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1. Introduction 

Since most of twenty years intensive investigations, in Physical Chemistry and applied 
Physics, have been directed to various basic processes for complexly structured material 
systems, with a strong accent on surface phenomena problems. Such systems, known as 
heterogeneous, consist typically of different bulk phases, separated by specific interfaces, 
which can be also realized as containing distinct but near by sub-phases. Additionally, the 
common line contours, of 2D sub-phases, are treated as materially autonomous (1D) phases 
as well. One of the main directions in said topics consider surface nucleation phenomena in 
gas-liquid systems. The interest here has been provoked mainly from the open questions for 
the mechanism of the surface nucleation – in particular in lipid systems. Said questions 
essentially concern basic topics of Physical Chemistry, related also to ecological applications. 
As a second class, note the problems on structure building of semiconductor films of air-
crystal media, via an actual technological interest: it primarily concerns the main factors 
governing the growth and roughness of semiconducting surface films. Another (third) class 
of related topics is shown by the recent studies on cell biology problems (e.g. [4]). This class 
includes also mathematical models for detecting of anomalies in the human organic systems 
– for instance, the blood circulatory system and that of the white liver oxygen transfer. 

The electrostatic properties of matter have been taken as the basic framework for 

investigations of surface phenomena problems. Especially, adequate expressions have been 

sought for the electric potential – as the key quantity, integrating the basic electrostatic 

parameters of medium. Our main goal here consists in finding such expressions, primarily 

concerning the interface potential of complex (3-2-1D) heterogeneous systems. Said aim 

yields the key question how to construct a proper mathematical model of the matter 

electrostatics, which introduces a correct problem for the electric potential. Secondly, it is 

necessary to do the main steps in the mathematical analysis of the relevant problem. Here 

we propose an answer of the above question, taking into account two required basic steps. 

The first one consists in introducing the object called heterogeneous media, when in reality 

we have given a material system of different bulk (3D) phase, for instance – gas and liquid, 

with a relatively thin transition layer (say emulsion). In our treatment an additional stage of 

heterogeneity is presumed: the bulk transition layer consists also of two near-by sub-phases 

(of differing matter). According to the Gibbs idealizing approach ([6]), we have to consider 
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said transition layer as a material 2D formation S  – the common surface boundary of the 

two bulk phases. Thus the first stage of introducing heterogeneous media results in the 

(Gibbs idealized) heterogeneous system { }B S B   , consisting in two bulk phases – B , 

B , and the 2D phase S  – as an interface. The above mentioned stage (of second order 

heterogeneity) should be noted as a first point of new elements in our results: we assume the 

interface in the form { }S S l S    , with two 2D sub-phases – S , S  (of generally 

differing 2D materials), and a line material component l  – the common boundary of S , 

S . Component l  is assumed homogeneous and introduced by applying again the Gibbs 

idealizing approach, taken now on the interface. Next, let us comment the second required 

basic step of modeling. Because the aim is to model electrostatics, we have to deal with the 

Maxwell electrostatic system, as a constituting-phenomena low, applied however for the 

totally heterogeneous medium { }B S l S B       . Note here the specific detail 

concerning the charge density  (which essentially enters in the Maxwell system): via an 

electrochemical principle, we should presume  depending on the electric potential u , i.e. 

it generally holds [ ]u  . Moreover, function [ ]u takes the form of the known Boltzmann 

distribution, for instance in case of electrolytes. Because the Gibbs idealization assumes a 

step transition across the interface (consequently again such transition, but of lower 

dimension, is assumed across the phase contour l ), the next appearing problem reads: how 

to formalize said step transitions, in order to use effectively the Maxwell system. A useful 

suggestion for the first transition stage (across the interface) can be found in the monograph 

of D. Bedeaux and J. Vlieger ([2]). According to Bedeaux – Vlieger, we introduce the relevant 

material characteristics across the interface by a (first level) decomposition scheme of 

singularities, using Heaviside step functions   regarding respectively the bulk phases B , 

and Dirac delta function s , supported on the interface. As a second new point of our 

modeling, we introduce analogous decomposition scheme on the surface S , using in 

particular delta function supported on the contour l . After a technical procedure of solving 

the Maxwell electrostatic system by singular solutions, it can be established the following 

final form of our electrostatic model for the class of heterogeneous 

media { }B S l S B       : 

 2 1 1
0 ( ) [ ]u u         (in B ) (1.1) 

 2 1
0[ ] [ ]S s S sJ u u u         (on S ) (1.2) 

 [ ] [ ]l lJ u u   (on l ) (1.3) 

Above ( , , )u u x y z  is the electric potential, which is sough as bounded continuous function, 

regular enough in the relevant 3D and 2D phases (domains) of the material system; 2  is the 

3D Laplace operator and 2
S  is a tangential to surface S  Laplace operator; SJ  is a jump type 

operator acting on the normal to S  derivative of potential u , and, by analogy – for operator 

lJ , concerning contour l ;    and s
  are the charge density terms, respectively for the bulk 

( B ) and surface ( S ) phases, and l  is an analogous quantity, for 1D phase l ; 

0 8.85 /pF m   is the known absolute dielectric permittivity,    and s
  are the (relative) 

dielectric permitivities, respectively for the matter of phases B  and S , with 1
0 01 /   , 
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1( ) 1 /    . Mathematically, relations (0.1) – (0.3) present a new type of transmission 

problem (cf. the Colton – Kress monograph, [3]). In the above generality of formulation, 

problem (0.1) – (0.3) remains however as open one. 

In this chapter we give the main steps of deriving and solve two sub-cases of the general 

problem (0.1) – (0.3), related to heterogeneous systems with flat interfaces, respectively of 

semiconductor and organic nature. A straight line contour l  enters in both the models as 1D 

phase of anomalies. Note that the model, with a defect line on the semiconductor interface, 

is closely related to real experimental data, found by scanning tunneling microscopy. On the 

other hand, in the case of organic interface (considered in our second model as the known 

lamina basale), the lamina folio is supposed cleft in two sub-phases by a (straight) line of 

functionally anomalous intercellular spaces (holes). In both the models bulk charge densities 

[ ]u   are replaced with their linear approximations, however charge quantities [ ]s u   and 

[ ]l u  enter nonlinearly in the cases, respectively of semiconductor and organic interfaces. 

By transforming relations (0.2), (0.3), we derive and solve the relevant integral equations for 

the surface potential Su . We obtain also effective formulas for certain approximations of Su  

(in the case of S  – a semiconductor folio), and – for the exact potential (in the case of organic 

S ). Recall here that the contemporary problems primarily focus in detecting the surface 

values of the electric potential. As a consequence of finding the surface potential, we express 

in addition, by the classical Dirichlet problem, the bulk potentials u  as well. Thus we get 

expressions for potential u , valid far from the interface, which ensure in particular 

important diagnostic analyses (made, for instance, by parametric identification inverse 

problems).  

In Sect. 2 we give phenomenology comments and a common derivation of the two 
considered models. The basic results on the surface potential are presented in Sect. 3. The 

question for determining of explicit approximations to ( , , )u x y z  is discussed in Sect. 4, in 

case of semiconductor interface.  

2. Elements of phenomenology and mathematical modeling 

Let us give firstly some phenomenology comment on said two classes of heterogeneous 

media. Beginning with the case of organic interface, we should note the following. The 

interest of tools for biomedical detections of anomalies in the human circulatory system, via 

the walls-structure of the blood vessels, is directly motivated from the quite specific ruling 

function of the wall-layers. To recall and clarify the main (simplified) viewpoints here (cf. 

e.g. [11]), we assume a stretched location of the wall, as the flat surface ( 0z  ) on Fig. 1, 

below. Said construction is introduced as an admissible version of the real situation: a 3D 

localization is made to a capillary (practically cylindrical) vessel in the human white liver 

and the vessel-wall is (functionally) identified with its middle layer (called lamina basale). 

In reality the wall is a 3D organic threefold layer, deep not less than 120-180 nm and the 

midmost (just the lamina basale) is of corpulence about 40-60 nm. The upper (external) and 

lower (internal) layers, built – as a short description – respectively of endothelian and 

adventitale cells, are neglected. They are considered with a secondary role (compared to 

lamina basale). As known, acting as a typical bio-membrane of polysaccharide-matter, with 
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a fine fibers structure, lamina basale is the main factor for the oxygen transfer to the blood. 

