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1. Introduction 

Reliable performance  of  an equipment or  structure   depends  on pre-service  quality  and  
in-service  degradation   of  the  equipment or structure under  operating conditions. The 
role of non-destructive testing (NDT) is to ensure integrity, and in turn, reliability of 
equipment or structure. Besides, NDT can also monitor in-service degradation and to avoid 
premature failure of the equipments/structures and prevent accidents as well as save 
human life. Up to now, NDT has been used in various fields of applications such as the 
inspection of electrical power plant, substation, storage tanks, bridges, aircraft, pressure 
vessel, rail, pipeline and so on. Efficient and reliable NDT evaluation techniques are 
necessary to ensure the safe operation of complex parts and construction in an industrial 
environment for assessing service life, acceptability, and risk, as well as for reducing or even 
eliminating human error. Hence, making the inspection process to be fully automated could 
produce a more reliable, reproducible, faster evaluation and also sustainability.  

Previously, due to the lack of effective computational and analytical tools, the data 
interpretation depends strongly on the experienced and expert of NDT personnel. 
Nonetheless, since the advancements in computer engineering, modern electronic systems, 
material science and other related fields made a major impact on all or many of the NDT 
methods. Data acquisition, analysis and interpretation were automated to increase the 
reliability and thus reduce the effect of human errors and wrong diagnosis. As NDT is not a 
direct measurement method, the nature and size of defects must be obtained through analysis 
of the signals obtained from inspection. Signal and image processing have provided powerful 
techniques to extract information on material characterization, size, defect detection, and so on. 
For instance, in the case of images, the major processing and analysis methods include image 
restoration and enhancement, morphological operators, wavelet transforms, image 
segmentation, as well as object and pattern recognition, facilitating extraction of special 
information from the original images, which would not, otherwise, be available. Therefore, 
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this chapter will emphasize the application of thermal image processing in assessing the 
reliability of concrete structure and diagnosing the condition of electrical equipments. 

2. Infrared thermography 

Infrared radiation was discovered in 1800 by William Hershel, who used a prism to refract 
sunlight onto thermometers placed just beyond the red end of the visible spectrum 
generated by the prism. He found that this area had the highest temperature of all, 
contained the most heat, and therefore contained a form of light beyond red light. Herschel’s 
experiment was important, not only because it led to the discovery of infrared light, but 
because it was the first experiment that showed there were forms of light not visible to the 
human eye (Hellier, 2001). 

2.1 IRT principles 

Human eyes can only see light in the visible spectrum, ranging from about 400 nm to a little 
over 700 nm. The electromagnetic spectrum is a band of all electromagnetic waves arranged 
according to frequency and wavelength. As shown in Fig. 1, the wavelength spectrum of 
infrared light ranges from about 1 mm down to 750 nm. All objects emit energy proportional 
to its surface temperature. However, the energy radiated can only be detected by an infrared 
detector that depends on the emissivity coefficient of the surface under measurement. 

The core of the camera is the infrared detector, which absorbs the IR energy emitted by the 
object (whose surface temperature is to be measured) and converts it into electrical voltage 
or current. Any object emits energy proportional to its surface temperature. However, the 
energy really detected (by the infrared detector) depends on the emissivity coefficient of the 
surface under measurement. The emissivity tells us how much of the thermal radiation from 
an object that is emitted due to the temperature of the object. All objects above absolute zero 
(0 Kelvin) emit infrared radiation. The Stefan-Boltzmann law describes the total maximum 
radiation that can be released from a surface. Since thermal imaging systems only respond 
to a small portion of the spectrum, it is necessary to introduce Planck’s blackbody law. 

 

Fig. 1. Electromagnetic wavelength 
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Planck derived the law as in equation (1), which describes the spectral distribution of the 

radiation intensity from a black body where the emissivity of the surface, ε is equal to 1 

(Holst, 2000). 
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where ελb is the black body monochromatic radiation intensity, C1 (3.7411 x108 W-µm4/m2) 

and C2 (1.4388 x104 µm-K) are the first and second radiation constants respectively; λ is the 

wavelength of the radiation being considered and T is the absolute temperature of the 

blackbody. By integrating Planck’s law over the entire spectrum (λ = 0 to ∞), the total 

hemispherical radiation intensity is obtained.  

 4
b T   (2) 

where σ is the Stefan–Boltzmann constant (5.67051 x 10-8 W/m2K). It has to be pointed out 

that equation (2) describes the radiation emitted from a black body which is the maximum 

value radiated by a body at a given temperature. Real objects almost never comply with this 

law although they may approach the behaviour of a black body in certain spectral intervals. 

A real object generally emits only a part ελ of the radiation emitted by a black body at the 

same temperature and at the same wavelength. By introducing the quantity,  

 
b








  (3) 

which is called the spectral emissivity coefficient, equation (2) can be rewritten for real 

bodies by simply multiplying its second term by ελ. When averaged over all wavelengths, 

the total power density for a non-black body object is 

 4emissivity T  (4) 

As infrared energy functions outside the dynamic range of the human eye, special 

equipment is needed to transform the infrared energy to another signal, which can be 

seen. For this purpose, infrared imagers were developed to see and measure this heat. 

There are two general types of infrared instruments that can be used for condition 

monitoring: infrared thermometers and infrared focal plane area (FPA) cameras 

(Braunovic, 2007). Infrared thermometers only provide a temperature reading at a single 

and relatively small point on a surface area. Another type of instrument that can provide 

a one-dimensional scan, or line of comparative radiation, is the line scanner. This type of 

instrument provides a somewhat larger field of view in predictive maintenance 

applications compared to the infrared thermometer (Mobley, 2002). Further advancements 

in infrared thermographic technology started with the development of the FPA. Based on 

FPA technology, nowadays various types of IR imagers with more advanced and 

sophisticated features have been developed (Epperly et al 1997). Although FPA 

technology is more expensive than infrared thermometers and line scanners, it provides 

more flexible and accurate measurements.  
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The basic concepts of the IR imager, commonly known as the thermographic camera, is that 
it can capture an image of the thermal pattern and measure the emissive power of a surface 
in an area at various temperature ranges. The digital output image of IRT is called a 
thermogram. Each pixel of a thermogram has the specific temperature value, and the 
image’s contrast is derived from the differences in surface temperature. An infrared imaging 
system detects radiation in the infrared part of the electromagnetic spectrum and produces 
images from that radiation. All objects emit infrared radiation and the amount of emitted 
radiation increases with temperature. Therefore, infrared imaging allows us to see variations 
in temperature. In an infrared imaging system, there are two types of IR detectors i.e. mid 
wave (MW) and long wave (LW) which are operated in the range of 2–5 µm and 8–14 µm of 
the electromagnetic spectrum band, respectively (Minkina & Dudzik, 2009). These bands do 
not cover the full infrared spectrum because not all parts of the spectrum are suitable for 
infrared imaging. The reason for this is that the atmospheric transmission of infrared 
radiation is low in some ranges of the spectrum. This means that the atmosphere will block 
infrared radiation in these ranges, thus making these wavelengths unsuitable for infrared 
imaging. Most infrared cameras today work in the MW or LW ranges (Wretman, 2006). The 
energy detected depends not only on the emissivity coefficient of the surface under 
measurement but also on the environment. In fact, a fraction may be either absorbed by the 
atmosphere between the object and the camera, or added as reflected by the surface from the 
surroundings. This part will be discussed further in the following parts of this chapter. 

