosensitivity. First, we created various mutations in the p53 gene using a 

QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) in accordance with the 

manufacturer’s protocol and integrated them into the LacSwitch inducible mammalian 

expression system (Stratagene, La Jolla, CA) (Okaichi et al. 1999). These mutant p53 genes 

were then transformed into the Saos-2 cell line, which is null for p53, and stable 

transformants were obtained.  

3. Radiation sensitivity of cells harboring p53 mutation 

Radiation sensitivity may depend on the position at which mutation occurs in p53. We 

previously examined various p53 mutants for radiation sensitivity (Okaichi et al. 2008). Cells 

were subjected to -ray irradiation and then plated onto dishes. Colonies were examined 

after about one month to calculate the surviving fraction. The cells with wild-type p53 

showed higher radiation sensitivity than Saos-2 (p53-null) cells. Some mutations also 

resulted in increased radiation sensitivity, but mutations including hot spot mutations 

(175H, 245S 273H and 282W) showed almost no alteration of radiation sensitivity compared 

with Saos-2. Other mutations conferred an intermediate level of radiation sensitivity 

(Okaichi et al. 2008). 

We then compared the radiosensitivity of these mutants with the frequency of mutation at 

each point, which is correlated with the tendency for tumorigenesis. Figure 2 shows the 

relationship between the frequency of p53 mutation in human cells and radiosensitivity of 

the p53 mutants. We divided these mutants into three groups; R (resistant), M (medium) and 

S (sensitive). The 175H, 244C, 245S 273H and 282W transformants were placed in group R, 

which was radioresistant and included a high frequency of mutation at all hot spots. The 

130V, 143A, 168R, 277F and 286K transformants were placed in group M, which showed 

medium radiosensitivity and a low frequency of mutation. The 123A, 157F, 195T, 242F and 

280T transformants were placed in group S, which was radiosensitive and showed a 

relatively low frequency of mutation.  

As the radiosensitivity of these cells may be related to the induced expression of various 

genes by each type of p53 mutation, we investigated the genes whose expression appeared 

to be related to the radiosensitivity of cells bearing p53 mutations. 
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Fig. 2. Relationship between radiosensitivity of p53 mutant cell lines and the frequency of 
p53 mutation. The mutant cell lines were divided into three groups; R (radioresistant),  
M (medium radiosensitivity) and S (radiosensitive). 

4. Transcriptional control in cells harboring p53 mutation 

We examined the expression of genes in cells harboring p53 mutation that were subjected to -
ray irradiation. For this we employed a DNA microarray (Gene Chip, Human Genome U133 
Plus 2.0 Array; Affymetrix, Santa Clara, CA), containing over 54,000 probe sets, in accordance 
with the manufacturer’s instructions. We extracted mRNA from each cell type 24 hours after 
irradiation at 6 Gy, and synthesized the cDNA. After we had synthesized, in turn, cRNA from 
the cDNA, we labeled the former with biotin and hybridized it with the DNA microarray. 
After staining and washing, we read the fluorescence using a scanner. The expression value 
(signal) of each gene was calculated and normalized using GeneSpring (Agilent Technologies, 
Santa Clara, CA) to adjust for minor differences between the experiments. In order to obtain 
the mean basal expression level of each gene, the signal values for unirradiated Saos-2 cells 
were used as the standard for the analysis. The change in value (signal log ratio) for each gene 
was calculated using Comparison Analysis in the software.  
As radiosensitivity is intrinsically related to the apoptosis pathway, we summarized the 
genes associated with apoptosis, and these are shown in Table 1, where the cells harboring 
mutant p53 cells are arranged from left to right according to their radiosensitivity, the cells 
harboring wild-type p53 are located on the far left, and the parent cells, Saos-2, on the far 
right. We picked up genes showing an increase in gene expression of more than 2-fold, and 
indicated them by colored column. After irradiation, the cells with wild-type p53 showed 
more than a 2-fold increase in the expression of 15 genes, whereas Saos-2 did not show any 
increase in the expression of apoptosis-related genes. Cells harboring mutant p53 lacked 
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expression of many genes that were induced in cells harboring wild-type p53, but showed 
induction of some genes that were not induced in the latter. The 245S mutant cell line showed 
a particularly marked increase in the expression of many TNF-associated genes upon 
irradiation. As the expression of TNF-associated genes inhibits apoptosis, this would explain 
the radioresistance of 245S cells. We also noticed that the expression of TNF-associated 
apoptosis-inducing genes, such as TNFSF9 (0.15), TNFSF10 (0.18) and TNFSF21 (0.22), was 
decreased by more than half, in the 245S mutant cell lines. We were unable to explain the 
radiosensitivity of other mutant cell lines upon induction of apoptosis-related genes.  
 