Via the Gibbs approach (and taking into account the ratio of the wall corpulence to the 

radius of the capillary vessel, which is 1 ), we consider lamina basale layer as infinitely 

thin; thus we get an interface film of organic matter in an air-blood (vacuum-blood) 

heterogeneous 3D media. On the lamina (2D) film it is uniformly distributed a set of points – 

presenting the holes (tunnels, in reality radial to the vessel axis and known as intercellular 

spaces), which provide the oxygen contact to the blood; they are assumed however of 

certain functional anomaly, extremely activated on a relatively narrow (cylindrical, in 

reality) strip, interpreted, following Gibbs, as the middle circumference of the strip, across to 

the vessel-axis. Thus a specific homogeneous 1D matter phase (of the extreme anomalies) 

has appeared. Stretching (locally) the curved anomaly-line (and the surrounding cylindrical 

surface, together), we get the above mentioned (flat-interfaced) construction. Now the 

organic lamina-film can be presented as the plain 0z   (regarding a Cartesian ( , , )x y z - 

coordinate system), where said 1D contour, of defective air permeability, has already 

shaped as a straight line. We shall take this line as the Oy  - axis. This manner the lamina-

film is cleft in two electrostatic equivalent 2D (sub-) phases by the anomaly contour and we 

have given a typical case of 3-2-1 D heterogeneous system, schematically shown on Fig. 1, 

below. The system consists in upper and lower 3D (bulk) phases, respectively of air and 

liquid, and a complex-structured organic interface (with a special role of a line phase). The 

bulk phases B , B  fill the subspaces 0z   ( B ), 0z   ( B ) and their common 2D 

boundary – the organic interface S  – is given (as already noted) by the equation 0z  ; S  

consists in the two neighbouring surface phases S ( 0, 0x z  ), S ( 0, 0x z  ), separated 

by the anomaly line l Oy , as an autonomous phase of 1D matter. To forecast certain 

influence of vessel-zones, relatively far from the phase contour l , surface phases S , S  are 

presumed with prescribed asymptotic values ( ,  
  ) of the electric potential.  

It is possible however a sharp variant of anomalies: an air volume can leave involved 
between the blood and the surface, shaping an internal (lower) air bulk phase. Such 
presence of two-side bulk air phases is due to the anomalous air transfer: the outgoing 
stage gets blocked, after a previous air invasion. We would have then a heterogeneous 
system with upper and lower air (vacuum) bulk phases, a two-phased lamina-interface (as 
a 2D film) and a separating the surface phases homogeneous 1D material (straight line) 
phase.  

Another class of heterogeneous media is that including a semiconductor interface. The 

model under consideration relates to electrostatics for the specific case of air-gas matter, 

with a semiconductor separating surface (interface), which includes moreover a defect 

straight line (considered below as the Oy - axis, see Fig. 2). In said case of systems the 

importance of the interface electrostatics is motivated, as already noted, from actual 

technological questions (e.g. [5], [7]).The structure of such a system can be explained as a 

space location of given electronic device. For a short description we will take into account 

the following. By a teen boundary wall of semiconductor-matter it is closed a volume of gas, 

and the external medium is of air. This boundary, generally curved, will be treated here as 

flat (observing a small part of it). Thus the system possesses two bulk phases – of internal 

(gas) and external (air) media, and a flat semiconducting interface, with a fine surface 
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roughness, as a straight line defect. The bulk phases are considered as materially equivalent 

(3D) sub-domains of vacuum. The separating boundary is of indium-phosphorus, InP(110), 

semiconductor: the real corpulence of the InP(110)-wall is neglected and the wall is 

identified with its external surface film. The defect line, playing the role of a homogeneous 

detachment, i.e. of an electrostatic autonomous material 1D phase, separates said interface 

in two surface (2D) phases, denoted as before by S ( 0, 0x z  ), S ( 0, 0x z  ). It is 

posed again a typical case of 3-2-1 D heterogeneity – by a material system, interpreted as 

vacuum-semiconductor-vacuum (Fig. 2). The InP(110) surface film is presumed as the plain 

0z   as well (see Fig. 2) and the Oy  - axis is oriented on the defect straight line. The 

vacuum bulk phases fill the upper and lower semi-spaces, 0z   and 0z  , respectively. 

Each 2D phase (on 0z  ) is characterized by an essentially dominating distribution of 

positively charged phosphorus vacancies, while, as a key anomaly, the line phase l  ( l Oy ) 

enters in the surface electrostatics symmetrically surrounded by an extremely narrow strip 

of width 2d  ( 0d  ). The whole this band is denuded of phosphorus vacancies ([5], [7]). The 

above construction is essentially supported by real experimentally found data. A credible 

visual result of [5] and [7] (see Fig. 2, [7]) has been found by the so-called scanning tunneling 

microscopy. The picture (Fig. 2, [7]) shows the surface structure, fixed after annealing of 

InP(110) samples at temperatures up to 480 K, followed by heat normalizing. The scanned 

image includes two near by surface domains (let us denote them by ,P P   - see the semi-

planes ,x d x d    on Fig. 2, below; clearly P S  ). These zones are materially 

equivalent and separated by a transition strip T . Its breadth ( 2d ) really is less than 10 nm 

([7]). The strip surrounds symmetrically a straight line l  (see Oy , Fig. 2). Each of ,P P   is 

filled by positively charged (+1e) phosphorus vacancies, with about 5.5 nm ([5]) mean 

distance between them. Note however that strip T  is free of vacancies, but remains 

generally charged with about +2e (per spacing of 0.6 nm, [7]) mean magnitude of charges on 

the axis of symmetry (the line l ). This way T  enters as an electrostatic autonomous surface 

component. On the other hand the ratio {[area]( T ) / [area]( P T P   )} is negligible to 

consider T  as an equipollent (say to ,P P  ) 2D surface component. Moreover, the two 

relations - that of T -wide (10 nm) to the above density unit (5.5 nm), and the other – of 

possible (averaged) electrostatic impact of T  to the influence of its middle axis l , allow 

some identifying of the strip T  with the axis l ; thus l  takes the role of an intrinsic 1D 

phase. Let us note that, via the Gibbs approach, the semi-zones ( ( 0), ( 0)T x T x   ) of T  

seem to complicate additionally the surface heterogeneity, imposing – as a (Gibbs) principle 

– new line phases: the contours { ; 0}dl x d z      and { ; 0}dl x d z    . These (new) 

phases however enter also negligibly in the surface electrostatics: across ,d dl l   the surface 

electric field stays continuous, under equal permitivity-values s . So-described picture (of a 

smooth, flat 2D film) represents a real surface layer with certain nanoscopic roughness, due 

to step defects. In reality l  is actually the edge of a step, deep about 4 nm ([7], Fig. 1), P  

and P  are the terraces (lower and upper, say) of the step, and T  is a space construction, 

divided by l  in two halves, T   (lower) and T   (upper), marking off the edge from the 

relevant terraces. 

The next stage of this section is to sketch the basic step of modeling. Via the introduced 
framework (see Sect. 1) the key tool for description of electrostatic phenomena in complex 
media relates to the Maxwell system (in case of dielectrics, e.g. [10], [12]): 
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Fig. 2. 

 a) . D  ; b) D 0 u    . (2.1) 

Here   is the nabla operator, D is the vector of the electric induction ([12]), called also (in 

Electrochemistry, e.g. [9]) electric displacement, . D is the formal scalar product of the 

vectors nabla and D, i.e. . D div D;   is the charge density;   is the relative dielectric 

permitivity for the relevant part of the medium (in particular b   , at 0z  , s  , at 

0, 0z x  ); u is the electric potential, ( )u grad u  , where ( )u  represents the electric 

field, propagated in the whole 3D material system. Equations (2.1) hold for the total (3D) 

system and, as known, potential u is a continuous function of ( , , )x y z , in spite of the various 

material phases; the heterogeneity of the system is indicated however mainly by the 
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quantities D and   (note that the permitivity   enters in these quantities). Next, from the 

singular decompositions, mentioned in Sect.1, applied below for quantities D and  , we get 

the following problem. Find the (admissibly regular) solutions (D, u) to (2.1), corresponding 

to the said singular decompositions.  