2.2 Type of IRT 

Infrared thermography is generally classified in two types, passive and active thermography 
(Kumar et al, 2009). In passive thermography, the temperature gradients are present in the 
materials and structures under tests naturally. In active thermography, the relevant thermal 
contrasts are induced by an external stimulus (Santos, 2008). The passive method has been 
widely applied in diverse areas such as production, predictive maintenance, medicine, 
detection of forest fire, thermal efficiency survey of buildings, road traffic monitoring, 
agriculture and biology, detection of gas and  in NDT. In all these applications, abnormal 
temperature profiles indicate a potential problem to take care of.  

In active infrared thermography, the sample is heated by an external controlled heat source 
and its surface temperature is monitored as a function of time through changes of emitted 
infrared radiation. The specific thermal properties of the material under test influence 
transport of heat thus causing surface temperature to change with respect to areas with 
different thermal properties. Active thermography is a very popular method in NDT 
applications such as for detecting crack in structure. There are many methods that have been 
used in active thermography. Table 1 shows the summary of active thermography methods 
and its characteristics (Maldague, 2000). 

Contrary to active thermography, passive thermography approach does not require external 
heat source. This is because the heat flow necessary for the evaluation already exists 
naturally. Passive thermography only to pinpoints anomalies since the heating energy 
source is difficult to measure. Therefore the accuracy and reliability of passive 
thermography is not a major concern. In many applications, passive thermography applies 
relative temperature from the similar object or surrounding temperature. This is well known 
as qualitative measurement that will be discussed later. One of the applications of passive  
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Methods Characteristic 

Pulse Thermography 
(PT) 

Fast inspection relying on a thermal stimulation pulse, with 
duration going from a few milliseconds for high thermal 
conductivity material inspection (such as metal parts) to a few 
seconds for low thermal conductivity specimens (such as plastics, 
graphite epoxy components). 

Step Heating (SH) 

Contrary to PT scheme for which the temperature decay is of 
interest (after the heat pulse), the increase of surface temperature is 
monitored during the application of a step heating pulse (’long 
pulse’). Variations of surface temperature with time are related to 
specimen features. 

Lock-in thermography 

Based on thermal waves generated inside the specimen under 
study in the permanent regime. Here, at a frequency, the specimen 
is submitted to a sine modulation heating, which introduces highly 
attenuated a dispersive thermal waves of frequency inside the 
material (in close to the surface region). 

Vibrothermography 

A mechanical vibration induced externally to the structure direct 
conversion from mechanical to thermal energy occurs and the heat 
is released by friction   precisely at locations where defects such as 
cracks and desalinations are located.  

Table 1. Method of active thermography 

thermography is for preventive and predictive maintenance. In  construction for example 
the passive thermography can be used in the search of hidden defects or damages in the 
road or bridge pavement structure, together with information on the degradation 
mechanism, serves as an early diagnostic tool, which completes the methodologies utilised 
for the survey of the state of the paving (Stimolo, 2003) 

2.3 A Review of IRT applications 

In electrical power systems, the developed IRT plays a vital role in inspecting and 
diagnosing the integrity of electrical power equipments. It has become one of the preferred 
methods for assessing equipment conditions online especially in electrical transmission and 
distribution systems (Lindquist & Bertling, 2008). IRT can be used to monitor the thermal 
behaviour of the power equipment, as well as the structure of a system. It senses the 
emission of infrared energy (i.e. temperature) to detect thermal anomalies, which are hotter 
or colder than they should be. Through this the inspector can then locate and identify the 
incipient problems within the system. While heat is not a perfect indicator of all problems in 
electrical systems, heat produced by abnormally high electrical resistance often precedes 
electrical failures (Hellier, 2001). Although the technique for inspecting electrical systems is 
quite straightforward, there are several things that need to be considered. Some of the 
factors, such as environmental effects and equipment conditions, will normally affect the 
analysis results, especially during an outdoor inspection of a power substation, for example. 
Direct inspection without considering these factors definitely will result in inaccurate 
measurements. A good electrical thermographer must contend with several problems 
related to the electrical equipments, the infrared instrument, and the interpretation of data. 
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2.3.1 Measurement and analysis methods 

There are two ways for temperature measurement. The first is known as quantitative, which 

is to take the exact temperature values of the objects. The second type is qualitative, which 

takes the relative temperature values of a hotspot with respect to other parts of the 

equipment with similar conditions. Infrared thermography can be used as both a qualitative 

and a quantitative tool. Some applications do not require obtaining exact surface 

temperatures. In such cases, it is sufficient to acquire thermal signatures, which are 

characteristic patterns of relative temperatures of phenomena or objects. This method of 

qualitative visual inspection is expedient for collecting a large number of detailed data and 

conveying them in a fashion that can be easily interpreted. In contrast, accurate quantitative 

thermography demands a more rigorous procedure to extract valid temperature maps from 

raw thermal images (Griffit et al, 2001). 

A widely used method of using thermography in electrical equipment inspection is by 
employing the ∆T criteria (Chou & Yao, 2009)(Lindquist et al., 2005). Qualitative 
measurements are sometimes called comparative thermography. When the comparative 
technique is used appropriately and correctly, the differences between the two (or more) 
samples will often be indicative of their condition (Hellier, 2001). The severity or the level 
of overheating of the electrical equipments will refer to the temperature-rating table. This 
table is usually divided into three or four different categories to indicate the maintenance 
priority based on the equipment’s temperature rise with respect to other similar 
component (Lindquist et al., 2005). Table 2 shows the maintenance testing specifications 
for electrical equipment published by the InterNational Electrical Testing Association 
(NETA) (“Standard for Infrared Inspection of Electrical Systems & Rotating Equipment,” 
2008). NETA provides guidelines for thermal inspections of electrical equipment. These 
guidelines are based on differences in temperature from one phase conductor or 
component to another. Recommended action is dependent on the difference in the 
temperatures. 

 

Priority 
∆T between similar 
components under 
similar load (ºC) 

∆T over ambient 
temperature (ºC)

Recommended Action 

4 1 - 3 1 -  10 
Possible deficiency, warrants 
investigation 

3 4 – 15 11 - 20 
Indicates probable deficiency; repair 
as time permits 

2 --- 21 – 40 
Monitor until corrective measures 
can be accomplished 

1 > 15 > 40 
Major discrepancy; repair 
immediately 

Table 2. Maintenance testing specifications for electrical equipment 

Fig. 2 shows an example of a hotspot and its reference point. A hot area is the suspected 
component and the reference must be another similar component with the same condition. 
It could be similar components in other phases. In the ∆T method, the temperature 
differences between suspected and normal component is calculated as: 
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 hot refT T T    (5) 

where Thot is the warm or hot temperature  value of the suspected components while Tref is 
the reference temperature value from the normal operating component. The severity of the 
hot spot is then checked using Table 3 under the column ‘∆T between similar components 
under similar load (ºC)’. Action should be taken according to the level of priority. The 
advantage of this practical method is to establish “failure” or “no failure” condition and the 
emissivity has only a minor impact on the result (Chou & Yao, 2009). A drawback is that the 
temperature tables are usually only found in handbooks and guidelines; which is not a 
standard benchmark. Moreover, the ∆T criterion does not say anything about whether the 
equipment temperature limits are actually exceeded and also will not expose systematic 
failures affecting all three phases’ connection (Lindquist et al., 2005). 

 

Fig. 2. Example of a hot fuse; the other fuses are used as the reference. 

 

Environmental factor Effect on IRT measurement 

Ambient air 
temperature 

An increase in air temperature will result in an increase in the 
measured temperature component. At a very high or very low-
temperature, the IR system becomes less stable. 

