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1. Introduction 

The lungs are a gateway for numerous airborne pathogens that are ubiquitous in our 
environment. Among these potential pathogens are fungi that can be found in the soil, bird 
excreta, air ducts, and many other places where their contact is unavoidable. Exposure to 
these fungal pathogens oftentimes goes unnoticed due to the activation of our robust 
immune systems which sequester and control these microbes before significant damage 
occurs. Still, there are many situations in which host immunity becomes compromised 
providing an opportunity for typically innocuous fungal organisms to become established 
and cause disease or for dormant infections to reawaken. Also, in certain cases disease may 
be exacerbated due to an over exuberant immune response. In this chapter, we will review 
the main aspects of innate and adaptive immune responses against pulmonary fungal 
pathogens. We will also discuss the potential for vaccines to prevent pulmonary fungal 
infections. 

2. Introduction to pulmonary fungal infections 

Pulmonary fungal infections can be grouped into primary fungal pathogens and 
opportunistic fungal pathogens. Those organisms that can cause disease in immune 
competent hosts are considered primary pathogens including Histoplasma capsulatum, 
Coccidioides immitis, Paracoccidioides brasilensis, and Blastomyces dermatiditis. All of the primary 
pulmonary fungal pathogens are endemic to the United States and/or Central & South 
America. Histoplasma and Blastomyces are endemic to the Ohio River & Mississippi River 
Valleys of the United States and also to certain regions of Central and South America (Klein 
et al., 1986; Deepe, 2000). Coccidioides is prevalent in the desert southwest United States 
(Fisher et al., 2007), and Paracoccidioides is endemic in Central and South America, 
particularly in Brazil (Franco, 1987; Franco et al., 1989; Brummer et al., 1993). These 

                                                                 
* Corresponding Author 

www.intechopen.com



 
Pulmonary Infection 86

infections are acquired by inhalation of fungi from contaminated soil, and severity of 
disease generally correlates with the amount of exposure to the pathogen. 

Examples of organisms that are opportunistic pulmonary fungal pathogens include 
Cryptococcus neoformans, Aspergillus fumigatus, Pneumocystis, and Rhizopus. C. neoformans is 
found ubiquitously in the soil, usually in soil contaminated with pigeon guano (Perfect and 
Casadevall, 2002). These fungi primarily cause disease in individuals with compromised 
immune systems. Most cryptococcal infections are asymptomatic, and the organism 
typically causes disease in immune compromised patients, such as AIDS patients, solid 
organ transplant patients on immune-suppressive drugs, or patients receiving 
chemotherapy (Levitz, 1991; Mitchell and Perfect, 1995; Singh et al., 1997; Shoham and 
Levitz, 2005). A. fumigatus is ubiquitously found in the environment, and is normally found 
in association with decaying wood and plant matter (Deacon et al., 2009). However, A. 
fumigatus can cause severe respiratory infections in cases of massive exposure or immune 
deficiency, such as neutropenia, due to chemotherapy, AIDS, or bone marrow transplant 
therapy (Denning, 1996; Almyroudis et al., 2005; Magill et al., 2008). Pneumocystis infection is 
acquired by inhalation of organisms from a yet unknown source (Keely et al., 1995; 
reviewed in Kelly and Shellito, 2010). Most Pneumocystis infections occur in 
immunosuppressed individuals due to either HIV or chronic obstructive pulmonary disease 
(Leigh et al., 1993; Nevez et al., 1999; Huang et al., 2003; Calderon et al., 1996; Morris et al., 
2004; Norris et al., 2006; Davis et al., 2008; Morris et al., 2008a; Morris et al., 2008b; Kling et 
al., 2009). Similarly, infection with Rhizopus typically occurs in individuals who are immune 
compromised, such as organ transplant recipients (Kontoyiannis, 2010; Pappas et al., 2010). 

3. Innate immune responses against pulmonary fungal pathogens 

3.1 Phagocyte interactions with pulmonary fungal pathogens 

Cells of the innate immune system such as dendritic cells (DCs) and macrophages residing in 
the lungs/airways are the first line of defense against pulmonary fungal pathogens. Although 
these innate cells cannot completely eliminate many fungal pathogens, they are involved in 
uptake and degradation of fungi and processing of antigens derived from these pathogens. In 
contrast, neutrophils which are also phagocytic and can be fungistatic are unable to present 
antigen. Based on the subset of receptors involved and signaling pathways triggered by these 
receptors, the innate immune system will trigger different types of early responses and 
subsequently translate these signals to mount different types of adaptive responses. 

H. capsulatum can initially be engulfed by macrophages, DCs, and neutrophils (reviewed in 
(Deepe, 2005)), however, H. capsulatum recognition by different receptors results in different 
fates (Gomez et al., 2008). DCs recognize H. capsulatum by VLA-5, by interaction with an 
unknown receptor, which results in uptake, killing, and antigen presentation (Gildea et al., 
2001; Gomez et al., 2008). Human DCs exert their antifungal activity via phagolysosomal 
fusion. The addition of suramin (which blocks phagolysosomal fusion) inhibits DC 
fungicidal activity, but inhibition of lysosomal acidification and inhibition of respiratory 
burst has no effect (Gildea et al., 2005). In contrast to DCs, macrophages recognize the H. 
capsulatum surface molecule heat-shock protein 60 (HSP 60) by LFA-1 (CD11a/CD18), 
complement receptor 3 (CD11b/CD18), and complement receptor 4 (CD11c/CD18) and this 
recognition leads to uptake and intracellular replication (Kimberlin et al., 1981; Bullock and 
Wright, 1987; Long et al., 2003; Gomez et al., 2008; Lin et al., 2010). However, activated 
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macrophages can halt intracellular replication (Wu-Hsieh and Howard, 1984; Wu-Hsieh et 
al., 1984). H. capsulatum can avoid the macrophage lysosomal environment by preventing 
phagolysosomal fusion (Newman et al., 1997; Strasser et al., 1999) or by alkalinizing the pH 
of the phagolysosome (Eissenberg and Goldman, 1988; Eissenberg et al., 1988; Eissenberg et 
al., 1993). Macrophages infected with H. capsulatum and activated with GM-CSF decrease 
available iron and zinc, while infected macrophages without GM-CSF do not. Further, 
chelation of zinc inhibits yeast replication; therefore zinc deprivation may be used by 
macrophages in host defense against H. capsulatum (Winters et al., 2010). Neutrophil 
phagocytosis of H. capsulatum requires opsonization with either antibody or complement 
(Brummer et al., 1991; Kurita et al., 1991a; Kurita et al., 1991b; Newman et al., 1993). 
Neutrophil uptake of H. capsulatum is fungistatic, as opposed to macrophages (permissive 
growth & replication) and DCs (fungicidal) (reviewed in Deepe, 2005). A lack of neutrophils 
causes a non-lethal infection to become a lethal infection (Zhou et al., 1998).  

Immature DCs bind spherules of Coccidioides in a time and temperature-dependent manner, 
and binding is blocked by mannan, suggesting that mannose receptor (MR) is involved in this 
interaction (Dionne et al., 2006). Spherules of Coccidioides stimulate DC functional maturation, 
evidenced by decreased endocytic capacity and stimulation of allogeneic peripheral blood 
mononuclear cell activation (Dionne et al., 2006). Further studies showed that a DC-based 
Coccidioides vaccine had adjuvant properties and activated protective immune responses in 
mice (Awasthi, 2007). Although macrophages can ingest Coccidioides; earlier studies suggested 
that they are not able to kill the arthroconidia (Kashkin et al., 1977; Beaman et al., 1981, 1983; 
Beaman and Holmberg, 1980b, 1980a). Studies demonstrated that monocytes derived from 
human peripheral blood were able to kill Coccidioides (Ampel and Galgiani, 1991). Neutrophils 
are the earliest cell type to infiltrate upon pulmonary infection with Coccidioides arthroconidia 
(Savage and Madin, 1968). Phagocytosis by neutrophils is enhanced by the addition of 
immune serum (Drutz and Huppert, 1983; Wegner et al., 1972; Frey and Drutz, 1986). Uptake 
of Coccidioides arthroconidia by neutrophils induces a respiratory burst (Frey and Drutz, 1986), 
but less than 20% of the arthroconidia are killed (Frey and Drutz, 1986; Beaman and 
Holmberg, 1980b; Drutz and Huppert, 1983). The spherule form of Coccidioides cannot be 
phagocytosed by or killed by neutrophils (Frey and Drutz, 1986; Galgiani, 1986), but rupture of 
the spherule leads to an influx of neutrophils (Frey and Drutz, 1986). 