Both the considered cases of heterogeneous systems are however homogeneous on the y – 

direction, due to assumed homogeneity of the 1D phase l , and the electric potential 

( , , )u u x y z  will actually depend on ,x z , i.e. ( , )u u x z . Applying systematically a double 

decomposition scheme in reworking of the Maxwell system (see below), we shall establish 

the following final formulation to the sought mathematical models: 

 2 2 1( 0),bu u z x R    ; (2.2) 

 2| | ., ( , )u const x z R  ; (2.3) 

 1( , 0) ( , 0),u x u x x R    ; (2.4a) 

 2[ ] ( ) [ ]b z s xx s s su u k u u    
     , 0x  ; (2.4b) 

 ( ,0) , ( ,0)u u  
     ; (2.5) 

 ( 0,0) ( 0,0)u u   ; (2.6a) 

 ( 0,0) ( 0,0) [ ]s x s x lu u u        . (2.6b) 

In (2.2) 2 2 2
x z      is the Laplace operator; , ,x z xxu u u  are first or second order derivatives 

regarding the relevant variable; ( , 0)u x  , ( , 0)u x   are respectively the limits (supposed 

finite) 
0

lim ( , )
z

u x z


 (at 0z   or 0z  ), and, by analogy – for ( , 0)zu x  , ( , 0)zu x  ; 

0
( 0,0) lim ( ,0)

x
u u x


   and 

0
( 0,0) lim ( ,0)x x

x
u u x


  , respectively at 0, 0x x  , both – for 

( 0,0)u   and ( 0,0)xu  ; ( ,0) lim ( ,0)
x

u u x


  . (Above mR  is the real m – dimensional 

Euclidean space, 1,2,...m  .) As known, parameters bk , b  and ,s sk   are the main factors of 

the system-electrostatic nature; they are given step constants: ( 0)b b z    , ( 0)b b z    , 

,b b    – positive (and generally different); ( 0)b bk k z  , ( 0)b bk k z   are nonnegative 

constants in (2.2); ( 0)s sk k x  , ( 0)s sk k x   – in (2.4), with positive sk , sk ; by analogy, 

( 0)s s x    , ( 0)s s x     – in (2.4), (2.6), with 0s
  , 0s

   – constants. The material 

meaning of parameter sk  (by analogy from that of bk ) is expressed by the quantity 

1 1
s

s

k
k

  , known as the surface Debye length (e.g. [13], or the surface screening length (e.g. 

[7]). Parameters b , s  are respectively the bulk and surface dielectric permitivities, with 

( )b b   , ( )s s    - for the relevant bulk and surface phases. The asymptotic values of the 
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potential are prescribed by the parameter   (a given quantity):  
   (at 0, 0x x  ), 

where ,  
   are real, generally different constants; the parameter [ ]l l u   enters as 

0

l
l




  by [ ]l l u   – the electric charge density (supposed depending on potential u ) 

upon the line phase; 0 8.85 /pF m   is the mentioned absolute dielectric permitivity. In 

equation (2.4.b) [ ] [ ]( ,0)b z b zu u x     is the space-jump operator, 

[ ]( ,0) ( , 0) ( , 0)b z b z b zu x u x u x         and in the right hand side of (2.4) we have 

2
0[ ] ( ( ) [ ] )s s s su k u u    

   . In the case of organic interface we shall suppose [ ] 0s u  , 

while for semiconductors we shall use 0 2[ ] ( [ ])
2

s d s s su k sg q u
   

  . Here 

0 0 01
( )

2
d d

x
x

d d
       

 
 is the rescaled characteristic function of the unit interval, i.e. 

0 0( ) 1,| | 1; ( ) 0,| | 1x x x x     ;    
      is the asymptotic surface power; 

( )
| |

x
sg sg x

x
   is the sign function; 2 * 2 2 * 31 1

[ ] [ ( )] [ ( )]
2! 3!

s s s s sq u k u k u        , where 

*

2

 
 
 




 . The cubic nonlinear charge density (of the surface 0z  ) is preferred just on 

the strip | |x d  – by the rest term 0 [ ]d sq u , while a linear approximation (regarding 

potential u) is assumed adequate to reality out of the strip.  

Via the phenomenology-essence potential u will be searched for a bounded function (condition 

(2.3)), continuous in 3R , classically regular in the sets 0z   and 0 ( 0)x z  , with continuous 

gradients zu , xu , respectively at 0z  , 0z   (for zu ), and 0, 0x x  ( 0)z   – for xu . Now 

we can define the needed space of regular solutions to (2.2) – (2.6). 

Definition. A function ( , )u x z , with the above noted regularity, shall be called classical 

solution to problem (2.2) – (2.6) if satisfies the additional property 2( ,0)u x L   and 

relations (2.2) – (2.6). ( 2L  is the well known space of the squared-integrable functions.) 

From the vacuum assumption for the upper (external) air phase ( 0z  ) we suppose from 

now on: 

 1b
  , 0bk  . (2.7) 

The central results below relate to determination of the surface potential (possibly by an 

explicit approximation) – as the key first step in solving the full (2.2) – (2.6) – problem. 

Let us now sketch the main steps for derivation of the final mathematical models, starting 

from the Maxwell system (2.1). Via the presumed complex heterogeneity, we shall seek 

solutions (D, u) of system (2.1) by decompositions in two levels (bulk and surface), of the 

following type: 

 a) ( )b b s z            ; b) s s s s s l l            ; (2.8) 
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 D = ( )Db
( )z

 + ( )Db
( )z

 + Ds ( )z , (2.9) 

 Ds = ( )Ds s


 + ( )Ds s


 + Dl l . (2.10) 

In the above relations ( )z / ( )z  are respectively the Heaviside forward/backward 

functions (i.e. ( ) 1z  , at 0z  , ( ) 0z  , at 0z  , ( ) ( )z z    ) and ( )z  is the Dirac 

delta-function, supported at 0z  ; 1s
  , at 0z  , 0x   and 0s

  , at 0z  , 0x  , by 

analogy: 1s
  , at 0z  , 0x   and 0s

  , at 0z  , 0x  ; next, l  is delta-function, 

supported on the line : 0 ( 0)l x z  , and we shall also use the notation ( )x , for l . 

Relations (2.8.a), (2.8.b) and (2.9), (2.10) just illustrate, respectively for the charge density and 

the electric induction, the essential generalization, in two levels (see [13]), of the Bedeoux-

Vlieger ([2]) step formalism to the bulk-surface-bulk transitions. Remark: terms like ( )b z    

do not enter in the right hand side of (2.8.a) in the case of semiconductor interface because of 

the vacuum hypothesis ( 0b b    ). In (2.9) ( )Db  and ( )Db  are at least smooth (vector) 

functions of ( ,x z ), respectively at 0z   and 0z  , with finite but generally different limit 

values at 0z  ,   fixed x  and Ds is a vector function of x , assumed in the form of (2.10). 

Analogous presumptions hold to ( )Ds , ( )Ds  – in (2.10), as functions actually of x  (with 

finite and different limit values at 0x  ), and to (scalar) functions ( )s s x    (considered 

as at least continuous respectively at 0x   and 0x  ); l  and Dl enter in (2.8.b) and (2.10) 

respectively as constant scalar and vector. Substituting from (2.8) – (2.10) into electrostatic 

equations (2.1), we get (with 1b
  ): 

 . ( )Db  = 0  ( 0z  ), . ( )Db  = [ ]b u   ( 0z  ); (2.11a) 

 ( )Db  = 0 . ( 0)b u z     , ( )Db  = 0 . ( 0)b u z     ; (2.11b) 

 ( ,0) ( ,0) .z z
sD x D x   Ds = [ ]s u  ( 0, 0z x  ); (2.12.a) 

 Ds = 0 . ( 0, 0)s su z x     ; (2.12.b) 

    , ,x x
s s l

  D D . (2.13) 

Here we have denoted by s  the tangential (to 0z  ) component of the nabla operator  ; 

0
( ,0) lim ( , )z z

z
D x D x z


 , and, by analogy – for ( ,0)zD x , where zD  is the normal to 0z   

component of vector D, and the limits are supposed finite, x ;   ,x
s


D ,   ,x

s


D  are the 

relevant limits (also assumed finite), at 0x  , for the normal to l  component  lsD  of Ds. Let 

us note (calculating the results of said substituting) that the normal to 0z   component z
sD  of 

vector Ds is found to vanish ( 0z
sD  ), i.e. Ds presents a flat (planar) vector field (see e.g. [13] for 

details). Remark: the used derivations of the Heaviside and Dirac delta-functions, necessary to 

get system (2.11) – (2.13), are taken in the Schwartz distributions meaning (e.g. [8]). 