Precipitation/humidit
y (snow, rain, fog, etc.)

It can result in evaporative cooling. The temperature differences 
(either phase to phase or rise over ambient) can be dramatically 
reduced, leading to a misinterpretation of the data. Condition that 
is only slightly warm may be cooled below a point where they can 
be detected. 

Wind or other 
convection 

Wind speeds less than 5 mph can contribute to a significant cooling 
effect on a high resistance fitting. Wind speeds above 5 mph can 
reduce the temperature difference between the components and 
ambient to a few degrees above the ambient. 

Sun or solar radiation 
Solar heating of components, especially those with a high 
absorption of the sun’s energy (such as aged conductors), will mask 
small thermal differences. 

Table 3. Environmental factors effect on IRT inspection 

In quantitative measurement, the reference is the ambient temperature. The observation is 
established by measuring the absolute temperature of electrical equipment under the same 
ambient conditions. As the reference temperature has to be measured, it requires an even 
greater understanding of the variables influencing radiometric measurement, as well as a 
grasp of its limitations. The temperature rise is calculated as: 
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hot ambT T T    (6) 

where Thot  is the hot-spot temperature of the measured component and Tamb is the ambient 
temperature at the time of measuring. Again, the column ‘∆T over ambient temperature’ in 
Table 3 is used for testing specifications. 

2.3.2 Improving inspection techniques 

Newer developments in modern IRT equipment have improved the quality of 
measurements. Most modern IR imagers can resolve surface temperature differences of 
0.1ºC or less (Hellier, 2001)(Griffith et al., 2001). An infrared thermographic system is 
essentially imaging IR radiometers that can provide IR images continuously and in real-
time, just like the images provided by a normal video camera. Complete thermographic 
systems also integrate an advanced image processing and display system. Despite the 
advantage of modern designs of IRT cameras, there are still several factors that need to be 
considered when doing an inspection. Even if temperatures can be measured accurately, 
several other factors must be taken into account if the real influence of the abnormal 
temperature difference is to be accurately accounted for (Snell & Spring, 2003). This is a 
very critical aspect, especially for an outdoor inspection. The inspection of electrical 
power systems using IRT can be divided into three main areas; substation, underground 
distribution, and aerial distribution (Azmat & Turner, 2005). When accurate 
measurements are required, all the influence factors had to be identified during the IRT 
image is captured.  

Generally, the factors that affect the accuracy of IRT measurements can be categorized as 
procedural, technical and environmental/ambient conditions (Santos et al., 2008)(Hellier, 
2001). The procedural factor concerns the thermographer itself. This factor can be minimized 
if certified or qualified personnel are employed. For technical factors, the issue is normally 
relates to the emissivity of the equipment under inspection, load current variation, distance 
of the object being inspected, and the IRT camera specifications. For an outdoor or 
uncovered inspection, such as at a power substation, environmental effect is a critical issue. 
The data relates to the environmental factors are considered crucial and should be collected 
prior to inspection. Table 3 summarizes the environmental factors effects that need to be 
considered when doing an IRT inspection (Snell & Renowden, 2000). 

A proper observation should be made before starting any IRT inspection. In most of the 
cases, essential information of the target location is provided. In this case, the history of the 
target location and electrical power equipments had to be considered. Among the important 
data needed for an inspection are the load variations, type of equipment and the materials 
used in building the. For an accurate measurement, the right and suitable tool should be 
selected. It is recommended that for an extensive outdoor inspection, especially during 
sunny periods, long-wave (generally 8 µm -14 µm) sensing of IRT systems should be used. It 
had been proven that within this wave band, the thermal detectors provide greater 
sensitivity to ambient temperature objects and insensitive to atmospheric attenuation 
(Balaras & Argiriou, 2002), (Epperly et al., 1997). Short-wave systems should be used only 
on a limited basis depend on the condition of loads and time (Hellier, 2001). In summary, 
Table 5 shows all the factors that can affect the IRT measurement related to the target 
equipment and the inspection tools.  
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3. Significance of imaging for inspection reliability 

Digital signal and image processing is a widely used engineering term that, in a broad sense, 
can be described as a transformation converting signal data into useful information using 
digital computers. Although digital signal and image processing methods have been commonly 
employed in various scientific and engineering fields, their application in NDT is very recent. 
Back to the previous technique, NDT was implemented in a manual or semi-automatic method 
where the operator will accept or reject the decision. This approach is subject to error and 
wrong interpretation. Furthermore, most data recording and analysis methods are primitive. 
Therefore, utilizing the digital signal and image processing for the inspection can minimize the 
operator dependence because it uses automated data analysis, thus improving NDT inspection 
reliability. Both techniques can be employed to improve the signal-to-noise ratio (SNR) 
therefore increased the detection capabilities of the defect or fault. Detailed definitions of the 
detected problem such as type of defect, shape, size and severity of defects has acquired a great 
significance lately. This is because of the need for this information for implementation of such 
methodologies as retirement-for-cause and remaining-life analysis. In summary, applying 
automated imaging inspection can greatly improve the NDT inspection reliability including the 
use of non NDT technologies (Zu et all, 2011). Digital signal processing has played and will 
continue to play a very significant role in NDT. To provide a more complete understanding 
about this subject, the remainder of this chapter presents a deep review of how the IRT image 
processing technique can enhance and practically implemented for detecting and characterizing 
the inspection reliability of concrete structure and electrical equipment. 

Since the early 1960s, infrared thermography (IRT) has been used in many fields of 

application, such as military, industrial, civil engineering and medical, as well as electrical 

engineering. IRT is a non-contact, non-destructive, visualizing technique, which is becoming 

an important means for quality control in production and in service inspection (Junyan et 

al., 2008). Due to its advantages in terms of being non-contact, free from electromagnetic 

interference, safe, reliable, providing large inspection coverage and fast data interpretation, 

IRT has taken a very important role in condition monitoring especially in predictive and 

preventive maintenance techniques (Azmat & Turner, 2005). Furthermore, inspections can 

be done without shutting down operation of the system. 

4. Problem concerning faults and damage detection of power system 
equipment and concrete infrastructure 

4.1 Fault diagnosis in power equipment 

Electrical devices are usually rated in power, which indicates the maximum amount of energy 
the device can consume without being damaged. If the device operated above its 
specifications, the excess power causes the atoms present in the device’s material to resonate 
and resist the flow of electricity. This resistance to the flow of electricity will generates heat, 
which in turn, overheats the device and reduces its life cycle and efficiency. Another major 
problem that usually created within the utility equipment is the change of resistance due to 
loose connections. The loose connection causes the electricity to occupy a smaller area of the 
defective connection that is required for proper flow. This phenomenon will and therefore 
increases the resistance and temperature of the connection. Any change in resistance will cause 
the equipment to consume more power than the intended load (Azmat & Turner, 2005). Fig. 3 
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shows an example of infrared image and the visual light image of a circuit breaker. The red 
colour region in the infrared image indicates the hot spot and possible anomaly. 