P. brasiliensis can be phagocytosed by immature DCs, and uptake is significantly decreased 
with the addition of mannan, suggesting that MR is the primary receptor for P. brasiliensis 
on DCs (Ferreira et al., 2004). After DC uptake of P. brasiliensis, the fungal organisms survive 
and multiply intracellularly rather than being killed (Ferreira et al., 2004). Following in vitro 
culture of P. brasiliensis or the major surface antigen gp43 with DCs, major 
histocompatibility complex (MHC) II is downregulated as is the production of interleukin 

(IL)-12 and tumor necrosis factor (TNF)- (Ferreira et al., 2004). However, in vivo studies 
showed that DC interaction with P. brasiliensis results in modification of DC receptor 
expression, including upregulation of CCR7, CD103, and MHC II and also induces 
migration of both pulmonary and bone marrow-derived DCs. DCs are also able to activate T 
helper cell responses in the draining lymph nodes following interaction with P. brasiliensis 
(Silvana dos Santos et al., 2011). Alveolar macrophages adhere to and internalize 
Paracoccidioides using the organism’s phospholipase B, which also serves to downregulate 
macrophage activation (Soares et al., 2010). During pulmonary infection with P. brasiliensis, a 

shift in macrophage activation occurs, which is characterized by an increase in IL-1, TNF-, 
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and IL-6 (Silva et al., 2011). P. brasilensis can proliferate within macrophages, but 
macrophage activation inhibits its growth (Brummer et al., 1988; Cano et al., 1994). Further, 

macrophages activated by interferon (IFN)- can kill P. brasiliensis (Cano et al., 1994; 
Gonzalez et al., 2000). In vitro stimulation of human monocytes and neutrophils with 
Paracoccidiodes yeast showed downregulation of toll-like receptor (TLR)2, TLR4, and dectin-1 
on the surface of these cells. In addition, yeast cells induced the production of pro-

inflammatory cytokines such as TNF- (Bonfim et al., 2009). Mice lacking TLR2 had a less 
severe pulmonary infection than wild-type (WT) mice and had decreased nitric oxide (NO) 
production. However, despite the differences in infection, both TLR2-/- mice and WT mice 
had similar rates of survival and similar pulmonary inflammatory responses (Loures et al., 
2009). Further, TLR2 deficiency skewed the adaptive response towards a T helper (Th)17 
phenotype and caused a decrease in T regulatory cells. Increased neutrophils and 
eosinophils migrate to the lungs of mice susceptible to P. brasiliensis, (Cano et al., 1995), and 
this influx affects the disease outcome and the adaptive response induced to infection. In 
susceptible individuals recovered from Paracoccidiodes, neutrophils are able to phagocytose 
the organism, but this leads to degeneration of the neutrophils. These data suggest that 
susceptible individuals have an inherent neutrophil deficiency (Dias et al., 2008). Further, 
neutrophils from patients with P. brasiliensis have a digestive defect against the fungus 
(Goihman-Yahr et al., 1980), and also have a killing defect against the fungus (Goihman-
Yahr et al., 1985; Goihman-Yahr et al., 1992).  

B. dermatiditis interaction with DCs causes efficient upregulation of antigen presentation and 

costimulatory molecules and induces production of IL-12 and TNF- (Wuthrich et al., 2006). 
DCs can activate CD8+ T cells in the absence of CD4+ T cells, and the yeast alone is a 
sufficient inflammatory stimulus that can directly induce maturation of DCs and can induce 

production of TNF-, IL-1, and IL-12 (Wuthrich et al., 2006). Monocyte-derived dendritic 
cells can associate with yeast in the lung and transport them to the draining lymph nodes, 
but fail to present antigen to CD4+ T cells, however dermal DCs are capable of antigen 
presentation (Ersland et al., 2010). During B. dermatiditis infection, alveolar macrophages are 
only modestly able to ingest and kill the yeast form of the organism (Bradsher et al., 1987). 
Murine macrophages are only able to kill less than 5% of yeast (Brummer and Stevens, 1987; 
Brummer et al., 1988), and had a 25-30% reduction in respiratory burst compared to the 
respiratory burst induced by zymosan. The Blastomyces adhesion 1 (BAD1) molecule on the 
Blastomyces yeast surface is responsible for binding to CD11b/CD18 and CD14 on the 
macrophage surface and subsequent entry (Klein et al., 1993; Newman et al., 1995). 
Neutrophils rapidly infiltrate to pulmonary tissues following infection, and are responsible 
for the formation of pyogranulomatous lesions. Conidia are rapidly phagocytosed by 
neutrophils, but killing of conidia is inefficient. Similar to macrophages, the neutrophil 
respiratory burst induced by conidia is only 70% of that induced by zymosan (Drutz and 
Frey, 1985). In addition, yeasts are even more difficult for the neutrophils to phagocytose & 
kill than conidia (Drutz and Frey, 1985).  

Pneumocystis interacts with DCs in vitro by MR, (Kobayashi et al., 2007) but the interaction 
does not lead to an increase in maturation markers such as MHC II, CD40, CD54, CD80, or 
CD86. Additionally, this interaction induces the production of IL-4 but not IL-12p40, IL-10, 

TNF-, or IL-6 (Kobayashi et al., 2007). However, Pneumocystis cell wall -glucans have the 
ability to induce costimulatory molecule upregulation on DCs, such as MHC II, CD80, 

CD86, and CD40. These DCs interacted with -glucans from Pneumocystis via dectin-1, and 
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co-stimulatory molecule expression and Th1-type cytokine secretion by ┚-glucan stimulated 
DCs was regulated by Fas-Fas ligand interaction (Carmona et al., 2006). In vivo 
administration of DCs pulsed with Pneumocystis induced specific T cell responses and 
release of IL-4 as well as specific IgG1, IgG2a, and IgG2b production (Kobayashi et al., 2007). 
Alveolar macrophages have been shown to directly kill both Pneumocystis trophozoites and 
cysts (Fleury et al., 1985; reviewed in Kelly and Shellito, 2010). Specifically, alternatively-
activated macrophages (aaMac) are important effector cells against Pneumocystis, and aaMac 
is enhanced by IL-33 (Nelson et al., 2011). In addition, Pneumocystis infection causes changes 
in gene expression of alveolar macrophages that included upregulation of genes involved in 
antigen presentation and antimicrobial peptides, but downregulation of genes involved in 
phagocytosis and uptake (Cheng et al., 2010). Pneumocystis major surface glycoprotein 
(MSG), which is a heavily glycosylated surface antigen, is recognized by MR on alveolar 
macrophages (Ezekowitz et al., 1991). Pneumocystis infection in HIV+ patients induces 
shedding of the MR, which results in reduced alveolar macrophage phagocytosis of the 
microbe (Koziel et al., 1998; Fraser et al., 2000). Neutrophils can also interact with 
Pneumocystis, but the presence of neutrophils is correlated with inflammation and increased 
severity of disease (reviewed in Kelly and Shellito, 2010). 

Inhaled A. fumigatus conidia are first encountered by alveolar macrophages and neutrophils 
(reviewed in Hasenberg et al., 2011). Following uptake of Aspergillus by phagocytes, the 
organism enters the phagosome and killing occurs following phagosomal fusion with 
lysosomes, (Ibrahim-Granet et al., 2003). In the absence or impairment of phagocytic cells, 

there are dramatic increases in invasive Aspergillus infections (Latge, 1999). -1,3 glucans of 
Aspergillus swollen conidia and hyphae are recognized by dectin-1 on the surface of alveolar 
macrophages, monocytes, and neutrophils (Taylor et al., 2002; Taylor et al., 2007). This 
recognition of Aspergillus leads to phagocytosis and the production of cytokines such as 

TNF-, IL-6, and IL-18 (Gersuk et al., 2006). In addition, Aspergillus can be recognized by 
TLRs, predominantly TLR2 and TLR4 (Wang et al., 2001; Mambula et al., 2002; Netea et al., 
2002; Meier et al., 2003; Netea et al., 2003; Bellocchio et al., 2004; Bochud et al., 2008), but 
phagocytosis and uptake are not due to recognition by TLR2, TLR4, TLR9, or MyD88 
(Bellocchio et al., 2004). More recent data also points to recognition of Aspergillus 
unmethylated DNA by TLR9 (Ramirez-Ortiz et al., 2008; Ramaprakash et al., 2009). Further, 
TLR9 is actively recruited to the Aspergillus phagosome and requires the N-terminal 
proteolytic cleavage domain for proper intracellular trafficking (Kasperkovitz et al., 2010).  