Now we will discuss the charge density terms [ ]b u  , [ ]s u , respectively in (2.11.a), (2.12.a), 

especially that of s . For the vacuum-semiconductor-vacuum systems we have to take 

[ ] 0b u    (from the vacuum hypothesis). For vacuum-lamina-liquid systems it is 
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established certain relation [ ]u  . Such type of dependence is well known for 

electrolytes by the Gouy-Chapmann theory, where [ ]u  is expressed by the so-called 

Boltzmann distribution (see e.g. [9]) for the bulk phases, and in the case of organic interface 

we can replace in (2.11.a) [ ]u  with its linear approximation 2
0 b bk u  . Via the real 

phenomena, the surface charges should also depend on the space variables by potential u, 

i.e. [ ]s s u  . A preliminary motivation to do that follows from the argument that the 

polysaharide matter of the interface admits to consider it as a lipid medium, where the 

potential-magnitude can be assumed relatively smaller than the basic ratio (RT0)/F, which 

yields that linear approximations become acceptable (F, R, T0 are – as follows – the so-called 

Faraday and gas constants, and the absolute temperature). The Boltzmann principle, applied 

for surfaces, suggests dependence [ ]s s u     to the surface phases; i.e. we can take 

again the relevant linear approximation 2
0 ( )s sk u     instead of [ ]s u  . In the case of 

semiconductors however a nonlinear dependence [ ]su u  could be derived from a 

parametric expression, known as Fermi-Dirac integral (e.g. [1]). Said dependence is of 

exponential type regarding the potential and relates well enough to the simpler one, 
2

0 exp( )k u    , used for the so-called screened Coulomb potential in the bulk phases (see 

[5], [7] and the literature therein). It is important that the same expression has been 

experimentally examined in [5], [7] (with ,s sk  instead respectively of ,k ), to the analysis 

for the surface density of phosphorus vacancies. From the above-noted viewpoint we shall 

chose a truncation of exponential dependence for the surface phases in the following form 

(taking into account the total electro-neutrality of the considered material system and the 

specific inclusion of component T ): 

 2 0 2 0
0 ( ) [ ]

2
s s s d s s d sk u k sg q u

      


      
 

. (2.14) 

To get the above expression for s  (in said framework) we start from the following type of 

exponential dependence for the surface phases:  2
0 exp[ ( )] 1s s sk u       . Under the 

behaviour [ ] ~s t t , at 0t  , such an expression takes into account the total electro-

neutrality of the considered material system, via the upper and lower vacuum phases (by 

analogy to the case of gas-lamina-liquid media). The difference u   is present in the 

exponential term from the assumption to have given asymptotic values   of the surface 

potential, different from zero (far from the specific edge l ). To forecast the more 

complicated impact of the vacancy-denuded zone T T  , with { 0; 0}T d x z       and 

{0 ; 0}T x d z     , we introduce the modified dependence: 

    0 2 0 2 *
0{(1 ) exp[ ( )] 1 exp[ ( )] 1 }s d s s d s sk u k u                 . (2.15) 

When rewrite the above as 0 0 0 1(1 )s d s d s        (for the sake of shortness), we shall deal 

with the linear approximation of density 0
s , instead. For undertaking that, the basic 

motivation issues from the observation on the interaction energy between phosphorus 

vacancies on the surface (see [7]) – this energy seems to be relatively small. (It has been 

estimated in [7] with a maximal value of 65 15  meV at a vacancy separation of 1.2  nm.) 

On the other hand we cut off the infinite exponential sum for 1
s  up to the cubic term, 
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assuming secondary the impact of the higher powers. Thus we shall presume in relation 

(2.12.a) the given one in (2.14), for the surface charge density of semiconductors. On the 

linear (1D) phase, the contour l Oy , we assume 0l l   , with l  – given constant, for the 

semiconductor case, while in the organic case we prefer a nonlinear Boltzmann type model 

[ ]l l u  , forecasting possible unknown complications, close to the line contour. 

The next main step of modeling consists in some reworking to system (2.11) – (2.13). By the 

right hand sides from (2.11.b) we firstly express ( )Db , ( )Db  in (2.11.a) and come to the 

Helmholtz–Laplace equations from (2.2). As noted, condition (2.3) corresponds to the 

physical nature of the potential (to be a space-bounded and continuous quantity). Going to 

the next relations, (2.4.a), (2.6.a), they show that potential stays continuous across the 

transition surfaces and lines. On the other hand condition (2.5) introduces the asymptotic 

value of the surface potential ( ,0)u x  – they are considered as experimentally known 

(gauged) data. Afterwards we replace Ds in (2.12.a) by the right hand side of (2.12.b) and use 

that 0( ,0) ( , 0)z
b zD x u x      , 0( ,0) ( , 0)z

b zD x u x       (with 1b
  , see (2.7)). In addition 

we rearrange the right hand side of (2.12.a) respectively by the nonlinear density (2.8) or the 

linear expression 2
0 ( )s sk u    . This way we get, from (2.12), the complicated jump 

condition (2.4.b). For the second jump-condition on the electric field (see (2.6.b)), it is enough 

to recall that 0l l    and   ,
0 ( 0,0)

x
s s xu    D . 

This completes the sketch of derivation to final form (2.2) – (2.6) of our mathematical 

models. 

3. The basic integral equation and finding of surface potentials 

We shall reduce in this section problem (2.2) – (2.6) to a corresponding (nonlinear) integral 

equation – as a background for finding of explicit type presentations to the surface electric 

potential. Recall firstly the supposed electrostatic equivalence of the surface phases, which 

yields that s s s     , s s sk k k   . 

For the needed technical reworks the x - Fourier transformation is systematically taken into 

account below – by well known conventional expressions (e.g. as in [8]). By the x -Fourier 

transformation to the relations in (2.2) we find ordinary differential equations (regarding z), 

which yield the following presentation (for a classical solution ( , )u u x z  to problem (2.2) – 

(2.6)): 

 ˆ ˆ( ) ( )exp( ), 0u z z z       ; 
2 2ˆ ˆ( ) ( )exp( ), 0bu z z z        . (3.1) 

It is denoted here by ˆ( , )u z  the (partial) Fourier transformation of ( , )u x z  - with respect 

to x . 

In (3.1) ( ) ( ,0)x u x   and ̂  is the Fourier image of  . The jump term in (2.4.b) can be then 

expressed in the next form: 

 ( , 0) ( , 0) [ ]z zu x u x L     ; ˆ ˆ[ ]( ) ( ) ( )L        , 
2 2( ) b bk       . (3.2) 
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(Above ˆ[ ]L   is the Fourier image of [ ]L   and b b   , b bk k .) Thus said jump term is 

presented as a linear operator : [ ]L L  , acting from 1
2( )L R  into the Sobolev space 

1 1( )H R  (we refer e.g. to [8], for the kH -spaces of Sobolev). It admits to separate the key part 

(2.4) – (2.6) from the full system (2.2) – (2.6) in an autonomous boundary transmission problem: 

 2[ ] ( ) [ ]s s s sL k       
    , 0x  ; (3.3a) 

 ( ) 
  , ( 0) ( 0)    ; (3.3b) 

 [ ( 0) ( 0)]s l         . (3.3c) 

We have denoted by   and  respectively the first and second derivative of ( )x , and by 

( )  , ( 0)  , ( 0)  , ( 0)  , ( 0)   – the relevant limits. Taking the substitution 

( ) ( )x x    , the problem (3.3) reduces into a simpler one for  . Let us express firstly 

the quantity [ ]L   by [ ]L ; using notations *

2

 
 
 




  and    
     , we get 

*[ ] [ ] . [1] . [ ]
2

L L L L sg
   




   . It is directly seen that 0[ ]( ) 2 ( )L sg x x , where 0( )x : 

0ˆ ( ) . ( )i sg     1i   , and [1] 0L  . Now, from (3.3), we get the next reduced problem 

for auxiliary function  : 

 2
0

1
( [ ] . )s s

s

k L     



       , 0x   ( [ ]s s    

  ); (3.4) 

 [ ( 0) ( 0)]s l         . (3.5) 

The posed  -problem ((3.4)-(3.5)) is considered on the space of the real functions  , which 

are continuous in ( , 0], [ 0, )    , tend to zero, at | |x   and belong to 1
2( )L R ; in 

addition they are assumed to have the classical regularity at 0x  , with finite values of the 

limits ( 0)   . To our next step, observe before that, given a solution   of (3.4) – from the 

said class, we actually have a suitably regular and bounded solution to the equation: 