 

Fig. 3. Infrared image and visible light image 

Faults in electrical power systems can be classified into a few categories, such as poor 
connection, short or open circuit, overload, load imbalance and improper component 
installation (Kregg, 2004),(Cao et al., 2008). In most cases, poor connections are among the 
more common problems in transmission and distribution lines of electrical power systems 
(Azmat & Turner, 2005). According to a thermographic survey conducted during the period 
of 1999-2005 (Martínez & Lagioia, 2007), it was found that 48% of the problems were found 
in conductor connection accessories and bolted connections. This is mainly due to loose 
connections, corrosion, rust, and non-adequate use of inhibitory grease. On the other hand, 
45% of the thermal anomalies appear in disconnector contacts. Most of the anomalies are 
due to deformations, deficient pressure of contact, incorrect alignment of arms, and 
accumulation of dirt. Only 7% of the problems were found in electrical equipment. In 
diagnosing faults at power substation using IRT, it was found that transformers have taken 
priority over other equipment. This is due to the fact that transformers are the most costly 
equipment in a power substation. The common causes of failure in transformers are oil 
leakage and inferiority in internal insulation, which can lead to catastrophic destruction and 
power outage (Utami et al., 2009). For normal transformer installation, operating 
temperatures rise over ambient 65 ºC for oil-filled and 150 ºC air-cooled transformers 
respectively (Balaras & Argiriou, 2002). Temperatures above these operating points will 
cause breakdown in the insulation winding and therefore causing an electrical short-circuit. 

By utilizing IRT, the thermal image will clearly indicate problem areas. The suspected areas 
then can be easily located and the problems indentified. Nevertheless, in some cases, the 
interpretation of thermographic images cannot be done directly except by an experienced 
and qualified thermographers because most of the thermographic characteristics had to be 
understood. According to (Hou, 1998), faults in electrical equipment can be divided into two 
kinds, external or internal, depend on location. However, internal faults are difficult to 
identify because they are much more complex. Table 4 summarizes the faults that 
commonly occur in electrical power equipments. 

4.2 Automated diagnostic system 

In industrial application, the sophisticated diagnosis system is the choice in order to get fast 

and accurate data with minimum maintenance cost. Most of the IRT cameras that are  
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Equipments Common problem 

Lightning arrestor, circuit 
breaker, disconnector, splices, 
transmission lines, compression 
clamps 

Poor electrical connection: Loose, corroded or improper 
connection or splices. Poor breaker connection. 

Inoperative capacitor 

Fail lightning arrestor 

overloading 

Broken conductor strands 

Bus duct 

Unbalance load 

High resistance in joints 

Bus plug-ins 

Fuse connections 

Switches, bus bars, capacitor 
bank, fuses, load centres, motor 
control centres 

Poor electrical connection: Loose, corroded or improper 
connection and contacts. 

Unbalance load 

Harmonics, eddy currents and hysteresis 

Overloading 

Transformer 

Poor electrical connection: Loose, corroded or 
deteriorated connection. 

Unbalance load 

Overloading 

Low fluid level 

Overheated bushing 

Blocked cooling tubes 

Motor and generators 

Unbalance load 

Blocked cooling passage 

Shorted or open winding 

Overheating of brushed, slip rings and commutators. 

Overloading 

Lighting 
Poor electrical connection 

Overheating ballast 

Table 4. Faults and their thermographic image characteristics 

available today come with analysis software and have the capability to provide the 
inspection report. Furthermore, there is also stand-alone analysis software that can be used 
for any type of thermographic image. Digital images are uploaded into the computer 
directly from the IRT camera for further analysis. Most of the software may have various 
analysis functions, such as spot, area, isotherms, and line thermal measurements, as well as 
size measurements. Analysis can be extended beyond the image by displaying the 
numerical data in a spreadsheet or in various standard graphical forms, such as a histogram 
(Hellier, 2001). However, despite the power and ease of use of the software, the analysis 
process still needs qualified or experienced personnel. Also, most of the conventional 
analyses are time consuming in preparing the final report. Therefore, applying an intelligent 
system in thermographic image analysis can overcome this limitation. In recent years, rapid 
development in computer vision based on image processing techniques and the integration 
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of artificial intelligence has provided many advantages in monitoring and diagnosing 
problems. In electrical power systems, the application of IRT for automatic diagnosis using 
intelligent systems is still in the early stages. 

This is due to the complex analysis and various factors that need to be considered in 
developing such system. Most of the research in automatic diagnosis of electrical power 
equipment and machine condition monitoring started in early 2000 and it become more 
complicated with the used of advanced materials. Table 5 shows the factors related to the 
target equipment and the inspection tool. 

 

Equipments 
factor 

Characteristic 

Electrical loads  

Temperature of the connection will increase as the load increases. For 
light load problems in the early stages of failure will be less thermally. It 
is recommended that during the inspection, the load on the line should be 
at least 40%. 

Equipment  
emissivity 

Most of the conductors have quite low emissivity, typically 0.1-0.3. While 
greasy, black, overheated and aged conductors can have emissivity 
values as high as 0.97, it is often difficult to assess this visually from a 
distance.  

Thermal 
gradient 

The heat of high resistance is usually being generated at some internal 
point to the surface. There exists a thermal gradient between the hottest 
spot inside the equipment and the surface being viewed.  

IRT device 
(camera) 

Factors that must be considered are resolution, both spatial and 
measurement, detected waveband, sensitivity as well as the signal 
processing speed. 

Distance and 
angle  

The resolution of the IRT image decreases with distance. Acute angles 
present less information than images taken at right angles. 

Table 5. Factors related to the target equipment and the inspection tool 

In order to automatically analyze the condition of electrical equipment, image processing 
techniques can be used to extract the thermal profiles within the electrical equipments. Image 
processing techniques generally consist of several steps: pre-processing, segmentation, feature 
extraction, classification and decision making. The straightforward approach is to follow these 
steps one by one in bottom-up order. There are three techniques that can be used to determine 
the thermal severity of electrical equipments through thermal image analysis. The first one is a 
direct interpretation by identifying the real maximum temperature for each of electrical 
equipment and evaluating their condition based on the ∆T criteria. The maximum temperature 
is determined by finding the highest pixel value within the selected region. Calculating the 
histogram or histogram distance is another method that can be used for finding the similarity 
between two objects. In this case, the histogram for each region is computed and compared 
with other regions in order to get the ∆T. Another approach is to analyze the gradient of the 
segmented region. One of the advantages of utilizing the gradient analysis technique is that 
the source of the hotspot in electrical equipment can be identified. 

Based on previous research, the simplest method of identifying hotspot regions within a 
thermal image of electrical equipment is to use thresholding techniques (Chou & Yao, 
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2009),(de Oliveira & Lages, 2010). The hot spot area is detected by filtering the image using a 
certain threshold value. Then, the hotspot region is extracted using morphological 
segmentation where the maximum gray pixel value determines the maximum temperature 
of the hotspot region. The reference temperature is derived from the average gray values of 
the equipment outside of the hotspot region. The level of severity of the electrical equipment 
is calculated by comparing the hotspot temperature and the reference temperature (Chou & 
Yao, 2009)(de Oliveira & Lages, 2010) (Baoshu et al., 2006). In another approach, the 
watershed transformation algorithm is used for segmenting the hotspot regions in the 
thermal image of electrical equipment (Almeida et al., 2009).  

For diagnosing the thermal fault within electrical equipment, certain feature descriptions are 
created for the regions of interest. For the classification process, various intelligent 
techniques, such as neuro-fuzzy (Almeida et al., 2009), artificial neural network (Shafi’i & 
Hamzah, 2010) and support vector machine (SVM) algorithm (Li et al., 2006)(Rahmani et al., 
2010) are used to determine the condition of the electrical equipment. The thermal profiles 
of electrical equipment can also be extracted by analyzing their real temperature values. The 
real temperature values for each pixel in the image can be extracted directly from its RGB 
data. This method is quite straightforward but has a problem with high processing time due 
to the large feature vectors to be computed by an artificial neural network (ANN) algorithm 
(Shafi’i & Hamzah, 2010). The previous research with various hotspot detection techniques 
and fault classification method is summarized in Table 6. 

