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1. Introduction 

This chapter focuses on speech processing techniques, which involve speech feature 
extraction, sound localization, speaker identification/verification, and interactive retrieval 
of spoken documents. Several hardware design issues are discussed in each section. Speech 
processing applications frequently involve extensive mathematical computation, making 
resource and power consumption management important. Therefore, this chapter presents 
not only algorithms but also their corresponding improved solutions to embedded systems, 
such as fixed-point arithmetic design, field-programmable gate array (FPGA) verification, 
ARM-based system-on-a-programmable-chip (SoPC) architecture, and other single-chip 
designs. 

The rest of this chapter is organized as follows. Section 2 introduces the feature extraction 

method that is used in speech processing. Section 3 then describes details of the sound 

localization technique. Next, Sections 4 and 5 elucidate speaker identification/verification 

and interactive retrieval of spoken documents. Conclusions are finally drawn in Section 6, 

along with recommendations for future research. 

2. Embedded system design for speech feature extraction 

Speech feature extraction is critical in speech processing applications. This section describes 
in detail frequently used speech features and the design of chips for extracting them. The 
computational complexity and memory requirement of the associated algorithms are also 
analyzed in detail to ensure favorable performance. Furthermore, a hybrid approach for 
fixed-point arithmetic and hardware design is developed to ensure low computational 
complexity. Finally, a single FPGA development board is considered as a case study to 
realize the design. 

2.1 Methodology 

2.1.1 Algorithm for calculating mel-frequency cepstral coefficients 

The complete step-by-step process for calculating coefficients is described as follows (Vergin 
et al., 1996; Wang et al., 2003). 

www.intechopen.com



 
Embedded Systems – High Performance Systems, Applications and Projects 

 

174 

Step 1. Short-time fast Fourier transform (FFT) 
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Step 2. Find the energy spectrum,   2
( )X m Y m . 

Step 3. Calculate the energy in each channel: 

 

   

 

/2 1

0

/2 1

0

( )

1

F

k
j

F

k
j

S k W j X j

W j














 





 (2) 

Step 4. Take the logarithm and perform the cosine transform to obtain the Mel-frequency 
cepstral coefficients (MFCCs), 

  
1

0

log( [ ])cos[ ( 0.5) ]
M

k

C n S k n k
M





   (3) 

2.1.2 Improved algorithm for calculating mel-frequency cepstral coefficients 

Generally, the required computational power and ROM in each frame can be determined 

clearly according to Table 1 (Wang et al., 2000; Wang et al., 2003). As shown in the table, the 

total required computational power is quite high due to the redundant operations and 

memory that stores the required constants. Accordingly, some modifications must be made 

to reduce the computational load. 

The weighted energy spectrum in the Mel-window, 1( )kE j , can be obtained by subtracting 

the weighted energy spectrum ( )kE j  from energy spectrum ( )X j . All of the multiplications 

in (4) can be replaced by subtraction operations. Therefore, the memory required to store the 

weight constants for (4) becomes redundant and can be eliminated. 
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( )

2 ( )
k

d L D
E j X j

L D L D
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Additionally, applying the symmetric property of the cosine function to (3) flattens all of the 

operations and enables related items to be combined in a new formula, given below. 

          
M/2 1

0

{ ( 1) 1 } [ 0.5 ]n

k

C n log S k log S M k cos n k
M





       (5) 

Therefore, the computational complexity of C[n] operations can be re-estimated, and the 
result is given in Table 2 (Wang et al., 2000; Wang et al., 2003). 

www.intechopen.com



 
Design and Applications of Embedded Systems for Speech Processing 

 

175 

 

Number of operations and 
required memory 

K=256, M=20, L=12 

Computational power Actual computational power 

C[n] S[k] C[n] S[k] Total 

Addition/subtraction L(M-1) M(F/2-1) 12x19=228 20x127=2540 2768 

Multiplication LM MF/2 12x20=240 20x128=2560 2800 

Logarithm M 0 20 0 20 

ROM size (words) LM MF/2 12x20=240 20x128=2560 2800 

Table 1. Number of operations and the required memory estimated using the original MFCC 
algorithm. 