 2 1
[ ], 0s s

s

w k w F x


      ( 0[ ] [ ] .s sF L    
    ). (3.6) 

Multiplying the Fourier image of [ ]sF   by factor 2 2 1( )sk   we find a single bounded 

solution of (3.6) (see below for some details). Denote this solution by 
1

[ ]s
s

U 


. Then from 

the general formula for the (bounded) solutions of (3.6), we can directly get a presentation in 

the form: 
1

( ) .exp( | |) [ ]s s
s

x c k x U 


    (at 0x  ), with a constant c . To clarify the 

structure of [ ]sU  , let us introduce the following auxiliary functions, related to the relevant 

components of operator [ ]sF  : 
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2 2

0

1 sin( )
( )

s

x
g x d

k

 
 



 
 ; (3.7) 

 
1

[ ]( ) [ ] * exp( | |)( )
2

L s
s

W x L k x
k

    ; (3.8) 

 
1

[ ]( ) [ ] * exp( | |)( )
2

s s s
s

R x k x
k

    
    . (3.9) 

Above *F   is the convolution of two (Schwartz) distributions, F  and   (see e.g. [8]), and 

[ ]( )LW x  is a bounded function. In addition [ ]( )sR x  is also a bounded function (because 
0( )( )dsg x  and 0( [ ])( )d sq x    are compactly supported, while ( )g x  is evidently bounded. 

Now, for [ ]sU  , it can be found: [ ] . [ ]s L sU W g R  
     and therefore function   (the 

solution of (3.4)) satisfies the equation: 

  1
.exp( |.|) [ ] . [ ]s L s

s

c k W g R   



      . (3.10) 

It can be easily seen that the Schwartz derivative of [ ]sU   is in 1
2( )L R  and that of 

exp( | |)sc k x  is in 1 1( )H R , belonging in addition to 2( 0)L x  , 2( 0)L x  . Consequently, 

differentiating in (3.10), we conclude that 1 1( )H R   and 2( 0)L x   . This yields the 

next distribution-relation: 1( ) ( ) ( )x x x        (where 1
1 2( )L R   and ( )x  is the 

Dirac-function). Then 1( [ ]) ( ) [ ]( ) [ ]( ) [ ]( )L L L LW x W x W x W x         . On the other 

hand – for the rest components of [ ]sU   – it is not difficult to get as follows: 

( ) [ ]( )Lg x W x  ; ( [ ]) ( 0) ( [ ]) ( 0)s sR R      . Thus we find, for derivative    (at 0x  ): 

  1

1
( ) ( )exp( | |) [ ]( ) ( [ ]) ( )s s L s

s

x ck sg x k x W x R x  


      . (3.11) 

However it also holds 1 1[ ]( 0) [ ]( 0)L LW W     and, substituting from (3.11) in the jump 

relation (3.5), we determine the free constant c , as sc c , with  

 
1

. ( )
2

l
s

s s

c sg x
k

 
 
 

   
 

. (3.12) 

In order to modify (3.10) into an integral equation regarding the surface potential  , we 

introduce also the next two functions: 

 0
2 20

1 cos( )
( )

( ) ( )
s

s s

x d
x

k

 
    




  ; *
2 20

1 sin( )
( )

( ) ( )
s

s s

x d
x

k

 
    


 

  . (3.13) 

Now, going back to (3.10), with sc c  (see (3.12)), via formulas (3.7) – (3.9) and relation 

    , we shall obtain the basic integral equation for surface potential  . As a 

preliminary step we apply the inverse operator of 1
L

s

I W


  ( I  – the identity) to equation 
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(3.10), using that 2 2 2 2 1( )[ ( ) ( )]s s s sk k         is the Fourier transform of the inverse 

operator. Reworking this way (3.10) we get the following expression, via the functions from 
(3.13): 

 0 0 0,1 *[ ] * [ ] . .s s l s s s s            
         . (3.14) 

Above 0,1 0,1( )s s x   is the (Schwartz) first order derivative of function 0
s  (playing a key 

role, together with *
s , for the behaviour of potential  ). Note that 0

s  is the (unique) 

solution of the linear canonical version of problem (3.4), (3.5) (with 0, 1l    ); this 

admits, differentiating as before (3.10) (at 0  , with 0
s  instead of  ) to use – for the 

analysis of 0,1
s  – the integral relation:  

 0,1 0,1 ( )1
( ) [ ]( ) exp( | |)

2
s L s s

s

sg x
x W x k x 


    
 

. (3.15) 

(In particular (3.15) yields the finite limits 0,1 1
( 0)

2
s s      and 0,1 1

( 0)
2

s s    .) 

Equation (3.14) is the sought basic integral equation related to problem (2.2) – (2.6). In the 
case of vacuum – liquid heterogeneous system, with organic interface, (3.14) takes the 

specialized form (with [ ] 0s   ): 

 0 0,1 *[ ] . .l s s s s                 . (3.16) 

We shall study the above equation for nonlinear functions 3[ ]l lt t  , with coefficient 

0l  . The main results for said class of charge densities are summarized in the following 

assertion. Below we shall use the quantity 0
,0 (0)s sp  , i.e. 

,0 2 20

1

( ) ( )
s

s s

d
p

k


    




  . 

3.1 Proposition 

For arbitrary non zero asymptotic mean value *  of the surface potential, arbitrary 

parameters 0, 0, 0, 0b b s sk k      , and coefficient 
l : 1 * 2

,0

4
| |

27
l sp  

 , there exists a 

unique continuous bounded potential ( )x , satisfying (3.16), such that * (0) 0   , 

determined by the formula 

 0 0,1 *
0( ) [ ] ( ) . ( ) . ( )l s s s sx t x x x                , 0x  ; (3.17) 

0t is either the positive (at * 0  ) or negative (at * 0  ) root of the equation 
3 *

,0 0s lp t t    . In addition, the relevant space potential ( , )u x z (with ( ,0) ( )u x x )is 

determined as the unique (classical) solution of problem (2.2) – (2.6), by the next formulas: 

 
2 2

1
( ) ( )

z
u x z x t dt

z t








  
 , 0z  , 1x R ; (3.18) 
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 0 2 2
12 2

1 ( 1)
( ) ( ) ( )b

z
u x z x t K z t dt

z t
 








   

 , 0z  , 1x R . (3.19) 

(Above 0
1 1( ) ( )K x xK x , where 1( )K x  is the McDonald function.) 

Proof. Suppose ( )x  is a real, continuous solution of (3.16) and let for instance 0x  (in 

(3.16)), using that 0,1 1
( 0)

2
s s      (see (3.15)). Because [ ] [ (0)]l l    , we get then relation 

0 3 *(0) (0) (0) 0s l       , i.e. (0)t   is (by necessity) a real solution of the algebraic 

equation 3 *
,0 0s lp t t    . Assumptions * 0  , 1 * 2

,0

4
| |

27
l sp  

  easily yields existence 

of a unique positive root 0 0t t  of said equation (when * 0  ), and the same for the 

negative one, 0 0t t  (when * 0  ). Conversely, let for instance * 0   and take in (3.17) 

0 0t t . Function ( )x  given now by formula (3.17) is bounded and continuous on 1R  

(which is not difficult to be verified) and, letting 0x  (in (3.17)), we find 
* 3

,0 0(0) s lp t    ; i.e. 0(0) t  , 0[ ] [ (0)] [ ]l l lt      , and (3.17) shows that ( )x  

satisfies integral equation (3.16). Having the surface values ( ,0) ( )u x x , it remains to solve 

the following two Dirichlet problems (as already noted in Sect.1, above): 
2 1{ 0, 0; ( ,0) ( ), }u z u x x x R      and 2 1{ , 0; ( ,0) ( ), }bu k u z u x x x R     . As it 

generally known, the relevant solutions are determined respectively by (3.18), (3.19). 

Consider now the case of vacuum – vacuum heterogeneous system, with a semiconductor 
interface; then (3.14) is written as: 

 0 0 0,1 *[ ] * . .s s l s s s s          
         ; (3.20) 

here l  is a given constant. Recall that 0 2[ ] ( [ ])
2

s d s s su k sg q u
   

  .  