DCs bind and internalize A. fumigatus through DC-SIGN, and this binding triggers DC 
maturation (Serrano-Gomez et al., 2004). Mouse DCs can internalize conidia of A. fumigatus 

using MR and a C-type lectin receptor as well as FcR (Bozza et al., 2002). Upon exposure of 
DCs to A. fumigatus, DCs upregulate HLA-DR, CD80 and CD86 (Grazziutti et al., 2001; 
Bozza et al., 2002). Following A. fumigatus infection, DCs can release the chemokine CXCL8, 
which promotes migration of PMNs, can  upregulate CCL19, which is important in 
migration of CCR7+ naïve T cells and mature DCs to lymph nodes, and can release soluble 
factors that increase CD11b and CD18 on PMNs (Gafa et al., 2007). DC phagocytosis of A. 
fumigatus conidia and hyphae occur by different means and through different receptors; 
conidia are phagocytosed by coiling phagocytosis and hyphae are phagocytosed by zipper-
type phagocytosis (Bozza et al., 2002). A. fumigatus killing by DCs is dependent on 
phagolysosomal fusion and a reduction in pH (Ibrahim-Granet et al., 2003). Plasmacytoid 
DCs (pDCs) have the ability to spread over A. fumigatus hyphae and inhibit their growth 
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(Ramirez-Ortiz et al., 2011), and antifungal activity does not require direct cell contact. 
Following interaction of pDCs with Aspergillus, pDCs release pro-inflammatory cytokines, 

such as IFN- and TNF-, and these are produced via a TLR9-independent mechanism 
(Ramirez-Ortiz et al., 2011). During the early stages of Aspergillus infection, alternatively 
activated macrophages are recruited to the lung and are important in host defense (Bhatia et 
al., 2011). Studies examining the interaction of Aspergillus conidia with alveolar 
macrophages showed that infectivity and inhibition of macrophage killing by the fungus 
were due to the presence of a siderophore system that allows the fungus to acquire iron 
(Schrettl et al., 2010). In neutropenic mice, inflammatory DCs are recruited to the lungs 
during Aspergillus infection, and this recruitment is dependent on the absence of neutrophils 
(Park et al., 2010). This accumulation led to increased TNF-┙, CCL2, and CCL20, which 
resulted in further recruitment of inflammatory DCs. Neutrophils, when incubated with A. 
fumigatus hyphae, form neutrophil extracellular traps (NETs), which are antifungal, but 
mostly act in a fungistatic manner to limit spread of the hyphae (Bruns et al., 2010; 
Hasenberg et al., 2011).    

In vitro studies of DCs with C. neoformans have shown that DCs are involved in detection, 
binding, phagocytosis, processing, antigen presentation, T cell activation, and killing of the 
organism (Bauman et al., 2000; Bauman et al., 2003; Wozniak et al., 2006; Wozniak and 
Levitz, 2008). DCs isolated from infected lungs presented cryptococcal mannoprotein (MP) 
to MP-specific T cells and induced T cell activation ex vivo (Wozniak et al., 2006). Depletion 
of DCs abrogated the T cell response (Mansour et al., 2006). Furthermore, DC phagocytosis 
of mannoprotein (MP) in the presence of the appropriate adjuvant induces production of 
Th1-type cytokines (Dan et al., 2008). Additional studies revealed that the interaction of C. 
neoformans with DCs, but not macrophages, induced the production of IL-12 and IL-23, two 
cytokines associated with protection against cryptococcosis (Kleinschek et al., 2010). 
Phagocytosis of encapsulated C. neoformans by DCs requires opsonization with either anti-
capsular antibody or complement, and the combination of these has an additive effect (Kelly 
et al., 2005). Also, both murine and human DCs are able to kill C. neoformans, by both 
oxidative and non-oxidative mechanisms (Kelly et al., 2005). Recognition and uptake of 
acapsular C. neoformans strains by DCs requires MR and FcR II (Syme et al., 2002). TLR2 
and TLR4 are not important in uptake of C. neoformans or activation of DCs by the fungus 
(Nakamura et al., 2006). DCs stimulated with DNA from C. neoformans release IL-12p40 and 
express CD40, a costimulatory molecule associated with DC maturation, and thus was tied 
to recognition by TLR9 (Nakamura et al., 2008). Upon infection with C. neoformans, CCR2-
deficient mice, which are impaired in trafficking of monocyte-derived DCs, developed a 
non-protective Th2-type immune response and persistent infection, and had reduced DC 
recruitment, bronchovascular collagen deposition, and increased IL-4 production 
(Osterholzer et al., 2008). C. neoformans can also be phagocytosed by macrophages (Levitz et 
al., 1999; Del Poeta, 2004). Macrophage phenotypes are associated with differential immune 
responses against C. neoformans. Protection against infection is associated with the presence 
of classically-activated macrophages (caMac) (Zhang et al., 2009; Hardison et al., 2010a; 
Hardison et al., 2010b), while disease progression is associated with the presence of 
alternatively activated macrophages (aaMac) (Arora et al., 2005; Muller et al., 2007; Arora et 
al., 2011; Chen et al., 2007; Guerrero et al., 2010). Also, macrophages can serve as a site of 
replication of C. neoformans (Tucker and Casadevall, 2002). Intracellular replication rates 
within macrophages correlated to virulence for C. neoformans strains (Voelz et al., 2009). In 
addition to replication, yeasts can be expulsed from macrophages by a non-lytic mechanism 
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that leaves both C. neoformans and macrophages intact and capable of replication and 
growth (Alvarez and Casadevall, 2006; Ma et al., 2006; Alvarez and Casadevall, 2007; 
Johnston and May, 2010). C. neoformans can also be phagocytosed by activated neutrophils 
(Kozel et al., 1987). The capsule of C. neoformans induces neutrophils to release 

proinflammatory cytokines, such as IL-1, IL-6, IL-8 and TNF- (Retini et al., 1996). 
Neutrophils can kill C. neoformans by non-oxidative mechanisms, including neutrophil 
defensins and calprotectin (Mambula et al., 2000). Interestingly, induction of neutropenia in 
mouse models of infection reduces their susceptibility to infection (Mednick et al., 2003). 

Although innate immune responses against Rhizopus, the main causative agent of 
mucormycosis, have not yet been fully characterized, recent work has shown that Rhizopus 
can trigger a common innate sensing pathway in DCs that leads to the production of IL-23 
and drives Th17-type responses (Chamilos et al., 2010). This is due to interaction of dectin -1 

with -glucans on the surface of Rhizopus hyphae.  

3.2 NK cell activity 

Another innate immune response to pulmonary fungal pathogens is due to recognition and 
action by natural killer (NK) cells. NK cells were thought to act primarily against viruses 
and tumors, but more recent studies have shown that NK cells have a wide variety of 
functions against bacteria, fungi, and parasites (Newman and Riley, 2007).  

In H. capsulatum infection, there is little evidence of a protective role for NK cells. While beige 
mice (lacking functional NK cells) are more susceptible to H. capsulatum infection, T cells play a 
greater role in controlling infection (Patino et al., 1987). In studies evaluating both beige mice 
and mice depleted of NK cells, beige mice were still more susceptible to infection, while mice 
depleted of NK cells were no more susceptible to infection than WT mice, therefore indicating 
no major role for NK cells in protection (Suchyta et al., 1988). However, mice deficient in 
perforin, a major component of NK cell anti-microbial activity, had accelerated mortality and 
increased fungal burden (Zhou et al., 2001). Infection with Coccidioides during depletion of NK 
cells leads to increased susceptibility to infection (Petkus and Baum, 1987). Furthermore, NK 
cells have a direct cytotoxic effect on Coccidioides young spherule and endospore cells (Petkus 
and Baum, 1987). In Paracoccidioides, studies have shown increased NK cell activity in infected 
hamsters compared to uninfected controls. Impaired NK cell activity was associated with a 
decrease in cell-mediated immunity (CMI) and an increase in histopathologic lesions. 
However, after initial activation, NK cells alone were not able to control dissemination of 
Paracoccidiodes (Peracoli et al., 1995). In vitro NK cell activity correlated with growth inhibition 
of Paracoccidiodes yeast (Jimenez and Murphy, 1984). 

In neutropenic mice with A. fumigatus infection, NK cells are the major cell type responsible 

for the production of IFN- early in the infection. Additionally, depletion of NK cells 

reduces IFN- levels and caused increased pulmonary fungal load (Park et al., 2009). NK 
cells have direct anti-fungal activity against hyphae but not against resting conidia (Schmidt 
et al., 2011). Killing is due to production of mediators by NK cells, including perforin. 
However, A. fumigatus can also down-regulate some cytokines induced by the NK cells, 

including IFN- and GM-CSF (Schmidt et al., 2011). In addition, recruitment of NK cells to 
the lung during A. fumigatus infection by the chemokine MCP-1 is required for optimal 
clearance of the organism from the lungs (Morrison et al., 2003). During Pneumocystis 
infection in  SCID mice (lacking T and B cells), NK cells were responsible for production of 
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cytokines such as IFN-, TNF-, TNF-, IL-10, and IL-12 (Warschkau et al., 1998). Recent 
studies have shown that NK cells are recruited to the lung during Pneumocystis infection and 
are important in fungal clearance of murine PCP (M. Kelly and J. Shellito, personal 
communication). Further, combined depletion of NK and CD4+ T cells resulted in increased 
pulmonary fungal burden compared to individual depletion of each subset. In vitro, NK 
cells have direct microbicidal activity against Pneumocystis, and this anti-fungal activity is 
significantly enhanced in the presence of CD4+ T cells, suggesting that both cell types are 
necessary for a protective response against Pneumocystis infection (M. Kelly and J. Shellito, 
personal communication). Early studies showed that NK cells can directly kill C. neoformans 

(Murphy and McDaniel, 1982). Further, IFN- production by NK cells enhances elimination 
of the fungus in murine models (Kawakami et al., 2001a; Kawakami et al., 2001b; Kawakami 
et al., 2001c). Depletion of NK cells using anti-asialo GM antibody resulted in increased 
fungal burden in mice (Hidore et al., 1991a; Hidore et al., 1991b). Increased fungal burden 
was seen in beige mice compared to wild-type mice, and in mice depleted of NK1.1+ NK 
cells, fungal burden was also increased compared to controls (Lipscomb et al., 1987; 
Salkowski and Balish, 1991). Human NK cells kill C. neoformans (Levitz and Dupont, 1993), 
and this killing is enhanced in the presence of anti-cryptococcal antibodies (Miller et al., 
1990). Binding of NK cells is required for cryptococcal killing, and requires disulfide bonds 
and is dependent on magnesium (Nabavi and Murphy, 1985; Hidore and Murphy, 1989; 
Murphy et al., 1991). Killing of C. neoformans is due to perforin interaction with the organism 
(Ma et al., 2004; Marr et al., 2009). In summary, NK cells act as accessory cells in antifungal 
host defenses contributing to clearance of fungi by a variety of mechanisms.  