 

Reference 
Automatic hotspot detection 

technique 
Fault classification method 

(Ying-Chieh Chou & Yao, 
2009), 

(de Oliveira & Lages, 2010) 
Thresholding 

Calculating and comparing 
the real temperature values 

(Laurentys Almeida et al., 
2009) 

Watershed segmentation Neuro-fuzzy 

(Shafi’i & Hamzah, 2010) RGB image data ANN 

(Baoshu Li et al., 2006), 
(Rahmani et al., 2010) 

Thresholding SVM 

(Wretman, 2006),(Smedberg, 
2006) 

Finding repeated pattern and 
smooth but steep image 

gradient 
ANN 

(Korendo & Florkowski, 2001) Manually find region Invariant coefficient method 

(Younus & Bo-Suk Yang, 
2010) 

discrete wavelet 
decomposition 

Bio-orthogonal wavelet 
algorithm 

(Wong, Tan, Loo, & Lim, 
2009) 

RGB RGB value comparison 

Table 6. Automatic Diagnosing System of Electrical Equipment 

Based on previous research except (Almeida et al., 2009), most of the diagnoses systems are 
only analyze the captured thermal image without considering other important variables. In 
this research, the only thing that distinguishes this research from others is the input 
variables. Besides considering environmental factors, this study also includes the 
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identification variables of the electrical equipment, such as pollution index, rated voltage, 
material and manufacturer of the equipment. The whole system diagram and the input 
variables are depicted in Fig. 4(a) and Fig. 4 (b) respectively.  

    
(a)                                                                             (b) 

Fig. 4. Intelligent surge arrester diagnosis system (a) system block diagram (b) input 
variables for neuro-fuzzy classifier 

Instead of using classical bottom-up approach, Wretman (Wretman, 2006) and Smedberg 
(Smedberg, 2006) have successfully segmented the IRT image of electrical installation by 
using the top-down approach of image processing method. In other words, identifying the 
interesting region will be done first by detecting and grouping a regular repetitive structure. 
The tasks for finding repeated objects in the image can be broken down into two separate 
steps: (i) finding interesting features in the image and describing these using pre-specified 
descriptors, and (ii) comparing all the features and look for matches. In this research, all the 
interesting features were detected by modifying the scale-invariant feature transform (SIFT) 
algorithm (Lowe, 2004). 

4.3 Damage detection of concrete infrastructure 

The deterioration of concrete infrastructure is a growing problem worldwide; many 
structures are approaching the end of their service lives and need maintenance or 
rehabilitation in order to remain functional. In spite of recent increases in public 
infrastructure investments, infrastructure is deteriorating faster than it is being renewed. 
Various factors can contribute to the deterioration of concrete infrastructure; mechanical 
stress and fatigue, and chemical and environmental conditions are among the major causes 
concrete distress (Scott et al., 2003). Damage such as cracks, may exist in concrete even 
before the structure is subjected to any external loading. An excessive water-cement ratio, 
improper curing, and creation of high temperatures during the hardening process may 
result in shrinkage, which is the direct cause of cracking. These cracks later expand and 
widen during service due to freeze and thaw cycles and the intrusion of moisture. This 
process is especially critical for large concrete structures, such as dams, due to placement of 
massive amounts of concrete during construction. Even an initially sound concrete dam can 
develop cracks during its service life. Since a concrete dam is always in contact with water, 
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relatively small size cracks will eventually become wider and develop into holes or 
delaminations, and decompression joints or bedding in the shallow bedrock. Assessing the 
safety of concrete gravity dams against sliding requires a detailed investigation of the cracks 
and other discontinuities in the concrete structure and the rock foundation underneath. This 
is achieved through characterization of the mechanical properties of the materials (concrete 
and rocks), and especially the shear strength of the different types of discontinuities found 
throughout the structure and the foundation. Traditionally, a log is kept of the 
discontinuities found in cores drilled from the investigated structure. This method has the 
advantage of providing specimens for petrographic examinations and allows the testing of 
specific properties, such as compressive strength, Young modulus or permeability. 
However, information on the condition of the discontinuities is sometimes altered or lost 
due to drilling operations, even if a triple-tube coring system is used. 

For instance, cracks might be created during drilling or transportation of the samples. Also, 
planes of cohesive weakness can separate after drilling, which modify the evaluation of the 
shear properties of the structure. The orientation of the core is another parameter that can be 
lost during drilling, if the procedure is not properly done. Since drilled cores are usually 
collected from dams for testing concrete and rocks, the borehole itself can be used to perform a 
detailed investigation and collect additional information on the surrounding materials. 
Borehole geophysical logs have been used for more than 50 years, mainly for oil mining. These 
methods provide continuous quantitative and statistical measurement of the depth, thickness, 
and orientation of features such as fractures and joints. Borehole imaging can actually provide 
better data than core samples, since the equipment used (the televiewers) depict in-situ 
conditions, and are not subjected to incomplete core recovery. Furthermore, tools are 
magnetically referenced to true north, thus eliminating the need for oriented cores. 

Map-like surface cracking may indicate an adverse reaction between cementitious alkalis 
and aggregates. This reaction, known as the alkali-aggregate reaction (AAR) is a potentially 
harmful process in concrete containing reactive aggregates, and can lead to varying degrees 
of cracking in structures, as well as differential movement and misalignment of concrete 
elements and mechanical installations (Bérubé et al., 2000). AAR has been recognized in 
more than 50 countries around the world; it is likely that the problems associated with AAR 
exist in a larger number of countries, but concrete distress in several instances may have 
been attributed to other causes. 

4.4 Advances in thermography imaging for sub-surface damage detection 

Visual colour and greyscale imagery of concrete greatly extend natural vision capabilities in 
terms of colour and greyscale perception. Human vision is relatively poor at differentiating 
the brightness and colour features in the scene being viewed, whereas greyscale digital 
imagery can provide hundreds of levels of grey and colour digital imaging allows the 
quantitative differentiation of millions of different colours. Such a range of image perception 
is unattainable by the human eye, but is extremely useful for quantitative image analysis. 
There is, however, a need for the development of effective image analysis techniques in 
order to derive the information needed from the concrete imagery. Surface damage, such as 
cracks, are usually treated as objects, and are thus quantified through techniques that first 
segment the objects from the background to extract shape or object features, and then 
classify the images based on those features. 
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Visual colour and greyscale imagery of concrete greatly extend natural vision capabilities in 

terms of colour and greyscale perception. Human vision is relatively poor at differentiating 

the brightness and colour features in the scene being viewed,whereas greyscale digital 

imagery can provide hundreds of levels of grey and colour digital imaging allows the 

quantitative differentiation of millions of different colours. Such a range of image perception 

is unattainable by the human eye, but is extremely useful for quantitative image analysis. 

There is, however, a need for the development of effective image analysis techniques in 

order to derive the information needed from the concrete imagery. Surface damage, such as 

cracks, are usually treated as objects, and are thus quantified through techniques that first 

segment the objects from the background to extract shape or object features, and then 

classify the images based on those features.  

A variety of image processing techniques can be used to characterize the damage in 
concrete data; among these methods are edge-detection algorithms (Abdel-Qader et al., 
2003). Edges are considered to be areas with strong intensity contrasts in an image, 
causing a jump in intensity from 1 pixel to the next. In image data of damaged concrete, 
these edges would characterize boundaries between areas of sound concrete and 
deterioration, such as cracks. However, in their study on the classification of pits and 
cracks in corrosion images, Livens et al. (Livens et al., 1996) found that segmentation 
approaches worked well on individual images, but proved unsatisfactory when applied to 
a large set of samples due to the variability in the background. So they adopted a method 
based on the analysis of the textured appearance of the pits and cracks in the images, 
which was successfully employed to discriminate between the two types of damage. 
Furthermore, according to He and Wang (He & Wang, 1991), a good understanding or a 
more satisfactory interpretation of an image should include the description of both 
spectral and textural aspects of the image. 