For equation (3.20) we shall establish existence of a unique continuous and bounded 
solution, via the contraction mapping argument. Let us introduce the notations 

0 0[ ]( ) (( [ ]) ) ( )s
d d s sQ x q x      and 

 
2

0 0 0,1 0( )
( ) [1 exp( | |)] ( ) (( . ) )( ) [ ]( ) ( )

2 2
s s

s s s d s L s l s

sg x k
f x k x x sg x W x x

     

 

          
 

. (3.21) 

Now, substituting 0,1
s  in (3.20) with the right hand side of (3.15), equation (3.20) takes the 

form 

 [ ]s
d sQ f  

   . (3.22) 

To analyze the above equation, we shall use the norm || || sup | ( )|xw w x , 1x R , for 

continuous, bounded functions ( )w x  on 1R , and shall deal with balls ( )rB 
 , centered at 
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 , having radius r ; here ( )rB 

  is the closure, regarding the norm ||.||, to the set of the 

bounded continuous functions 1( ),v x x R , such that || ||v r
  , for a fixed r . It is clear 

that under the norm ||.|| ( )rB 
  is a complete metric space. We have to study the map 

  , [ ] [ ]s
d sQ f  

      , for ( )rB 
 . For choosing a proper magnitude of 

radius r , we shall take into account that [ ] 0s
dQ 

   and 0
s sf   in case of the linear 

canonical form to problem (3.4), (3.5) (possessing 0
s  as the unique solution). Thus, 

observing that 0 0 1
|| || (0)

2
s s

s sk
 


  , we shall fix below a final choice of r  in the form 

1

2 s s

r

k
 

 ( r  - a small positive parameter). We begin the estimation to the image deviation 


  , [ ]   , by the obvious triangle inequality: 

 || || || [ ]|| || ||s
d sQ f 

    , (3.23) 

for ( )rB 
 . By the inverse Fourier transformation of ˆ ( )Q   ( [ ]s

Q dQ  ) we have 

0| [ ]( )| || [ ]||. (0)s
d s sQ x q    (via the given definition of [ ]s

dQ  , formula (3.13) – for 0
s  and 

equality 0( ) 1d x dx



 ), consequently it holds: 

1
|| [ ]|| || [ ]||

2
s
d s

s s

Q q
k

 


 . Next, from 

|| || r 
   we find for [ ]sq   that 

2 2 2( )
|| [ ]|| 1

2 3
s s s s

s

k r k r
q

 
 

   
 

. Choosing now 

1

2
r  , we can fix the magnitude of r : 

 
3

4 s s

r
k

 . (3.24) 

Then we find the next inequality, for || [ ]||sq  : 

 
29 3

|| [ ]|| 1
32 8

s s
s

k k
q     

 
. (3.25) 

Under condition 13

4
sk  (applied below as a contraction requirement to [ ] ) inequality 

(3.25) can be easily reworked till a convenient estimate for || [ ]||sq  . We shall introduce, for 

a sake of simplicity, also a restriction in the form 1
sk    (with an arbitrary constant 

3

4
   ). For a large class of semiconductors (including these in [5], [7]) it is enough to take 

2   . Thus we can suppose from now on that  

 13
2

4
sk  . (3.26) 
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Now, reworking (3.25) we get: 
3

|| [ ]||
4

sq   . Consequently [ ]s
dQ   is estimated as  

 || [ ]||
2

s
d

r
Q   . (3.27) 

The obvious next step is to establish the analogous estimate for sf , to get this way the 

needed property for [ ]  ( see (3.23)). For relevant terms with   in expression (3.21) it 

holds as follows. Function ( )s x   satisfies (as directly shows (3.13)) inequality 

0|| || (0)s s   , therefore 
1

|| ||
2

s
s sk




  . Next, estimating the term 0 0( . )d ssg   by analogy 

to [ ]s
dQ  , we have: 

0 0 0 01 1
ˆ||( . ) || ( ) | ( )|

2 2
d s d s

s s

sg x dx d
k

     
 

 

 
    . 

Concerning the element 0,1[ ]L sW   (in said expression for sf ) we shall firstly introduce 

inequality 

2 2

0,1 2 2 1 0,11
ˆ|| [ ]|| ||2| |( ) || || ||

2
L s s L s LW k   


   

(where 
2

||.||L  is the norm in 1
2( )L R ). Then we use that 

2

1/2

2 2 1 2
||2| |( ) ||s L

s

k
k

    
   

 
 

and, because of (3.15), we have 

2 2 2

0,1 0,1 0,11 1ˆ ˆˆ ˆ|| || || ( [ ])|| ||( .exp( |.|)||
2

s L s L s L s L
s s

W sg k  
 

    (with ˆ( )  as the Fourier 

transformation of  ). The above yields inequality 0,1 1 3
|| [ ]||

42
L s

s ss s

W
kk




  , taking 

into account that 
2

1/2

ˆ||( .exp( |.|)|| 2s L
s

sg k
k

 
   

 
; i.e. 0,1|| [ ]||L sW r   (see (3.24)). Then, 

from inequality (see (3.21)) 

2
0 0 0,1 01

|| || | | || || ||( . ) || || [ ]|| | ||| ||
2 2

s s
s s d s L s l s

k
f sg W

      


 
        

 
, 

it follows the next one: 
21 2 2

|| || | | | |
2 3 4 3

s s
s l

s s

k r
f r r

k

  
 

 
       
 

. Consequently, at 

2 1r  , i.e. (via (3.24)) introducing condition (3.28), below, we find firstly that 
28 2

|| || [ ]| | | |
3 3 3

s s
s l

k
f r

  
 

     
 

. 
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3

2
s sk  . (3.28) 

By (3.28) the above found for || ||sf  modifies to inequality || || (14| | 2| |)
3

s l

r
f     . 

This will give the estimate  

 || ||
3

s

r
f  . (3.29) 

It holds when the sum 7| | | |l    satisfies condition  

 
1

7| | | |
2

l    . (3.30) 

Summarizing (3.23), (3.27) and (3.29), we conclude the following. For any data 


 , 


 , l  

and parameters sk , s  satisfying (3.26), (3.28) and (3. 30) relation [ ]    maps the ball 

*( )rB 


, with r  as in (3.24), into itself. 

Now we shall study the contraction property of [ ] . For arbitrary two elements 
*

1 2, ( )rB  


  we have to estimate difference 2 1  , [ ]j j    ( 1,2j  ). From 

2 1 2 1[ ] [ ]s s
d dQ Q      we shall consider difference of [ ]s

d jQ   ( 1,2j  ), using relation 

  10 0
2 1 2 1 1 2 10

[ ] [ ] ( ) [ ( )]s s
d d d s sQ Q q d                . (3.31) 

(Above [ ]sq t  is derivative [ ]sdq
t

dt
, with 2 * 2 2 * 31 1

[ ] [ ( )] [ ( )]
2! 3!

s s s s sq t k t k t        .) Denote 

by 0
2,1[ ]s

d sR    the right hand side of (3.31) and take into account the next several 

inequalities: 

0
2 1 2,1

1 ˆ ˆ|| [ ] [ ]|| | [ ]( )|.| ( )|
2

s s s
d d d sQ Q R d      





   ; 

10
2,1 2 1 1 2 10

ˆ|| [ ]|| || || ( ) | [ ( )]( )|        



    s

d d sR x q x d dx ; 

2
2|| [ ]|| (1 )

2
s s

s s s

k r
q k r

     (at *
1 2, ( )rB   ), i.e. 

3 3 3
|| [ ]|| (1 )

4 8 2
s s

s

k k
q     ; 

 
1

1 2 10

3
|| [ ( )]||

2
sq d        . (3.32) 

(We have used in (3.32) relation (3.26), via (3.24), and the above notations 0ˆ
s , 2,1

ˆ [ ]s
dR   are 

taken for the Fourier images respectively to functions 0( )s x , 2,1[ ]( )s
dR x .) Then we have: 
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0
2 1 2 1 2 1

3 1 3
ˆ|| [ ] [ ]|| || || | ( )| || ||

2 2 4
s s
d d s

s s

Q Q d
k

        
 




     . 

Consequently, 

2 1 2 1|| || || ||r       

(because of (3.24)), and under estimates (3.27), (3.29) (valid at (3.30)) the considered map 

[ ]    is a contraction in the ball *( )rB  , for 1r  , i.e. 
3

4
s sk . Combining the latter 

inequality with (3.28), we come to condition 

 
3 3

4 2
s sk  . (3.33) 

Thus we have given the proof of the following basic result. 