3.3 Gamma/delta T cell activity 

The role of gamma delta () T cells during the immune response to pulmonary fungal 
pathogens is diverse. During infection with Cryptococcus, mice genetically deficient or 

depleted in  T cells have reduced fungal burden compared to controls. Further, mice 

lacking T cells had increased levels of IFN- and decreased levels of TGF- compared to 

controls, therefore suggesting that T cells are detrimental to protective immunity during 
cryptococcal infection (Uezu et al., 2004). In Pneumocystis pneumonia, CD4+ T cells are 

necessary for protection against infection, but  cells are known to infiltrate into the lung 
during pneumonia (Kagi et al., 1993; Agostini et al., 1995; Steele et al., 2002). However, 

resolution of pulmonary Pneumocystis infection is augmented in  T cell–deficient mice, 
(Steele et al., 2002), suggesting that these cells are detrimental to clearance of the organism. 

Further, the absence of  T cells led to an increase in recruitment of CD8+ T cells and 

production of cytokines such as IFN-. Complete lack of all T cell subsets ( and ) during 
Pneumocystis infection led to lethal consequences (Hanano and Kaufmann, 1999). Thus, 

cells haveeither a limited role in antifungal protection or are detrimental to antifungal 
host defenses.  

3.4 Innate anti-fungal defenses by non-immune cells 

While innate immune cells and components of the innate immune system are the 

predominant innate immune defenses, it has also been shown that unconventional cells, 
such as epithelial cells can also play a role in anti-fungal innate host responses. Airway 

epithelial cells are capable of uptake and processing of antigens and initiation of Th-type 
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immune responses (Gereke et al., 2009). P. brasiliensis interacts with and can be internalized 
by bronchial epithelial cells (Mendes-Giannini et al., 1994, and this internalization is due to 

activation of a tyrosine kinase pathway (Monteiro da Silva et al., 2007; Hanna et al., 2000). In 
addition, uptake of P. brasiliensis causes both cytoskeletal rearrangements as well as 

apoptosis of the epithelial cells (Mendes-Giannini et al., 2004). C. neoformans can bind to 
pulmonary epithelial cells by a mechanism believed to be due to carbohydrate moieties that 

can be a ligand for the yeast (Merkel and Scofield, 1997). C. neoformans interaction with 
bronchial epithelial cells causes the production of IL-8, but epithelial cells are also 

susceptible to damage by the organism (Guillot et al., 2008a). In A. fumigatus infection, 
conidia can be taken up by tracheal epithelial cells, alveolar type II cells, and endothelial 

cells (Paris et al., 1997). Further, cytokines such as IL-6 and IL-8 are released by epithelial 
cells in vitro following stimulation with A. fumigatus proteases (Borger et al., 1999) or by A. 

fumigatus hyphal fragments (Zhang et al., 2005)  and nasal epithelium. And nasal epithelium 
can engulf A. fumigatus conidia (Botterel et al., 2008). Epithelial cells can also release 

antimicrobial peptides following stimulation with fungal organisms. Epithelial cells in vitro 
cultured with A. fumigatus conidia, swollen conidia, or hyphae produced large amounts of 

beta defensins (Alekseeva et al., 2009). Airway epithelial cells internalize A. fumigatus 

conidia, and a genome-wide analysis revealed differential gene expression in epithelial cells 

with conidia compared to cells without conidia. Genes that were upregulated with conidia 
included genes involved in repair and inflammation, such as matrix metalloproteinases and 

chemokines (Gomez et al., 2010). In Pneumocystis, several studies have shown that the 
organism interacts with pulmonary epithelial cells. The interaction of Pneumocystis with 

epithelial cells was shown to be one of the initial steps in infection (Lanken et al., 1980; 

Yoneda and Walzer, 1980; Long et al., 1986; Millard et al., 1990). The -glucan from the 

Pneumocystis cell wall can stimulate pulmonary epithelial cells to produce IL-8, and the 
organism can induce the production of MCP-1 and ICAM -1 (Yu and Limper, 1997; Evans et 

al., 2005; Wang et al., 2007; Carmona et al., 2010). Interaction of Pneumocystis and alveolar 

epithelial cells also leads to the production of the chemokine MIP-2 following NF-B 
signaling (Evans et al., 2005; Wang et al., 2005). These studies show that non-immune cells, 

such as epithelial cells, play a role in pulmonary anti-fungal immunity. 

4. T cell and antibody mediated immune responses to fungal infections 

4.1 Adaptive responses against pulmonary fungal pathogens 

When challenged with pathogenic fungi, the adaptive immune system is capable of 
mounting an effective response against most fungal species to eliminate fungal infections 
and maintain immunological memory that prevents their reoccurrence. However, fungi are 
ubiquitous in the host’s environment including the saprophytes and opportunists that 
survive on the host’s body surfaces and thus, the adaptive immune system is constantly 
challenged by fungal antigens. Excessive response to these antigens could lead to allergic 
responses or other types of immunopathological reactions. The balance between day-to-day 
fungal antigen exposure and the immune system is thought to lead to a homeostatic state 
defined as protective tolerance. Protective tolerance allows the host to keep possible fungal 
pathogens ”in check” while preserving integrity of the natural barriers, which are potential 
portals for fungal infections (Romani and Puccetti, 2008; de Luca et al., 2010a; Littman and 
Rudensky, 2010).  
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T cells are responsible for orchestration of adaptive immune responses and T cell derived 
signals produced in response to specific antigens lead to targeted expansion, recruitment, 
activation of leukocytes, and regulation of B cell antibody responses. T cells also serve as a 
pool of immunological memory. Additionally, T cells have been shown to directly act as the 
fungicidal effector cells and serve as regulators of inflammatory responses, contributing to 
the development and maintenance of the protective tolerance. These regulatory mechanisms 
are designed to limit the damage that the host immune system can inflict on host tissues 
during incorrect and/or excessive host responses. Thus, properly functioning T cells are 
responsible for building up protective immunity against fungal pathogens and play an 
essential role in maintaining normal homeostasis of the immune system in the context of 
normal presence of fungal antigens. 

4.2 CD4
+
 and CD8

+
 T cell mediated immunity 

The importance of T cells in antifungal protection is well documented. T-cell deficient 
individuals show diminished resistance to fungal infections including coccidiomycosis (Kappe 
et al., 1998) cryptococcosis (Kovacs et al., 1985; Chuck and Sande, 1989; Spitzer et al., 1993; 
Jarvis and Harrison, 2007), histoplamosis (Odio et al., 1999), pneumocystis pneumonia (Kelly 
and Shellito), Paracoccidioides (Bava et al., 1991; Brummer et al., 1993), as well as pulmonary 
aspergillosis (Mylonakis et al., 1998). Likewise, laboratory studies have shown a strong 
contribution and/or requirement of T cells for protection against most pathogenic fungi such 
as Coccidioides (Fierer et al., 2006), Cryptococcus (Lim and Murphy, 1980; Mody et al., 1990; 
Huffnagle et al., 1991; Huffnagle and Lipscomb, 1992; Mody et al., 1994), Pneumocystis 
(Harmsen and Stankiewicz, 1990), Histoplasma (Deepe et al., 1984), Paracoccidioides (Cano et al., 
2000) and Aspergillus (Cenci et al., 1997). These epidemiological and experimental studies have 
established that T cells are an important component of the antifungal host resistance.  

Both subsets of T lymphocytes, CD4+ and CD8+ cells, are involved in antifungal host 
defenses. CD4+ T cells classically represent the T helper cell population. The T helper 
function was defined by MHC II restricted antigen specific activation of B-cell clones needed 
for the generation of specific antibodies. The CD4+ cell function in cell-mediated immunity 
(CMI) likewise requires antigen presenting cells and MHC II restricted antigen presentation. 
Presentation of antigen to the reactive T cells by dendritic cells and/or macrophages results 
in cytokine production. Through generation of different cytokine spectra, CD4+ T cells 
orchestrate recruitment and activation of various leukocyte subsets. The cytokines produced 
by the effector T cells are essential for macrophage fungicidal function and granuloma 
formation, but also may support chronic inflammation and immunopathology (Arora et al., 
2005; Chen et al., 2008; Jain et al., 2009; Zhang et al., 2009). Thus, cytokine induction by 
differentially polarized T-cell lineages is the major determinant for fungicidal potential of 
distal effector cells. Although the effector CD4+ cell function relies predominantly on 
cytokine production, CD4+ T-cells are capable of fungal killing via direct cell contact. At 
least in some biological circumstances, the direct fungicidal effect of CD4+ T cells relies on 
granulysin as the fungicidal mediator (Zheng et al., 2007; Zheng et al., 2008).  