 

Table 1. Induction of gene expression in the apoptosis pathway by irradiation at 6 Gy. We 
listed the apoptosis genes whose expression was increased more than 2-fold in mutant cells. 
The numbers indicate the gene expression value in comparison with unirradiated Saos-2 
cells. The colored columns indicate more than a 2-fold increase. 

We speculated that certain genes might play an important role in making some cells 

radioresistant. In this connection, we listed those genes whose expression was increased 

more than 2-fold in radioresistant cells. Table 2 shows a list of genes whose expression was 

increased in more than 4 of the mutant strain of radioresistant cells. We paid attention to the 

level of gene expression in the radiosensitive mutant cells, because genes that play an 

important role in conferring radioresistance would be show lower levels of expression in 

radiosensitive cells. Expression of the genes CADPS2, DNPEP, NKTR, OVOS2, PSENEN, 

RASSF4, RBM14 and WTAP was not increased more than 2-fold in almost all of the 
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radiosensitive cells. CADPS2 acts as a calcium sensor in constitutive vesicle trafficking and 

secretion (Cisternas et al. 2003), and DNPEP is an aspartyl aminopeptidase that catalyzes the 

sequential removal of amino acids from the unblocked N termini of peptides and proteins 

(Nakamura et al. 2011). NKTR plays an important role in NK-cell cytotoxicity (Anderson et 

al. 1993). OVOS2 is a member of the ovostatin family and possesses trypsin-inhibitory 

activity (Saxxena and Tayyab, 1997). PSENEN (Presenilin enhancer-2) is a component of the 

-secretase complex which catalyzes the final cleavage of amyloid precursor protein to 

generate the toxic amiloid  protein, the major component of plaques in the brain of 

Alzheimer disease patients, and protects embryos from apoptosis (Zetterberg et al. 2006). 

RASSF4 binds directly to activated K-Ras in a GTP-dependent manner via the effector 

domain, thus exhibits the basic nature of a Ras effector and plays an important role in Ras-

dependent apoptosis (Eckfeld et al. 2004). RBM14 (CoAA) is a nuclear receptor coactivator 

protein at the interface of transcriptional coactivation and RNA splicing (Auboeuf et al. 

2004). WTAP (Wilms’ tumor 1-associating protein) is essential for embryonic development, 

and appears to exert an antiproliferative effect, inhibiting G1-to-S phase cell cycle transition 

and also promoting apoptosis (Small et al. 2007).  

 

 

Table 2. A list of the genes induced in radioresistant cells by irradiation at 6 Gy.  
We listed the genes that showed more than a 2-fold increase in almost all of the 
radioresistant cells. The numbers indicate the gene expression value in comparison with 
unirradiated Saos-2 cells. The colored columns indicate more than a 2-fold increase. 
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Among these genes, RASSF4 and WTAP are related to apoptosis, but exert a negative effect 

on radioresistant. As PSENEN blocks apoptosis, this gene may play an important role in 

radioresistance. 

We approached this issue from the opposite perspective, and searched for genes that played 

an important role in conferring radiosensitivity. We listed genes showing more than a 2-fold 

increase in expression in radiosensitive cells. Table 3 shows a list of genes whose expression 

was increased in more than 4 of the radiosensitive mutant cell lines. Expression of CBR4, 

FOXP1, KPNA3, MFAP5, NEK3, TRIM2 and TRIM38 was not increased more than 2-fold in 

almost of all radioresistant cell lines. CBR4 (carbonyl reductase 4) is a mitochondrial 

NADPH-dependent quinine reductase that may be involved in the induction of apoptosis 

by cytotoxic 9, 10-phenanthrenequinone (Endo et al. 2008). FOXP1 is a forkhead 

transcription factor with functions in tissue and cell-type specific gene expression, and its 

gene is a direct target of p53-induced microRNA miR-34a (Rao et al. 2010). KPNA  

 