3.2 Proposition 

For arbitrary values of positive parameters s , sk , each asymptotic data 
  of the surface 

potential and line charges 0l l   , such that conditions (3.26), (3.33) and (3.30) hold, 

equation (3.20) possesses a unique continuous, bounded solution ( ; )x d , satisfying the 

estimate 

 
* 5

sup| ( ; ) |
8x s s

x d
k

 
  , 0d  . (3.34) 

4. Explicit approximations in the case of semiconductor interface 

Via the possible applications, it is important to ask for a suitable approximation 0( )x  to the 

interface data ( ,0)u x , well enough at small | |d  and explicitly determined. To that goal, 

suppose a sequence { }n  of solutions to (3.20), ( ) ( ; )n x x d  , at nd d , with 0nd   

( n  ), is convergent (in a distribution sense) to a bounded continuous function ( )x , 
1x R . Putting nd d  in (3.20) and letting n  , we can conclude that ( )x  is a solution 

to equation 

 0 0,1( ) ( [ (0)]) ( ) ( ( ) ( ))l s s s s sx q x x x        
       . (4.1) 

For finding (4.1) we have taken into account that 0[ (.; )]( ) [ (0)] ( )s
d s sQ d x q x    and 

0 0[( . ) * ]( ) 0d ssg x   , 1x R  , at nd d  ( n  ). Next we shall study equation (4.1). Note 

first of all the necessary condition to have a continuous solution ( )x :  

0,1 0,1( 0) ( 0)s s s s        
          ; 

it is fulfilled, because of (3.15). If ( )x  is a continuous solution to (4.1), for value (0)  we 

obtain (from (4.1), at 0x    or 0x   ) the algebraic equation 
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0(0) ( [ (0)]) (0)l s sq    
   ; 

i.e. (0)  is a real solution to equation  

2 3 2 2
0 3 0 2 0( ) ( )
(0) ( ) (0) ( ) (0) 0

6 2
s s s s

s s l s

k k
z z z

        
         . 

Setting 2( )s st k z 
   we rewrite this equation in the form: 

 
3 2

2 0
0

6 2 (0)
l

s s s

t t t

k


 
    . (4.2) 

Derivative of the left hand side (denote it by ( )g t ) is 
2

2 0

1
( )

2 (0)s s s

t
g t t

k 
    . The found 

quadratic polynomial does not have real roots (via (3.26) and the known inequality 

0 1
(0)

2
s

s sk



 , recall (3.13) concerning 0(0)s ). This yields existence of a unique real solution 

0t  of (4.2) and we set  

 
0

0
2

s s

t

k
 



  . (4.3) 

Now from (4.1) we get the function  

 0 0 0 0,1( ) ( [ ]) ( ) ( ( ) ( ))l s s s s sx q x x x        
        . (4.4) 

It presents actually the unique solution of equation (4.1). 

The next step will be the comparison of 0( )x  and ( ; )x d . Let us introduce the difference 
0[ ]( ) [ ]( ) [ (0)]) ( )s s

d d s sQ x Q x q x      . Formula (4.4) then directly shows that 0( )x  is a 

solution to equation  

 ( ) [ ]( ) ( ) [ ]( )s s
d s dx Q x f x Q x   

     . (4.5) 

Subtracting (4.5), with 0  , from (3.20) – with (.; )d  , we evidently get: 

0 0 0(.; ) [ (.; )] [ ] [ ]s s s
d d dd Q d Q Q           . 

Putting afterwards 2 (.; )d   and 0
1   in the above given contraction estimate – for 

2 1[ ] [ ]s s
d dQ Q  , we find directly that 

0 0 0|| (.; ) || || (.; ) || || [ ]||s
dd r d Q           , 

consequently 

 0 01
|| (.; ) || || [ ]||

1
s
dd Q

r
     


. (4.6) 
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By the known definition 0 0[ ] ( [ ])s
d d s sQ q     , perturbation term 0[ ]s

dQ   can be easily 

presented as 

 

0 0 0 0 0

0 0 0 0

[ ]( ) ( )( [ ( )] [ ]) ( )

[ ] ( )[ ( ) ( )]

s
d s s s

s s s

Q x q d q x d d

q x d x d

        

      


 





    

  




. (4.7) 

Denote the first and second integrals in (4.7) respectively by 0
1[ ]( )I x  and 0

2[ ]( )I x ; they 

satisfy the following inequalities: 

 0 0 0 0
1

| |

|| [ ]|| 2|| ||sup| [ ( )] [ ]|s s s
y d

I q y q    


  ; (4.8.a) 

 0 0 0 0 0
2|| [ ]|| | [ ]| ( )sup| ( ) ( )|s s s

x

I q x d x d       


 
   . (4.8.b) 

To rework estimate (4.8.a), taking the arguments, known from the analysis of (3.29) (see 

above), we use at the beginning that 

2
0 0 2 0 0|| [ ] [ ]|| (1 )|| ||

2
s s

s s d s s d

k
q q k

         , 

where 

0 0 0 0

| |

|| || sup| ( ) |d
y d

y    


   ; i.e.  

0 0 0 0 0 03 3
|| [ ] [ ]|| (1 )|| || 4|| ||

2 4
s

s s d s d d

k
q q k             , 

via (3.26), (3.33). Substituting then in (4.8.a), we have: 

 0 0 0 0
1|| [ ]|| 8|| ||.|| ||s dI       . (4.9.a) 

(We shall show afterwards that 0 0|| || 1d     at small enough d .) Next, for reworking of 

(4.8.b), we shall firstly apply equality  

10 0 0,1

0
( ) ( ) ( )s s sx y x y x ty dt       . 

(Via formula (3.13) for 0( )s x  it is not difficult to verify validity of the above.) Consequently 

0 0 0,1sup| ( ) ( )| | |.|| ||s s s
x

x y x y     , and, because of (4.8.b), we find inequality 

0 0 0,1 0
2|| [ ]|| | [ ]|.|| || | | ( )s sI q d d      


 

  , 

which actually yields that: 
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 0 0 0,1
2|| [ ]|| | [ ]|.|| ||s sI q d    . (4.9.b) 

To final reworking of (4.8.a) we shall estimate the quantity 0 0|| ||d    in (4.9.a). By (4.4) 

and the algebraic equation 0(0) ( [ (0)]) (0)l s sq    
    for (0)  (see the initial form of 

(4.2)) we firstly have 

0 0 0 0 0 0,1( ) ( ) ( [ ])[ ( ) (0)] [ ( ) ( )]
2

l s s s s s sx sg x q x x x
         

 


        , 

and expressing 0,1
s  by (3.15) we get 

 0 0 0 0 0( ) ( )[1 exp( | |)] ( [ ])[ ( ) (0)]
2

s l s s sx sg x k x q x
     




        (4.10) 

0,1( ( ) [ ]( ))s L sx W x  
  . 

Next we analyze the terms in (4.10) beginning with function 0,1[ ]( )L sW x ; it is continuous 

and odd, and we can use the following inequalities: 

1
2

1/22 2
0,1 0,1 0,1

2 2 2 2 2 ( )0 0

2 |sin( )| 1 |sin ( )|
ˆ ˆ| [ ]|( ) | ( )| .|| ||

( )
L s s s L R

s s

x x
W x d d

k k

        
  

  
      

  . 

Therefore: 

1
2

1/22
0,1 0,1

2 ( )0

| | sin
ˆ| [ ]|( ) .|| ||L s s L R

x
W x d

  
 

 
   

 
 . 

Recall here the already found estimate 1
2

0,1
( )

ˆ|| ||s L R
s sk




  and the well known relation 

2

20

sin

2
d

 



 . Then it follows: 

 0,1|| [ ]||L s d
s s

d
W

k



 . (4.11) 

For ( )s x   we start with the inequality 

1/

2 2 2 20 1/

| | sin( ) 1 |sin( )|
| ( )|

d

s d
s ss s

x x x
x d d

x k k

    
   

  
   ; 

i.e.: 

2 2 21/

| | 1 1 1 | | 1
| ( )| log(1 ) log(1 )

2
s d

s s s s ss

x x d
x d

k dk d
 

   
       . 
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Evidently, 
1 1

log(1 )
s sk d k d

  , and we find: 

 
1

|| || ( )s d
s s

d
d

k



   . (4.12) 

The estimate for 0 0( ) (0)s sx   is a consequence from the above one for 0 0( ) ( )s sx y x   , 

thus we come to inequality 

 0 0 0,1|| (0)|| || ||s s d sd    , (4.13) 

and for 1 exp( | |)sk x  we can take the next obviously one: 

 ||1 exp( | |)|| exp( )s d s sk x k d k d  . (4.14) 

Now (4.10) and (4.11) – (4.14) yield: 

0 0 0 0,1
2

4
|| || | |( exp( ) ) (| | | [ ]|)|| ||

2 9

s
d s l s s

s s

k d d d
k d q d

k
     

       . 