Other approaches used for damage characterization include transform-based techniques. 
Wavelet transforms are powerful tools often employed in image processing applications. 
The main advantage of this transform remains in its ability to locally describe signal 
frequency content. Through the wavelet transform (Ksantini, 2003), an image is decomposed 
into several high-frequency images containing wavelet coefficients representing details with 
increasing scale and different orientations (Foucher et al., 2001). More specialized methods 
that may be used to detect deterioration in concrete images are statistical-based approaches. 
These techniques allow for the analysis of the textural content in an image. Statistical texture 
methods analyse the spatial distribution of grey values by computing local features at each 
point in the image, and deriving a set of statistics from the distributions of the local features 
(Haralick, 1979). 

Different types of concrete damage each have a specific texture typical of the type of 
deterioration, which should permit their discrimination through texture analysis methods. 
There are very few studies that have applied image processing techniques, such as texture 
analysis, to extract textural features in order to obtain concrete deterioration information 
from optical imagery. The analysis of concrete structure can be done by extracting the 
texture information through the grey level co-occurrence matrix texture analysis approach 
and the deterioration features in the concrete imagery is detected through the artificial 
neural network classifier in order to obtain more accurate damage characterization and 
assessment. These methods are applied to three types of concrete imagery, thermographic, 
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colour and greyscale digital imagery as shown in Fig. 5, in order to evaluate their 
effectiveness in providing surface damage information. 

 
                                             (a)                            (b)                            (c) 

Fig. 5. Greyscale, thermographic, and colour images of GRAI-3 slab: (a) Greyscale, (b) 
Colour and (c) Thermographic. 

Images were taken of concrete specimens exhibiting various levels of surface cracking 
associated with the alkali-aggregate reaction (AAR). This reaction occurs between some 
reactive aggregates and alkali hydroxides in the concrete pore solution. AAR leads to the 
swelling and cracking of concrete. The amount of cracking is closely related to the expansion 
level, and other indicators of concrete deterioration, such as loss of rigidity, decreasing 
mechanical properties, etc. (Rivard & Ballivy, 2005). Experiments were conducted on two 
sets of concrete specimens. The first set consists of three concrete blocks measuring 
40×40×70 cm3 each, which were exposed outdoors to the elements for over ten years at the 
CANMET site in Ottawa (Canada); CAN-1, CAN-2, and CAN-3 present low, medium and 
high amounts of damage, respectively. The second set consists of three concrete slabs, 
100×100×25 cm in size each, batched and kept at the GRAI laboratory (University of 
Sherbrooke). These slabs were wrapped with damp terry cloth and stored at ambient air 
(20±2 °C). As with the CANMET blocks, GRAI-1, GRAI-2, and GRAI-3 present low, medium 
and high amounts of damage, respectively. Table 7 and 8 provides more details on the 
concrete mixtures for the CANMET and GRAI specimens. 

 

Concrete mixtures GRAI CANMET 

 GRAI-1 GRAI-2 GRAI-3 CAN-1 CAN-2 CAN-3 

Cement content (kg/m³) 210 390 390 423 423 425 

Density (kg/m³) 2223 2326 2340 2303 2303 2317 

Total Na2Oeq (kg/m³) 3.81 3.25 5.25 1.69 3.81 5.31 

W/C 0.75 0.66 0.66 0.42 0.42 0.42 

Table 7. Mixture proportions for CANMET and GRAI specimens.  

 

Average measurement GRAI CANMET 

 GRAI-1 GRAI-2 GRAI-3 CAN-1 CAN-2 CAN-3 

P-wave velocities (m s−1)a 3810 3590 3440 4909 4513 4402 

Expansion (%)b 0.000 0.060 0.100 0.025 0.283 0.340 

a Based on 11 measurements. 
b Based on side and surface measurements. 

Table 8. Average measurements of P-wave velocities and expansion levels  
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4.5 Statistical texture analysis using GLCM 

Statistical texture methods analyze the spatial distribution of grey values in an image by 
computing local features at each point in the image, and deriving a set of statistics from 
the distributions of the local features. Depending on the number of pixels defining the 
local feature, statistical methods can be classified into first-order (one pixel), second-order 
(two pixels) and higher-order (three or more pixels) statistics. The outputs of the derived 
features are images in which the pixel values have been changed to reflect a particular 
feature, or texture; therefore, the resulting feature images are also known as texture 
features (Schowengerdt, 1997). A second-order histogram is an array that is formed based 
on the probabilities that pairs of pixels, separated by a certain distance and a specific 
direction, will have co-occurring grey levels. This array, or second-order histogram, is also 
known as the grey level co-occurrence matrix (GLCM). Since the co-occurrence matrix 
expresses the two-dimensional distribution of pairs of grey level occurrences, it can be 
considered a summary of the spatial and spectral frequencies of the image. A large 
number of texture features have been proposed; as many as fourteen different features 
that can be derived from these matrices are described by Haralick et al. (Haralick et all, 
1973). However, only some of these are widely used. This is because many of the features 
are redundant, due to their high correlation. Thus they are not all useful for describing a 
particular texture. Some of the texture features that can be extracted from the GLCM are 
image contrast, correlation, dissimilarity, mean, variance, standard deviation, second 
moment, energy and entropy. 

The most effective features are selected through a process consisting of visual analysis, 
histogram analysis, and analysis of correlation matrices. In this study, the thermographic 
image of the GRAI-3 slab, which exhibits a fair amount of deterioration associated with 
AAR and presents quite a bit of textural variation, was used in the feature selection process, 
since features found appropriate for this image will be suitable for the other images as well. 
For the first step in the feature selection process of the second-order statistics, visual analysis 
of the feature images revealed that the visual quality of the contrast and correlation features 
was not adequate; the contrast and correlation features were thus initially considered for 
discarding due to their poor quality in terms of visual information. This is shown in Fig 6.  

 

Fig. 6. Second-order texture features from green band of TIR G3 image. 
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Analysis of the histograms of the feature images confirmed that the two features, contrast 
and correlation, should be eliminated because of the narrow peaks they presented in their 
respective histograms, which signify a lack of textural information. The histogram of the 
variance feature also demonstrated a lack of texture information, so this feature was also 
considered for elimination (see Fig. 7). 

 

Fig. 7. Histograms of second-order features for greyscale map-crack image 

Finally, the correlation matrix of the feature images was calculated; analysis of the 
correlation matrix further confirmed the removal of the contrast, correlation and variance 
features, due to their relatively high correlation with the other features. This analysis also 
indicated the need to discard the entropy and second moment features as well, due to the 
same reason (see Table 9). As a result, the mean, homogeneity and dissimilarity second-
order features were selected for use in this study. 