 

Table 3. A list of the genes induced in radiosensitive cells by irradiation at 6 Gy.  
We listed the genes that showed more than a 2-fold increase of expression in almost all of 
the radiosensitive cells. The numbers indicate the gene expression value in comparison with 
unirradiated Saos-2 cells. The colored columns indicate more than a 2-fold increase. 
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(karyopherin-alpha) proteins are responsible for the transport of proteins into and out of the 
nucleus through the nuclear pore complex, and KPUNA3 contributes genetically to 
schizophrenia (Wei and Hemmings 2005). MFAP5 (microfibrillar associated protein 5), also 
known as a microfibril-associated protein (MAGP2), is a highly significant indicator of 
survival and chemosensitivity of the cells (Spivey and Banyard, 2010). NEK3 is a 
serine/threonine kinase that contributes to PRL-mediated breast cell cancer motility through 
mechanisms involving Rac1 activation and paxillin phosphorylation (Miller et al. 2007). 

TRIM (tripartite motif-containing) proteins are a family comprising more than 70 members 
in humans and contain conserved RING, G-box, coiled-coil, and SPRY domains, most of 
which are involved in protein ubiquitination, but only a few of them have been well studied. 
TRIM2 mediates the p42/p44 MAPK-dependent ubiquitination of Bim (Bcl-2-interacting 
mediator of cell death) in rapid ischemic tolerance, and suppression of TRIM2 expression 
stabilizes the level of Bim protein and blocks neuroprotection (Thompson et al. 2011). 
TRIM38 has E3 ubiquitin ligase activity and can be degraded during virus infection (Liu  
et al. 2011).  
As CBR4 is involved in the induction of apoptosis, this gene may play an important role in 
radiosensitivity. However, the precise role of these genes in radiosensitivity remains 
unknown.  
We have attempted to perform hierarchical clustering analysis of RNA expression in these 
mutant p53 cell lines using Gene Tree software, but were unable to find any clear 
relationship between radiosensitivity and gene expression. 

5. Conclusions 

Ionizing radiation is used extensively in medical diagnostic and treatment protocols. With a 
better understanding of radiation induced molecular processes, it might become possible to 
identify the radiosensitivity of individuals before the start of radiation therapy, leading to 
individualization of radiation treatment. Radiation-induced transcriptional responses have 
been studied using DNA microarray (Kis et al. 2006; Jen and Cheung, 2006). Some previous 
studies have also examined cells harboring mutant p53 using DNA microarray (Amandson 
et al. 2003; Scian et al. 2004), but they did not examine each type of mutation.  
In the present study, we prepared 15 mutant p53 cell lines, cells harboring wild-type p53 and 
Saos-2 cells (null for p53). We examined the radiosensitivity of the mutant cell lines and 
classified them as R (resistant), M (medium) or S (sensitive). We then studied the radiation-
induced transcriptional responses in these cell lines, and examined the relationship between 
their radiation-induced gene expression and radiosensitivity. We found some genes that 
appeared to have some correlation with radiosensitivity, for example PSENEN and CBR4. 
However, none of the genes directly determined the radiosensitivity of the cells. Further 
study will be needed to determine which of these genes is the main determinant of 
radiosensitivity. 
Radiosensitivity may be determined by several genes working in collaboration. Mutation of 
p53 leads not only to loss of function, but also gain of function. If such functions are related 
to growth arrest or DNA repair, then loss of function would confer radiosensitivity, and 
gain of function to radioresistance. On the other hand, if such functions are related to 
apoptosis, then loss of function would confer radioresistance and gain of function to 
radiosensitivity. Each mutation of p53 may thus lead to loss of function and gain of some 
other function at the same time. This makes it very difficult to determine whether a certain 
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mutation of p53 leads to the radiosensitivity on the basis of transcriptional analysis alone. 
Recently it has been reported that many kinds of microRNAs related to tumorigenesis or 
apoptosis are regulated by p53 (He et al. 2007; Suzuki et al. 2009). Thus p53 regulates not 
only mRNA but also microRNA. The regulation of microRNA in each mutant p53 cell line 
would vary the degree of cell radiosensitivity. The available data suggest the importance of 
determining the type of mutation of p53 and examining the regulation of overall 
transcriptional control in individual tumor cells in the context of radiotherapy. 
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