In contrast with CD4+ T cells, CD8+ T cells are classically viewed as cytotoxic lymphocytes. 

These cells respond to antigen presentation in the context of MHC I, to enable their cytotoxic 

machinery. Such cytotoxic responses are particularly crucial in responses to viral infection 

and tumor cells, leading to elimination of the virally infected or tumor-transformed cells by 
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cytotoxic lymphocytes. CD8+ cells also play an important role in host defenses to bacterial, 

parasitic and fungal infections (Oykhman and Mody, 2010). Numerous studies showed that 

CD8+ T cells significantly contribute to protection against Cryptococcus, Pneumocystis, 

Histoplasma and Blastomyces, even in the absence of CD4+ T cells. Depending on the type and 

virulence of the fungal pathogen, CD8+ cells could afford either partial or a complete 

protection against the major fungal pathogens in experimental models. In this context, CD8+ 

T cells could induce all the protective effector functions of CD4+ T cells including production 

of protective cytokines. Another important aspect of CD8+ T cell effector function is the 

direct fungicidal effect of CD8+ T cells. Such direct fungicidal activity of CD8+ T cells have 

been demonstrated for C. neoformans (Ma et al., 2002). The killing of C. neoformans requires 

direct cell contact; it is enhanced by IL-15 and is thought to be mediated by granulysin. The 

direct cytotoxic effects are most pronounced when lymphocytes from fungus-immunized 

mice are used, however, a relatively high rate of binding of T cells to the fungus suggests 

that these cytotoxic mechanisms are innate rather than adaptive.  

4.3 Immune polarization in antifungal host defenses 

T helper cell subsets characterized by differential cytokine production by differentially 
programmed T-cell lineages were initially defined as Th1 and Th2 (Mosmann et al., 1986; 
Cherwinski et al., 1987). The types of immune responses driven by each of these cell lineages 
are described as Th1 and Th2 immune responses, generate different types of immune effector 
responses, and show different spectra of effectiveness against different classes of pathogens. 
For effective control/clearance of the majority of fungal pathogens, Th1 is the required type 
of the immune response. The Th1 response is promoted by IL-12, IFN-┛, and TNF-┙. The two 
latter cytokines are also the major products of Th1 helper T cells (Cherwinski et al., 1987). 
Th1-type T-cells are responsible for the delayed-type hypersensitivity (DTH) reactions and 
CMI associated with vigorous proinflammatory responses and granuloma formation (Cher 
and Mosmann, 1987) and induction of IgG2a class antibodies in B cells (Stevens et al., 1988). 
The Th2 immune response is characterized by T-cell production of IL-4, IL-5, IL-9, IL-10, and 
IL-13 (Cherwinski et al., 1987), IgG1 and IgE antibody production by B cells (Stevens et al., 
1988) and the presence of eosinophilic inflammation (Huffnagle et al., 1994; Cenci et al., 1999; 
Olszewski et al., 2001). The Th1 and Th2 responses counter-regulate each other 
predominantly via an IL-4/IFN-┛ negative feedback loop (Fernandez-Botran et al., 1988; 
Gajewski and Fitch, 1988); however other cytokines can be also involved in Th1/Th2 
regulation. The oversimplified Th1/Th2 paradigm has further evolved as new T cell lineages 
were defined. Th17 and regulatory type T cells (Treg), are T-cell lineages that are distinct 
from Th1 and Th2 cells that possess distinct functions in host defenses. Th17 cells are 
generated following the priming with IL-6 and TGF-┚ and sustained by the presence of IL-23. 
Th17 cells classically produce IL-17 and IL-22, however, a subset of Th17 cells can produce 
IFN-┛. Regulatory T-cells are thought to be responsible for tolerance that prevents auto-
immune diseases and to contribute to resolution of inflammatory responses. These effects of 
Tregs are thought to be mediated by anti-inflammatory cytokines IL-10 and TGF-┚, which are 
signature cytokines for Treg cells. New Th-cell lineages continue to be described including 
Th22 (Eyerich et al., 2009; Fujita et al., 2009) and Th9 (Soroosh and Doherty, 2009). Just like 
CD4+ effector T-cells, CD8+ T cells can also display a polarization pattern and thus can be an 
important source of the polarizing cytokines. Thus, both CD4+ and CD8+ T cells contribute to 
the cytokine balance during the immune response (Huffnagle et al., 1994).  
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4.4 Th1/2/17/22 cytokine responses 

The protective role of Th1 along with the requirement of type 1 cytokines for fungal 
clearance have been demonstrated in models of cryptococcosis (Huffnagle et al., 1994; 
Kawakami et al., 1997; Blackstock et al., 1999; Abe et al., 2000; Traynor et al., 2000; Olszewski 
et al., 2001; Herring et al., 2002; Arora et al., 2005; Hernandez et al., 2005; Lindell et al., 2006; 
Wormley et al., 2007; Chen et al., 2008; Guillot et al., 2008b; Jain et al., 2009; Wozniak et al., 
2009; Zhang et al., 2009), Coccidioides (Silva and Benitez, 2005), Paracocidioides (Cano et al., 
1998), Histoplama (Zhou et al., 1995; Deepe and Gibbons, 2006) and Blastomyces (Brummer et 
al., 2006) infections. Th1 skewing is beneficial for clearance of Aspergillus (Cenci et al., 1997), 
although clearance of the filamentous fungi is mainly a domain of the innate immune 
system. The Th1 cytokine environment promotes clearance of fungi by supporting the 
classical activation of macrophages (Mantovani et al., 2001). Pathogenic fungi possess 
mechanisms that interfere with their recognition by macrophages. These fungi can survive 
within macrophage unless additional “external” stimulation occurs to activate fungicidal 
mechanisms. Such stimulation can be provided by Th1-type cytokines, especially IFN-┛ 
(Arora et al., 2005; Hardison et al.). In the context of a Th1 immune response, macrophages 
become classically activated and abundantly generate fungicidal molecules such as nitric 
oxide produced by nitric oxide synthase, an enzyme that utilizes L-arginine. Importance of 
classical macrophage activation and production of nitric oxide for fungal clearance has been 
demonstrated for Blastomyces (Brummer et al., 2005; Kethineni et al., 2006), Cryptococcus 
(Granger et al., 1990; Alspaugh and Granger, 1991; Rivera et al., 2002; Arora et al., 2005; 
Zhang et al.; Hardison et al.), Histoplasma (Zhou et al., 1995; Allendoerfer and Deepe, 1998; 
Allen and Deepe, 2006) and Paracocidiodes (Moreira et al.; Pinzan et al.) infections. The 
deficiencies in cytokines that support classical activation of macrophages GM-CSF, IFN-┛, 
TNF-┙, IL-12 are generally associated with the development of progressive fungal infection 
(Romani et al., 1994; Kawakami et al., 1999; Rayhane et al., 1999; Herring et al., 2005; Deepe 
and Gibbons, 2006) consistent with the general conclusion that Th1-type immune responses 
and type 1 cytokines are most optimal for resistance against fungal infections.  

Unlike Th1-type responses, the Th2 response is non-protective and frequently results in 
pathological responses to fungal challenges. For most fungal species, Th2 responses and 
type 2 cytokines decrease clearance of fungus. This is attributed to: 1) a suppression of 
protective Th1 responses due to a mutual counterregulatory feedback loop (Cenci et al., 
1999) and 2) a generation of alternatively activated macrophages that can harbor fungal 
organisms (Arora et al., 2005; Jain et al., 2009; Osterholzer et al., 2009a; Zhang et al., 2009). 
Th2 cytokines such as IL-4, IL-13 are the major trigger of alternative activation of 
macrophages (Arora et al., 2005; Jain et al., 2009; Zhang et al., 2009). These alternatively 
activated macrophages do not express nitric oxide synthase but induce arginase which 
metabolizes L-arginine without yielding fungicidal nitric oxide. In the Th2 biased 
experimental models of fungal infections, intracellular survival of fungus within 
macrophages parallels high induction of alternatively activated macrophage markers (Arora 
et al., 2005; Zhang et al., 2009; Hardison et al.).  