The above simplifies, at 1sdk  , to inequality  

0 0 03 20 3 1
|| || | |( ) (| | | [ ]|) (1 )

2 9 4
d s l s

s s s

d
r dk q

k
    

         ; 

i.e. 

0 0 04
|| || [6| | (1 )(| | | [ ]|)]

3
d l s sq r dk           , 

and 

 0 0 0|| || 3(2| | | | | [ ]|)d l s sq dk          . (4.15) 

Going to expression (4.7), we have firstly 0 0 0
1 2|| [ ]|| || [ ]|| || [ ]||s

dQ I I        and 

applying afterwards (4.9.a), combined with (4.15) and (4.9.b), we establish the estimate: 

 0 0 0 0 0 0,1|| [ ]|| 8|| ||.|| || | [ ]|.|| ||s
d s d s sQ q d          . (4.16) 

Next, for the relevant quantities in (4.16) it can be easily established (via (3.26), (3.33)) as 
follows: 

0 0 0 0 012
8|| ||.|| || (2| | | | | [ ]|) 16(2| | | | | [ ]|) ;s d l s s l s s

s s

q dk q dk
k

        
            

0 0,1 0 04 3
| [ ]|.|| || (1 )| [ ]| 3| [ ]|

3 4
s s s s s

s

d
q d q q dk   


   . 
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Applying the above two inequalities to (4.16), we find that  

 0 0|| [ ]|| 8(4| | 2| | 3| [ ]|)s
d l s sQ q dk         . (4.17) 

Finally, from (4.6), (4.17) we directly get: 

0 08
|| (.; ) || (4| | 3| [ ]| 2| |)

1
s l sd q dk

r
         


. 

Now let us introduce (for a simplicity sake) the restriction 0.5 0.9r  , equivalent to 
condition 

 
5 3

6 2
s sk  . (4.18) 

Then 1 0.1r  , consequently 
8

80
1 r




, and, from the above inequality for 0(.; )d  , 

we obtain the needed estimate, approximating for the exact solution ( ; )x d ,at 0d  : 

 0 0|| (.; ) || 80(2| | 3| [ ]| 4| |)l s sd q dk          . (4.19) 

By the above arguments we have actually proven the following assertion: 

4.1 Proposition 

Function 0( )x  is an approximation to solution ( ; )x d  of equation (3.20), at 0d  , 

explicitly determined by formula (4.4) and satisfying estimate (4.19), for parameters , l 
 , 

which fulfill (3.30) and ( , )s sk  varying in the compact set determined by (3.26), (4.18). 

5. Concluding remarks 

Here we accent on the approximating solutions, in several applicable variants, via the 
convenience of solution determination by effective formulas (see positions 2) – 5), below). 
Note, as a principle, that the possible explicit solutions (presenting for instance the interface 
electric potential) are necessary for examination of relevant numerical methods, and the 
same holds for the explicit approximations to the exact implicit solutions. Below we start 
with some dimensional remarks, related in particular to known experimental data. 

1. In a 1( , )s sk  - coordinate system, scaled in nanometers, the above mentioned compact is 

trapezoid, with contours – the straight lines: 1 3

4
sk nm   and 1 2sk nm   (as the bottoms 

of trapezoid, vertically situated), and 15

6
s sk nm  , 13

2
s sk nm   (as the thighs). For the 

classes of semiconductors analyzed in [5], [7] the values of parameter 1
sk  are not 

greater than 1 nm, satisfying thus condition (3.26) in the form 

 10.75 2snm k nm  . (4.20) 
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The key non-dimensional quantity in the surface electrostatics is given by the product s sk , 

and the same holds for the above used sdk . On the other hand, quantity 1( )s sk   can be 

automatically provided with a (preferable) voltage dimension (see also expression (3.24) of 
r ). Recall that such a mechanism has been suggested by the estimate 

0 0 1
|| || (0)

2
s s

s sk
 


   of canonical surface potential 0

s . This allows, for mathematical 

reworks, to use the product sk r  (in the important factor 2 .s s s s sk r k k r  ) as non-

dimensional. 

2. The proposed model (2.2) – (2.6), with 1, 0b bk    , admits explicit approximations 

0
* ( )x  and 0

* ( , )u x z , 

0 1
*( ; ) ( ) ( ) ( 0),sx d x O dk d x R      ; 

0 2
*( , ) ( , ) ( ) ( 0), ( , )su x z u x z O dk d x z R     . 

They satisfy estimates (4.19) and 

 0 0
*sup|| (., ) (., )|| 80(2| | 3| [ ]| 4| |)l s s

z

u z u z q dk       . (4.21) 

In addition, said approximations are determined respectively by formulas (4.4) and 

 

0

0 2 2
*

0

| | ( )
, 0;

( , ) ( )

( ), 0

z t
dt z

u x z x t z

x z






 







  
 

 . (4.22) 

3. In case of relatively small  , i.e. | | | | 
   , the term 0,1( ( ) ( ))s s sx x   

   can 

be neglected in representation (4.4) and we can use the simplified approximation 
0 0

0, ( ) ( [ ]) ( )l s sx q x         of ( ; )x d , instead of 0( )x . This yields the simpler 

approximation 0, ( , )u x z  to the space potential ( , )u x z , with 

 , 1
0, 2 20

exp( | | )cos( )
( , ) ( ) ,

2 ( )

l s

s s

z x
u x z x d z R

k

   
   


 


  

  . (4.23) 

Above 0
, [ ]l s l sq    . At 0z   formula (4.23) evidently gives 0, 0,( ,0) ( )u x x  . Here it 

should be specially noted that known real situations (see for instance in [5], [7]) are 

contained in the case 0  . 

4. The case 0  
    (then 0   and 0

  ) covers the experimental models in [5], 

[7]. Now it seems to be an open question whether the line phase charges can get 
essentially smaller values than these for the surface zones (called terraces) 
{ 0, | |}z d x   - after specific annealing of indium-phosphorus semiconductor 
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samples, say ([5], [7]). Then we would have relatively small values of | |l , terms with 

2t  and 3t  (at 0t t ) can be neglected in (4.2), and we can take the value of ,0s lp   (with 

0
,0 (0)s sp  ) as an approximation of 

0

2
s s

t

k
 (using (4.2)). It gives that 

0 2 4 2 2
,0

1
[ ]

2
s s s s lq k p   . Replace in (4.23) ,l s  with 2 4 2 2

,0

1

2
l s s s lk p   , and take 

0 1
(0)

2
s

s sk



  (via the known estimate 0 1

(0)
2

s
s sk




 ). Thus we can consider the 

function 0, ( , )w x z , below, as a next approximation of the exact potential ( , )u x z . 

 
1 2 2

1
0, 2 20

8 . exp( | | )cos( )
( , ) ,

2 ( )
l s l

s s

k z x
w x z d z R

k

    
   

 


 
 

  . (4.24) 

The found formula conveniently shows that the (nonlinear) impact of the vacancy denuded 

sub-strips { 0, | | }z d x d    (with 0 1  ) is compatible to the perturbation 

2 2
1

2 20

exp( | | )cos( )
,

8 2 ( )
s l

s s

k z x
d z R

k

   
   

 


  . 

5. A special variant is presented by the case of weakly charged contour { 0, 0}z x  , 

combined with a relatively higher asymptotic surface power  . From experimental 

view point (c.f. [5], [7]) said situation seems to be another open question. Now we can 

assume that | | | |l   . Then neglecting term 0 0( [ ]) ( )l s sq x    in the expression 

for 0( )x , we insert in (4.22) 0,1( ) ( ( ) ( ))s s st t t    
     (instead of 0( )t ) and find 

the following expression: 

 0, 2 20

exp( | | )(1 )sin( )
( , ) ( ) , 0

2 ( )
s

s s

z x
w x z x d z

k

    
   


 

 
  

  . (4.26) 

Here 0,1
0, ( ,0) ( ) ( ( ) ( ))s s sw x x x x    
      . Modified potential 0, ( , )w x z  presents the 

impact of asymptotic power   on the space potential distribution. 
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