 

Features Mean Var Homo Cont Diss Ent SM Corr 

Mean 1 −0.312 0.684 −0.240 −0.229 0.174 0.425 0.228 

Var −0.312 1 −0.515 0.833 0.857 0.500 −0.360 −0.376 

Homo 0.684 −0.515 1 −0.512 −0.617 −0.324 0.797 0.450 

Con −0.240 0.833 −0.512 1 0.942 0.470 −0.338 −0.391 

Diss −0.229 0.857 −0.617 0.942 1 0.679 −0.486 −0.525 

Ent 0.174 0.500 −0.324 0.470 0.679 1 −0.571 −0.454 

SM 0.425 −0.360 0.797 −0.338 −0.486 −0.571 1 0.335 

Corr 0.228 −0.376 0.450 −0.391 −0.525 −0.454 0.335 1 

Table 9. Correlation matrix of second-order texture features for GRAI-3 thermographic 
image  

The success of the GLCM method depends on the choice of the distance and the direction 
between the pixels, and the window size. The appropriate distance between pixels depends 
on how fine or coarse the texture of interest is. Small distances are usually used for fine 
textures since pixels close to each other will present enough variation in their grey values to 
characterize these textures, whereas greater pixel distances are generally used for more 
coarse textures because variations in the grey values occur in pixels farther away from each 
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other. It has been found that small distances produce the best results (Karathanassi, 
Iossifidis, & Rokos, 2000), since they are appropriate for textures that are fine, as well as for 
those that are coarse. A distance of 1 pixel means that the pixels in the pair are located right 
next to each other. Concerning the direction between pixels, four directions can be used: 0° 
(horizontal), 45° (diagonal), 90° (vertical) and 135° (diagonal); however, selecting which 
direction to use can be difficult. One method consists of calculating the GLCM features for 
all four directions and then taking their averages. The most common choice for the direction 
between pixels found in the literature, however, is 0°; this means that the pixels in the pair 
are located horizontally with respect to each other. 

After extraction of the textural information from the images, the next step consists of 
classifying and quantifying the different classes of texture. Artificial neural networks 
(ANNs) classification approach based on MLP architecture was used to extract the crack 
patterns from the concrete imagery. Four input nodes were used to represent the following 
four input features: the original input image and the three selected second-order features. 
Three output nodes were used to correspond to the following three target classes: wide 
crack, narrow crack and no crack. For the training algorithm, the popular error back-
propagation method was employed. In order to avoid poor classifications or inaccurate 
estimates of the elements, efforts were made to choose a sufficient number of training pixels 
for each class, in order to ensure adequate representation. After regions of the image were 
selected as training data and separate areas were selected as testing data, the software 
implemented the MLP, which then performed a classification using the four input features. 
This was done for each of the three image types, thermographic, colour and greyscale, of the 
CANMET and GRAI specimens. The results of the classification can be presented in two 
forms: a classified image (also known as a thematic map) which shows the spatial 
distribution of the various classes in which each pixel is assigned a symbol or colour that 
relates it to a specific class, and a table that summarizes the number of pixels in the whole 
image that belongs to each class. The Kappa coefficient was adopted to assess the accuracy 
of the results obtained. 

Results of the classifications show that the greyscale imagery performed fairly well, with an 
overall classification accuracy range of 72.3–76.5% for the CANMET blocks, and 68.7–75.3% 
for the GRAI slabs. Classifications using the colour imagery were slightly better than the 
greyscale imagery, with accuracies ranging from 71.4% to 75.2% for CANMET blocks and 
70.9–72.0% for the GRAI slabs. The thermographic imagery, however, produced the highest 
overall classification accuracies, which range from 73.1% to 76.3% for the CANMET blocks 
and 74.2–76.9% for the GRAI slabs. [Table 10] and [Table 11] show the classification 
accuracies obtained for each class, as well as the Kappa coefficients and overall accuracies 
for each specimen of the CANMET blocks and GRAI slabs, respectively. Fig. 8 presents the 
classified images for the greyscale, colour and thermographic imagery of the GRAI-3 slab. 

Since the infrared thermography performed better than the other two types of imagery, only 
the results obtained from the thermographic image classifications were used to determine 
the various levels of AAR damage. The tabular results of the classifications performed on 
the thermographic imagery of the specimens are presented in Table 12. Among the 
CANMET blocks, specimen 1 presented the least amount of surface deterioration at 3.9% in 
the form of narrow cracks, specimen 2 had a moderate amount of narrow cracks (8.2%) and 
wide cracks (3.6%) for a total of 11.8% surface deterioration, and specimen 3 revealed the  
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 Thermographic Colour Greyscale 

 1 2 3 1 2 3 1 2 3 

Kappa coefficient 0.73 0.73 0.74 0.69 0.71 0.74 0.74 0.73 0.76 

Overall accuracy (%) 74.5 73.1 76.3 71.4 75.2 74.1 72.3 76.5 75.4 

Classes Accuracy (%) 

Wide crack 81.3 79.9 83.5 78.6 78.1 78.4 76.8 78.1 78.4 

Narrow crack 79.7 78.6 81.5 77.7 70.9 77.5 76.3 70.9 77.5 

No crack 82.4 76.7 80.6 75.3 74.5 74.2 73.6 71.4 74.2 

Table 10. Classification accuracies for CANMET blocks   

 

 Thermographic Colour Greyscale 

 1 2 3 1 2 3 1 2 3 

Kappa coefficient 0.75 0.74 0.76 0.72 0.74 0.74 0.69 0.72 0.74 

Overall accuracy 
(%) 

75.6 76.9 74.2 70.9 71.6 72.0 68.7 74.1 75.3 

Classes Accuracy (%) 

Wide crack 76.7 78.1 80.0 73.4 76.1 79.9 70.4 77.1 79.7 

Narrow crack 74.7 75.2 73.4 70.1 72.9 73.4 73.7 72.9 73.4 

No crack 76.6 74.9 79.1 72.6 76.4 78.2 73.9 71.4 77.0 

Table 11. Classification accuracies for GRAI slabs  

 
(a)                                        (b)                                       (c) 

Fig. 8. Classified images of greyscale, colour and TIR images of GRAI-3 specimen: (a) 
Greyscale classified, (b) Colour classified and (c) TIR classified. 

greatest amount of narrow cracks at 19.7%, as well as a number of wide cracks at 14.3%, for 

a total surface deterioration of 34.0%. For the GRAI slabs, specimen 1 had a total surface 

damage of 1.14% comprised of narrow cracks, specimen 2 presented 14.1% total damage 

made up of 8.8% narrow cracks and 5.4% wide cracks, and specimen 3 showed 14.0% 

narrow cracks and 9.1% wide cracks for a total surface deterioration of 23.1%. 

Further analysis of the surface damage was performed after converting the classified images 

into binary images. This process simplifies the image by assigning the pixels that represent a 

damage value of 1 (black) and the background pixels a value of 0 (white). Manual or 

automated methods are then used to count or sum the pixels to calculate total crack length, 

as well as average crack width. In order to quantify the total length of wide cracks, pixels  
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Specimens Classes CANMET GRAI 

  Image pixels Image (%) Image pixels Image (%) 

3 Wide crack 37 356 14.3 23 907 9.1 

 Narrow crack 51 852 19.7 36 674 14.0 

 No crack 172 936 66.00 201 563 90.3 

 Total pixels 262 144 100.00 262 144 100.00 

2 Wide crack 9 489 3.6 14 078 5.4 

 Narrow crack 21 365 8.2 22 937 8.8 

 No crack 231 290 88.2 225 129 85.8 

 Total pixels 262 144 100.00 262 144 100.00 

1 Wide crack 0 0.00 0 0.00 

 Narrow crack 10 119 3.9 5 943 1.1 

 No crack 252 025 96.1 256 201 98.9 

 Total pixels 262 144 100.00 262 144 100.00 

Table 12. Tabular representation of thermographic classifications  

along the length of each branch of the cracks were summed and the total multiplied by the 
pixel resolution of 0.26 mm. For the CANMET blocks, a total length of 237.4 mm of wide 
cracks was calculated for specimen 3. For specimen 2, the total length was found to be 
97.6 mm, and for specimen 1, the total length was 0 mm. Determination of average crack 
width was done by measuring the width of the wide cracks at several points. Each square 
represents one pixel at a resolution of 0.26 mm. As a result, the average width of cracks in 
the CANMET blocks was found to be 1.6 mm for specimen 3, 0.8 mm for specimen 2, and 
0 mm for specimen 1. 