Increased production of Th2-type cytokines has been associated with increased 

susceptibility to Cryptococcus (Arora et al., 2005; Zhang et al., 2009; Hardison et al.) and 

Paracoccidioides (Ruas et al., 2009) infections and to invasive pulmonary aspergillosis (Cenci 

et al., 1997; Cenci et al., 1999). Fungus-triggered Th2-type responses in the respiratory 
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system may also lead to allergic diseases such rhinitis/sinusitis, asthma, allergic 

bronchopulmonary mycosis. Th2 type responses are highly detrimental to the respiratory 

system by promoting mucus hypersecretion/goblet cell metaplasia, eosinophilic 

inflammation, and peribronchial fibrosis all of which contribute to impaired airway 

function. Cytokines IL-4, IL-5 and IL-13 are the major triggers of these pathologies as 

increased expression of these cytokines can be reproduced along with the allergic symptoms 

in the lungs challenged with fungi or their antigenic components (Blease et al., 2000; Arora 

et al., 2005; Jain et al., 2009; Zhang et al., 2009). Some of the fungal antigens can directly 

promote Th2 skewing. The secreted protein fraction from Aspergillus fumigatus promotes 

Th2 bias of the immune response (Bozza et al., 2009). Th2 pathologies are also found in 

mouse models of C. neoformans infections (Abe et al., 2000; Jain et al., 2009; Osterholzer et al., 

2009b) (Figure 1). Expression of enzymes phospholipase B and urease by C. neoformans 

promote Th2 bias in the infected mice (Noverr et al., 2003; Osterholzer et al., 2009b). While 

Th2-biased responses are clearly undesirable in most types of fungal infections the exception 

is Pneumocystis infection, in which the Th2 response can contribute to fungal clearance 

(Shellito et al., 2000; McKinley et al., 2006; Hu et al., 2009).  

 

Fig. 1. Classical versus alternative activation of macrophages during  pulmonary infection 

with C. neoformans. A) Classically activated macrophages upregulate fungicidal mechanisms 

that eliminate ingested fungi. Note that ingested intracellular organisms show signs of 

degradation. B) Alternatively activated macrophages (AAM) harbor the ingested fungi. 

Note the abundant capsule formation (evidence of fungal metabolic activity) and dividing 

organisms (evidence of intracellular growth) within AAM. Alternative activation of 

macrophages is associated with crystallization of chitinase family proteins YM1 and YM2, a 

hallmark of AAM-induced pathology. V-vacuoles with the remnants of destroyed 

organisms, YM- YM1/YM2 crystals, C.n. – intact cryptococcal organisms.  

The effects of Th17 responses and the IL-17 cytokine family in anti-fungal host responses 

may be protective or non-protective depending on fungal species and sites of infection 

(Figure 2). Thus, Th17 responses may be beneficial for some types of fungal infections or  
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Fig. 2. Th polarization in antifungal host defenses. The outcome of Th1, Th2, Th17, and Treg 
polarization results from balance between Th lineages which can mutually regulate each 
other via cytokine feedback loops. Resultant outcome can either promote clearance of the 
fungal infection or result in persistent infection and limited or severe pathology. Th1 
response promotes control of most fungal infections; Th2 leads to severe pathology and 
fungal persistence; Th17 may support clearance or persistence of different fungal infections, 
but may promote chronic neutrophilic inflammation. Treg may limit pathology by 
promoting resolution of the inflammatory response, but may increase the risk of persistence. 
Correct balance between Th1 and Treg is thought to support protective tolerance. 

exhibit detrimental effects. In the H. capsulatum infection model, IL-17 neutralization 

increases pulmonary fungal burden in connection with increased Treg numbers, suggesting 

that Th17 is beneficial for clearance of Histoplasma (Kroetz and Deepe, 2010). Th17 responses 

also contribute to anticryptococcal protection and the development of the protective 

inflammatory response in C. neoformans infected lungs (Zhang et al., 2009; Hardison et al., 

2010b; Wozniak et al., 2011a).  

The IL-23/IL-17 axis contributes to clearance of Pneumocystis (Rudner et al., 2007). However, 
in IFN-┛ deficient mice infected with Pneumocystis the development of strong Th17 response 
is detrimental, suggesting that a balance between IFN-┛ and IL-17 is needed for optimal 
clearance of Pneumocystis (Hu et al., 2009). At other mucosal sites, the effects of Th17 are 
variable. Th17 cells and IL-17 receptor signaling are required for mucosal host defenses in 
oral candidiasis (Conti et al., 2009); whereas Th17 impairs antifungal resistance and 
promotes inflammation in gastric infection model (Zelante et al., 2007). Th17 responses 
impair antifungal resistance and promotes inflammatory damage in the lungs of mice 
infected with Aspergillus (Zelante et al., 2007; Bozza et al., 2009; D'Angelo et al., 2009). 
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Overall, the Th17 response may have beneficial effects for clearance of some fungal 
pathogens; however it also has high potential to produce undesirable effects, including 
inflammatory damage. 

Excessive immune reaction and uncontrolled inflammation can result in serious damage of 

the inflicted organs and tissues. Anti-inflammatory or regulatory cytokines such as IL-10 

and TGF-┚ are an important part of the balance which prevents over exuberant 

inflammation during acute responses. These cytokines are also thought to be important 

components of resolution and tissue repair that occurs after elimination of the pathogen. 

Regulatory T cells are important sources of these cytokines and their role in inflammatory 

diseases and in the maintenance of healthy tissue homeostasis becomes increasingly 

appreciated (Romani and Puccetti, 2008; De Luca et al., 2010b; Littman and Rudensky, 2010). 

The importance of balance between pro-inflammatory processes and Treg cell regulation has 

recently been demonstrated in models of Pneumocystis (McKinley et al., 2006) and 

Histoplasma infections (Kroetz and Deepe). The excessive/damaging inflammatory reaction 

can be exemplified by immune reconstitution inflammatory syndrome (IRIS). IRIS is 

characterized by uncontrolled inflammatory responses with high induction of IFN-┛, TNF-┙ 

and other pro-inflammatory cytokines (Mori and Levin, 2009). Overproduction of these 

cytokines, rather than having protective effects, contributes to tissue injury that leads to 

worsening of the patient condition and high mortality (Mori and Levin, 2009). Interestingly, 

occurrence of IRIS in HIV patients who undergo antiretroviral therapy is particularly high in 

patients with Cryptococcus and Pneumocystis infections (Singh et al., 2005; Singh and Perfect, 

2007; Murdoch et al., 2008). The mechanism of inadequate inflammatory response in IRIS is 

not understood, however it has been proposed that the regulatory mechanisms that control 

the inflammation, including Tregs are not sufficiently mobilized to put a break on this 

inflammatory response (McKinley et al., 2006; Shankar et al., 2008). In fact, patients with 

IRIS showed reduced suppressor function and diminished secretion of anti-inflammatory 

IL-10 by Tregs in one of the studies (Seddiki et al., 2009). Tregs are critical for maintaining 

the proper homeostasis in the GI track, and such mechanisms of protective tolerance are 

likely to be critical in the respiratory tract which is constantly exposed to inhaled fungal 

antigens. Insufficiency of the regulatory mechanisms most likely contributes to the 

development of allergic diseases. Thus, Tregs cells are important for maintaining balance 

between appropriate clearance rate and the inflammatory tissue damage. Such balance can 

be disturbed and the excessive Treg function may promote fungal persistence. A 

detrimental role of IL-10 has been demonstrated in cryptococcal infection models 

(Blackstock et al., 1999; Arora et al., 2005). Future studies will be needed to evaluate the 

possible role of Tregs in fungal infections, especially in the patients who develop mycoses 

without apparent immunodeficiency.  

The polarization of T cells to Th1, Th2, Th17 and Treg lineages is important for the 
development of protective immunity, protective tolerance, chronic/allergic syndromes, or 
overwhelming allergic reactions. The proper balance maintained by the mutual regulation 
between these arms of the immune system is necessary to optimize clearance and minimize 
inflammatory damage to the infected tissues in the context of fungal infection. Our present 
understanding of these responses evolved from an oversimplified polarized Th1/Th2 
paradigm to a broader understanding of mutual regulation ongoing during the immune 
process. Recent studies show that the Th1, Th2, Th17 responses co-exist in a fungus infected 
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lungs and the balance of cytokine production alters during different time points in a chronic 
fungal infection (Arora et al., 2011). Modulation of these responses can be achieved 
experimentally and therapeutically by use of cytokines and vaccination with different 
fractions of fungal antigens resulting in the induction of the proper and protective Th-cell 
polarization. 

4.5 Vaccine-induced therapies targeting cellular mediated immunity 

Currently, there are no standardized vaccines available for the prevention of fungal diseases 

in humans (as discussed earlier). A preponderance of evidence points to the development of 

cell-mediated immune responses, principally by Th1–type CD4+ T cells, as the predominant 

host defense mechanism against primary and opportunistic pulmonary fungal pathogens 

(Cutler et al., 2007). Further, ablation or neutralization of several Th1-type cytokines renders 

mice more susceptible to experimental infection with a number of fungal pathogens. 

Consequently, there has been great interest in identifying antigens that elicit protective CMI 

against fungal infections; some of which will be discussed herein.  

Vaccination with native or recombinant Hsp60 from H. capsulatum or a domain within 

Hsp60 conferred protection in mice given a sub-lethal challenge with yeast cells and 

prolonged survival in mice given a lethal challenge (Gomez et al., 1995; Deepe and Gibbons, 

2002). Protection was CD4+ T cell dependent and associated with the induction of IFN-┛, IL-

12 and, surprisingly, the Th2-type cytokine IL-10 (Deepe and Gibbons, 2002; Scheckelhoff 

and Deepe, 2005). A similar vaccination strategy in mice using Hsp70 did not induce robust 

IL-12 or IFN-┛ responses and protection against subsequent challenge with live yeast. 