These findings are supported by in-situ data recorded for the CANMET blocks and the 
GRAI slabs. CAN-3 was prepared with the highest alkali content, and showed the highest 
expansion level. On the other hand, CAN-1 showed the lowest expansion level as the 
concrete was mixed with a low level of alkali content. The highest values for the total length 
of wide cracks as well as for the average width of cracks found for the CAN-3 specimen also 
relate well to its having the lowest P-wave velocities (Table 8), indicating the highest 
deterioration level. The absence of wide cracks in the CAN-1 sample, which had a value of 
0 mm for the average width of cracks, as well as for the total length of cracks, corresponds 
well to the lower percentage for average expansion levels measured on the blocks, where the 
CAN-2 sample showed a higher percentage, and with the CAN-3 sample having the highest 
percentage of expansion. 

As for the GRAI slabs, the absence of wide cracks in the GRAI-1 specimen, which had a 
value of 0 mm for the average width of cracks, as well as for the total length of cracks, is 
corroborated by its having the lowest expansion level, indicating very little damage. A 
higher level of expansion was measured on the GRAI-2 specimen, with the GRAI-3 
specimen having the highest measurement for expansion level among the slabs. Fig. 9 
demonstrates the relationship between the test measurements and the damage quantities 
obtained for the three CANMET blocks and the three GRAI slabs. Fig. 9(a) presents a 
comparison of the total amount of crack damage and expansion levels, Fig. 9(b) is a 
comparison of the total crack length and expansion levels, and Fig. 9(c) is a comparison of 
total crack damage and P-wave velocities. 
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(a)                                                         (b) 

 
(c) 

Fig. 9. Comparison of test measurements and damage information: (a) Crack damage vs 
expansion levels, (b) Crack length vs expansion levels and (c) Crack damage vs P-wave 
velocities 

5. Recommendations for future research and development 

There are many things that need to be done in improving the quality of NDT inspections 
using IRT. This includes the technology of IRT equipment, method of inspection, 
advanced methods of fault diagnosis and so on. Of course, this will involve various fields 
of study. Since the demand for NDT inspection reliability and condition monitoring is 
increasing, a robust and rapid analytical tool is required to do inspections. This part will 
highlight some recommendations for future research in order to improve the reliability 
inspection. The main factor that mostly affects the quality of inspection is the IRT 
equipment itself. Advances in manufacturing processes of thermographic detectors have 
dramatically increased both yield and quality while reducing production costs. However, 
the quality of inspection is related to the image resolution. Poor resolution will produce 
bad interpretation of inspection images. Therefore, for more accurate and correct data 
interpretation, it is recommended to use the latest technology for IRT cameras. Besides the 
resolution, the modern IRT cameras have very high thermal sensitivity. Some cameras 
even have the capability to adjust data measurements on screen, like object emissivity, 
temperature, etc.  

In monitoring the condition of electrical equipments, the adoption of continuous thermal 
imaging can deliver increased benefits over periodic thermal inspection, especially in 
respect of mission critical electrical equipment. There is a big advantage to continuous 
thermal monitoring, since faults can occur at any time. In addition, it is not operator 
dependent, nor is it dependent on the time of inspection, which is usually when the 
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equipment is running at load. Another benefit of real-time continuous monitoring is that the 
system can give warning signals or alarms if anomalies occur at any time. Therefore, action 
can be taken immediately. Perhaps one of the most important advantages of continuous 
monitoring is the ability to integrate continuous monitoring into existing Supervisory 
Control and Data Acquisition (SCADA) systems, enabling real-time remote monitoring 
without the need for separate systems or reports, which is something that cannot be 
achieved with periodic thermal inspections. Real-time imaging systems are not only rapid, 
compact and frequency agile, but they also have greater resolution, which improves 
imaging analysis and recording capabilities. Due to the high demand for preventive 
maintenance in electrical power systems, there is a need to have more reliable and robust 
intelligent systems. To date, most of the developed intelligent systems could not be used for 
all types of electrical equipments. This is due to the different features of the equipments. 
Therefore, a new intelligent system model has to be developed. Another issue in vision 
technology is the image quality. For inspections being done outdoors, the captured image 
will normally be affected by noise. Therefore, further study is needed on more advanced 
image processing techniques and developing new algorithms that could solve these 
problems.  

Specifically in analyzing the civil concrete structure, studies  can  be  conducted  in  order  to  
determine  which  bands  of  RGB  are more  suitable  for  these two  types  of  images  in  an  
effort  to  reduce  the number  of  features  that need to be computed, and results compared 
with those of greyscale imagery to see if there is any significant  difference. Other topics for 
future studies can also be considered. One topic concerns the application of the statistical 
analysis. This research dealt with only first-order and second-order statistics; higher-order 
statistics were not commonly employed with remote-sensing imagery previously due to the 
computational costs involved when working with large image dimensions. Since concrete 
imagery has relatively much smaller image dimensions, and computer efficiency has 
steadily increased, the use of third-and higher-order statistics for the texture analysis of 
concrete imagery can also be further experimented.  

Another subject is the development of a standard set-up for data acquisition, which would 
control the resolution and uniformity of large-scale data. Additional studies can comprise 
the development of a model for incorporating concrete image data from various NDT 
imaging techniques, such as optical images, which present image data of the surface, 
infrared thermography and acoustics, which are used for subsurface conditions, and ground 
penetrating radar, which is employed to obtain below-surface information of a structure. 
Furthermore, the image analysis model employed in this research has the potential to be 
developed as a component for automated damage assessment, which can be incorporated 
into a structural health monitoring system for concrete infrastructure. Automation of the 
system would allow for the assessment of a large volume of data, which could be used to 
establish a database of monitoring imagery, inspection results, etc. Since the imaging and 
inspection data can be stored in a digital format, image and data retrieval using metadata 
and content-based methods can be employed in order to compare the damage characteristics 
with previous inspection results and information. Data concerning a particular structure can 
be put together to form a three-dimensional representation of the condition using GIS 
techniques. This can aid in monitoring the condition of a structure; a history of inspection 
results can thus be examined and compared in order to quantitatively establish changes that 
occur with time. 
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6. Conclusion 

In this chapter we covered briefly fundamentals of IRT imaging in NDT for enhancing the 
inspection reliability for both applications in monitoring the condition of electrical power 
equipment and damage detection in concrete structure. Inspection by utilizing thermal 
imaging especially for analyzing electrical installations and concrete structures presents 
many challenges due to the fact that these equipments and materials are non-homogeneous 
images. Some improvements in analysis methods need to be considered in order to avoid 
misinterpretation or inaccurate analysis of IRT data. Recent trends in IRT inspection showed 
that there is a need to apply an automatic intelligent system. A more advanced system could 
improve the quality of inspections. Therefore, some effort must be made to design a new 
approach of IRT inspection and to develop a better model for an intelligent system. For 
more complex image analysis, more robust and effective image processing techniques must 
be applied. Further development could enhance automatic processing capabilities in the 
form of automatic recognition of the measured objects and their critical parts. 
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