Neutralization of IL-12 or IFN-┛ abolished the protective efficacy of the Hsp60 vaccine in 

mice further highlighting the importance of these Th1-type cytokines in the induction of 

protection against H. capsulatum.  

Similarly, vaccination of mice with recombinant Hsp60 derived from P. brasiliensis elicited 
protection against a lethal intranasal challenge with yeast (de Bastos Ascenco Soares et al., 
2008). The protective effect of P. basiliensis Hsp60 was abrogated following the depletion of 
CD4+ T cells or neutralization of IFN-┛; similar to that observed for Hsp60 from H. 
capsulatum (Scheckelhoff and Deepe, 2005; de Bastos Ascenco Soares et al., 2008). However, 
IL-10 was not produced following antigen stimulation of splenocytes obtained from P. 
basiliensis Hsp60 immunized mice. While the efficacy of vaccination with forms of Hsp60 
from H. capsulatum and P. brasiliensis are encouraging, immunization with recombinant 
Hsp60 derived from C. immitis resulted in predominantly Th2 cytokine responses and little 
protection against a subsequent intraperitoneal challenge (Li et al., 2001). Thus, the 
induction of Th1-type immune responses in the lungs appears critical for the development 
of protection following immunization with Hsp60. 

Evaluation of live attenuated, recombinant, and DNA vaccines of C. immitis in murine 
models have also highlighted the importance of Th1-type cytokine production, particularly 
IFN-┛, in protection against this microbe (reviewed in (Cole et al., 2004; Cox and Magee, 
2004; Xue et al., 2009)). Mice immunized with recombinant aspartyl protease (Pep1), alpha-
mannosidase (Amn1), or phospholipase B (Plb) individually or together as amultivalent 
vaccine experienced a significant reduction in fungal burden and prolonged survival against 
a lethal pulmonary challenge with C. posadasii arthroconidia compared to controls (Tarcha et 
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al., 2006). Approximately 85% of mice immunized with the multivalent recombinant vaccine 
survived to day 90 post-inoculation. Similarly, immunization of mice with two recombinant 
antigens, Coccidiodes-specific antigen (CSA) and the proline-rich cell wall protein Ag2/PRA, 
either as a mixture of two separately expressed proteins or as a single chimeric expression 
product was shown to protect mice from a lethal intranasal infection with C. posadasii 
(Shubitz et al., 2006). The protection observed with each vaccination strategy was associated 
with robust IFN-┛ responses in protected mice, again showing the importance of Th1-type 
cytokines during protective host responses. Further, these studies highlighted the utility of a 
multivalent vaccination strategy that potentially evokes protective responses towards a 
broader set of T-cell epitopes.  

The importance of CD4+ T cells and the generation of Th1-type responses towards eliciting 
protection against pulmonary fungal pathogens are also observed in vaccination models 
using a live C. neoformans strain engineered to express IFN-┛ (Wormley et al., 2007) 
(Wozniak et al., 2009) (Young et al., 2009), a live attenuated strain of B. dermatitidis 
(Wuthrich et al., 2000), and recombinant A. fumigatus protein Asp f3 (Diaz-Arevalo et al., 
2011). Immunization with recombinant Asp f3 of A. fumigatus protected cortisone acetate 
immune suppressed mice from an experimental pulmonary infection with A. fumigatus 
conidia (Diaz-Arevalo et al., 2011). The protection was dependent on CD4+ T cells as their 
depletion reduced the survival of vaccinated mice and adoptive transfer of Aspf3 primed 
CD4+ T cells into non-vaccinated mice enhanced their survival against experimentally 
induced pulmonary aspergillosis. Generation of sterilizing immunity in mice following 
pulmonary immunization with a C. neoformans strain engineered to express murine IFN-┛, 
designated H99┛, was shown to require the induction of Th1-type cell-mediated immune 
responses (Wozniak et al., 2009). Interestingly, B-cell deficient mice immunized with H99┛ 
were protected from a subsequent lethal pulmonary challenge with WT C. neoformans 
(Wozniak et al., 2009; Young et al., 2009; Wozniak et al., 2011b). Also, vaccination of mice 
with an attenuated strain of B. dermatitidis containing a targeted deletion in the BAD1 locus 
resulted in prolonged survival that was chiefly mediated by IFN-┛ and TNF-┙ production 
by CD4+ T cells (Wuthrich et al., 2000; Wuthrich et al., 2002). Although these studies show 
that Th1-type CD4+ T cell responses are required for optimal host responses against these 
pulmonary pathogens, studies in H. capsulatum, B. dermititidis, and C. neoformans highlight 
the inherent plasticity of the host response against pulmonary fungal pathogens. That is that 
some elements of the immune response can compensate for the loss of other components.  

Vaccine-induced immunity against B. dermatitidis was shown be mediated by CD4+ ┙/┚ T 
cell production of TNF-┙ and IFN-┛ (Wuthrich et al., 2002). Moreover, the initiation, but not 
maintenance, of protective memory responses to B dermatitidis required IL-12 production 
(Wuthrich et al., 2005). However, vaccine-induced immunity could be elicited and expressed 
in IFN-┛ and TNF-┙ deficient mice. The reciprocal cytokine or the presence of GM-CSF was 
shown to compensate for the loss of  IFN-┛ and TNF-┙ showing some plasticity in the 
vaccine-induced host response to Blastomyces (Wuthrich et al., 2002). Furthermore, a role for 
Th17 cells in vaccine-induced protection against multiple pulmonary fungal pathogens has 
been shown (Wuthrich et al., 2011). Specifically, protection afforded by vaccination against 
C. posadassi, H. capsulatum, and B. dermatitidis was observed to be dependent on IL-17. In 
fact, IL-17 was shown to be indispensable since vaccinated IL-17A or IL-17RA deficient mice 
showed impaired anti-fungal resistance despite having normal Th1-type cytokine 
expression. In contrast, IL-17A was shown to contribute to but ultimately be dispensable for 
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protection against experimental pulmonary cryptococcosis in C. neoformans strain H99┛ 
vaccinated mice (Hardison et al., 2010b; Wozniak et al., 2011a). Still, it appears imperative 
that vaccines strategies to prevent pulmonary mycoses be evaluated for their capacity to 
induce Th1 and Th17-type cytokine responses. 

The induction of T cell-mediated immune responses is critical for optimal protection against 
pulmonary fungal pathogens (Cutler et al., 2007). Consequently, it may seem 
counterintuitive to suggest that vaccines designed to prevent fungal infections in patients 
with T cell deficiencies is possible. Nonetheless, vaccination studies using experimental 
models of H. capsulatum (Deepe and Gibbons, 2002), P. brasiliensis (de Bastos Ascenco Soares 
et al., 2008), H. capsulatum (Wuthrich et al., 2003), B. dermatitidis (Wuthrich et al., 2002; 
Wuthrich et al., 2003), C. immitis (Fierer et al., 2006), and C. neoformans (Wozniak et al., 2011b) 
have indicated that vaccine-induced protective immune responses can be elicited in immune 
deficient hosts. Cumulatively, the studies show that the presence of CD4+ or CD8+ T cells is 
essential for the induction (the period following vaccination) and expression (immune 
response following challenge) phases of the protective immune response. Protection is not 
induced in mice that are T cell deficient or depleted of both CD4+ and CD8+ T cell 
populations. Further, protection is lost in vaccinated mice following deletion of both T cell 
subsets. Interestingly, 80% of mice vaccinated with C. neoformans strain H99┛ and 
subsequently depleted of both CD4+ and CD8+ T cells were protected from a lethal 
pulmonary challenge with WT C. neoformans (Wozniak et al., 2011b). These studies highlight 
dynamic compensatory mechanisms that mediate vaccine-induced protection during both 
the induction and expression phases of the anti-fungal immune response. Altogether, the 
results demonstrating the plasticity of the vaccine-induced immune response to pulmonary 
fungal pathogens are particularly exciting as they highlight the potential for inducing 
protection in immune competent and immune compromised hosts. 

4.6 Antibody-mediated immunity and therapeutics 

The contribution of antibody mediated immunity (AMI) towards protecting individuals 
against pulmonary fungal infections remains uncertain. Individuals with humoral deficiencies 
such as autosomal hyper-IgM syndrome and IgA deficiency do not exhibit an increased 
susceptibility to fungal infections (reviewed in Antachopoulos, 2007, 2010). In contrast, 
patients with X-linked hyper IgM syndrome and common-variable immunodeficiency which 
are often accompanied by defects in T CMI have a higher risk of developing pulmonary and 
invasive fungal infections like cryptococcosis and histoplasmosis. The efficacious role for 
antibodies during the host immune responses against fungi is like that observed against 
bacterial and viral pathogens. Antibodies produced in response to fungal infection serve as 
opsonins to promote phagocytosis, participate in antibody-dependent cellular cytotoxicity, 
augment Th1-type polarization, help to eliminate immunosuppressive polysaccharide antigen 
from serum and tissues, inhibit biofilm formation, have direct antifungal activity, and 
modulate the immune response to prevent host damage (reviewed in Alvarez and Casadevall, 
2007; reviewed in Zaragoza and Casadevall, 2004).  

Most studies showing the efficacy of AMI against pulmonary fungal pathogens has 
involved experimental models of PcP and cryptocococcosis. The polysaccharide capsule of 
Cryptococcus, its main virulence determinant, is predominantly comprised of the 
polysaccharides glucuronoxylomannan (GXM) and galactoxylomannan (GalXM) and to a 
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much lesser extent, <1%, mannoproteins (MP) (reviewed in Zaragoza et al., 2009). Conjugate 
vaccines consisting of GXM combined to either tetanus toxoid (TT) or Pseudomonas 
aeruginosa exoprotein A (rEPA) induce high antibody titers (Devi et al., 1991; Casadevall et 
al., 1992), enhanced antifungal activity of murine and human phagocytes (Mukherjee et al., 
1995c; Zhong and Pirofski, 1996, 1998) and conferred some protection against cryptococcosis 
in mice (Devi, 1996; Fleuridor et al., 1998; Nussbaum et al., 1999). Unfortunately, the 
profound suppressive effects on immune responses induced by cryptococcal 
polysaccharides and the highly variable immune responses observed in response to the 
intact GXM portion of the conjugate vaccine renders it an unlikely choice for future vaccine 
development (reviewed in Zaragoza et al., 2009; reviewed in Pirofski, 2001). A strategy 
using small peptide mimotopes (peptides which are able to induce antibodies that are 
capable of binding to the native antigen when administered as an immunogen) that mimic 
defined GXM epitopes was attempted to elicit protective antibody responses where using 
total GXM was unsuccessful. Zhang et al. described a peptide mimetic (P13) of GXM that 
was recognized by human anti-GXM antibodies (Zhang et al., 1997) and showed that 
vaccination with P13-protein conjugates in mice resulted in prolonged survival after a lethal 
C. neoformans challenge compared to controls (Fleuridor et al., 2001) or following 
establishment of a chronic infection (Datta et al., 2008).  

Casadevall et al. developed a murine monoclonal antibody (MAb), 18B7, to C. neoformans 
polysaccharide that underwent phase I clinical studies in HIV+ patients with cryptococcal 
antigenemia (Casadevall et al., 1998). A modest reduction in serum cryptococcal antigen 
titers was observed in patients receiving singular doses of 1 and 2 mg/kg up to 10 weeks 
post-treatment before returning to baseline (Casadevall et al., 1998). To date, no follow-up 
clinical studies have been published. A new approach using MAb 18B7 currently being 
investigated in mice involves conjugation of the MAb to the therapeutic radioisotopes 
188Rhenium or 213Bismuth (Dadachova et al., 2003; Bryan et al., 2010). Studies have shown 
that administration of radiolabeled MAb 18B7 to lethally infected mice results in prolonged 
survival, reduced organ fungal burden, and was a more effective therapy compared to mice 
treated with amphotericin B. Radioimmunotherapy can be applied using MAb derived 
against multiple pulmonary fungal pathogens and thus may evolve into an attractive option 
for the treatment of other pulmonary mycoses. Lastly, while most studies have examined 
passive administration with antibodies targeting C. neoformans polysaccharide, other 
cryptococcal targets for passive antibody therapy under experimental investigation include 
melanin (Rosas et al., 2001), ┚-glucan (Rachini et al., 2007), heat shock protein (HSP) 90 
(Nooney et al., 2005) and glucosylceramide (Rodrigues et al., 2007). 

Mice deficient in B cells, either due to a targeted disruption of the IgM constant region (µMT 
mice) or using depletion antibodies, are more susceptible to PcP infection (Harmsen and 
Stankiewicz, 1991; Marcotte et al., 1996) (Lund et al., 2003; Lund et al., 2006). These studies 
showed that B cells were able to provide protection against PcP not only by producing Ab 
but also by amplifying the CD4+ T cell-mediated immune response. Passive administration 
of an IgM mAb shown to be directed against a surface antigen present on rat-, rabbit-, ferret-
, and human-derived P. carinii induced partial protection against PcP in animal models 
(Gigliotti and Hughes, 1988). Subsequent studies showed that the passive administration of 
mAbs recognizing kexin-like molecule (KEX1) via the intranasal route prior to 
experimentally induced PcP resulted in a significant reduction in pulmonary fungal burden 
(~99%) (Gigliotti et al., 2002).  
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Contrasting studies have shown that B cell deficient µMT mice have lower pulmonary 
fungal burden following intranasal infection with A. fumigatus (Montagnoli et al., 2003) or B. 
dermatitidis (Wuthrich et al., 2000) and are not more susceptible to experimental pulmonary 
histoplasmosis infection (Allendorfer et al., 1999) compared to WT controls. Also, passive 
transfer of polyclonal serum or MAbs obtained from A. fumigatus, B. dermatitidis, or  
C. immttis vaccinated mice did not enhance protection against a subsequent intranasal 
challenge with these pathogens (Kong et al., 1965; Beaman et al., 1977; Frosco et al., 1994; 
Wuthrich et al., 2000; Beaman et al., 1979). The role of antibodies in the host defense against 
fungal infection remains controversial because of its complexity. The current consensus is 
that antifungal antibodies can mediate protective, nonprotective, or disease-enhancing 
effects on host defenses during infection (Mukherjee et al., 1995a; Mukherjee et al., 1995b; 
Yuan et al., 1998a). Thus, resistance to disease may depend upon the proportion of 
protective antifungal antibodies produced during infection. In support of this concept, non-
protective and protective MAbs to C. neoformans has been described (Mukherjee et al., 1995a; 
Maitta et al., 2004). Also, Nosanchuk et al. demonstrated that mice passively administered 
MAbs targeting a histone H2B-like protein on the surface of H. capsulatum before infection 
experienced a reduction in fungal burden and prolonged survival (Nosanchuk et al., 2003). 
These studies were somewhat surprising in light of previous studies showing no increased 
susceptibility to experimental histoplasmosis infection in B cell deficient mice (Allendorfer 
et al., 1999). Studies in C. neoformans has shown that the efficacy of MAbs appears to be 
dependent on several variables including host genetics (Rivera and Casadevall, 2005), Ab 
isotype (Yuan et al., 1995; Yuan et al., 1998b), T cell function (Yuan et al., 1997), and the 
presence of Th1- and Th2-related cytokines (Beenhouwer et al., 2001). AMI during the 
protective response to pulmonary fungal pathogens is broad and divergent, but it is clear 
that specific antibodies are efficacious for the host in the resolution of infection.  

Studies also support the potential of using antibodies that target antigens common among 
multiple fungi to mediate cross-protection. Passive immunization using anti ┚-glucan MAbs 
or vaccination with ┚-glucan (laminarin) conjugated with the genetically-inactivated 
diphtheria toxin CRM197 (Lam-CRM vaccine) has been shown to confer protection against 
C. neoformans, C. albicans and A. fumigatus (Torosantucci et al., 2005; Rachini et al., 2007). 
Since ┚-glucans are found in the cell wall of fungi, the efficacy of anti-┚-glucan antibodies 
can be very broad. Cenci et al. used a killer anti-idiotype MAb reacting to a yeast killer toxin 
to protect mice from a lethal A. fumigatus challenge during experimental bone marrow 
transplantation (Cenci and Romani and 2375). Killer toxin is also expressed by multiple 
fungal species. Mycograb (NeuTec Pharman plc.), a recombinant antibody targeting an 
epitope within the HSP90 of Candida albicans that is conserved with the corresponding 
protein in C. neoformans, has been shown to act in adjunct with amphotericin B against 
multiple Candida species and C. neoformans. Altogether, these studies highlight the 
possibility that antibodies targeting “universal’ antigens common to multiple fungal species 
such as ┚-glucans, killer toxins, or Hsps may extend protection to multiple disparate fungal 
pathogens. Casadevall and Pirofski has published an elegant commentary on the emergence 
of cross-protective targets for fungi (Casadevall and Pirofski, 2007). 

5. Conclusion 

The principal route of entry for several of the primary and opportunistic fungal pathogens is 

via inhalation of infectious propagules into the lungs. Consequently, exposure to these fungi 
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is unavoidable. Nevertheless, most encounters are asymptomatic due to the quick resolution 

of the fungi by resident effector cells within the lung. On those occasions that the fungal 

insult cannot be quickly eradicated, T cells, predominantly CD4+ T cells, preside over 

orchestrating the adaptive responses and provide help for antibody production. T cell 

responses are also influenced by cytokine production by innate effector cells. Nonetheless, T 

cells mediate various cellular responses at the sites of infection and are ultimately 

responsible for either resolution or pathological reactions associated with these infections.  

Furthermore, T cells are important players in homeostasis and protecting integrity of natural 

barriers. Recent advances in experimental animal models support the premise that anti-

fungal vaccines may be effective in immune compromised hosts. The efficacy of anti-fungal 

vaccines in immune compromised populations is undoubtedly due to the inherent plasticity 

of host immunity. Altogether, it is clear that immune responses to pulmonary fungal 

infections are as diverse as the fungi themselves but that significant ground has been made 

towards its understanding. 
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