 

 
Improvement of 
C[n] calculation 

Total improvement 

Operation 
Computational 

power 
Improvements 

(%) 
C[n] S[k] Total

Improvement 
(%) 

Addition/ 
subtraction 

L(M/2+M/2-1) 0 12x19=228 113 341 87.6 

Multiplication LM/2 50 12x10=120 128 248 91.1 

Logarithm M 0 20 0 20 0 

ROM size 
(words) 

LM/2 50 12x10=120 128 228 91.8 

Table 2. Improvement of C[n] calculation by rescheduling the original MFCC algorithm and 
the total improvement provided by the proposed method 

The modified procedure in the MFCC algorithm is based mainly on the improved [ ]S k  

calculation, as discussed below and shown in Fig. 1 (Wang et al., 2000). Every Mel-window 
is divided into two blocks with equal bandwidth on the Mel-scale. Because the Mel-
windows overlap each other, every block except for the first and last belongs to two Mel-
windows. 

 

Fig. 1. Modified procedure for calculating S[k]. 
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2.2 Hardware implementation 

2.2.1 Fixed-point arithmetic design 

The word recognition system is based on the hidden Markov model (HMM). To achieve 
area-efficiency, MFCC chips are designed using fixed-point arithmetic. The procedure for 
implementing the fixed-point program is as follows. 

Step 1. Partition the algorithm into n modules; this involves calculations of the energy 
spectrum, channel energy, and MFCCs. 

Step 2. Determine the lower bound and upper bound on each module. 

The format of fixed-point variables is determined based on the dynamic range of the input 
variables in the first module. Once this module has been analyzed, the output is fed into the 
next module and analysis continued until all modules fit the fixed-point data format, as 
presented in Table 3 (Wang et al., 2003). 

 

 Maximum Minimum Abs. minimum Fixed-point format 

Energy spectrum 3121190.0012 0.000311 0.000311 24.8 

Energy in each channel 2172253.6092 0.124351 0.124351 24.8 

MFCC 214.006766 -75.082199 1.567230 9.7 

Logarithm value 5.336967 -0.905350 0.905350 5.11 

Table 3. Analysis of dynamic range and determined fixed-point data format. 

Step 3. Error measurement for each module 

This step evaluates the quantization error by comparing their outputs with the output of the 
corresponding floating-point routines as shown in Table 4 (Wang et al., 2003). 

 

 
Energy spectrum 

(%) 
Energy in each channel 

(%) 
MFCC 

(%) 

Word with vowel phonemes 0.020563623 0.022464977 0.474503142 

Word with nasal phonemes 0.028652758 0.035190628 0.481810443 

Word with fricative phonemes 0.031959564 0.039397264 0.698307547 

Word with stop phonemes 0.052471004 0.057502398 0.454653425 

Word with affricate phonemes 0.041492785 0.05067771 0.454107475 

Table 4. Average error with the determined fixed-point data format. 

Step 4. Performance measurement 

The impact of the recognition rate of the fixed-point MFCC algorithm is evaluated at this 
stage, as shown in Table 5 (Wang et al., 2003). 

 

 User 1(%) User 2(%) User 3(%) User 4(%) User 5(%) Average (%) 

Floating-point 92.0 90.0 93.0 91.0 93.0 91.8 

Fixed-point 91.0 88.0 91.0 88.0 90.0 89.6 

Table 5. Comparison of recognition rates achieved using floating-point and fixed-point 
structure. 
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2.2.2 Circuit design 

The use of improved partitioned look-up tables is another commonly used method to 
perform such elementary functions as logarithm, square root, and trigonometric functions, 
for example. Figure 2(a) shows the proposed four-stage pipeline architecture.  

 
(a) 

 
(b) 

Fig. 2. Circuit design of an embedded system. (a) Architecture of the proposed MFCC chip. 
(b) Architecture of the look-up table (Wang et al., 2003). 
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Based on such architecture, only one processing unit is used and all data are processed in 
pipeline fashion. Figure 2(b) displays the architecture of the improved partitioned table. The 
shifter logic is used to find the Q value of the minimum left shift and to output the least 
significant 16 bits, which are the addresses of the two subtables. Only one two-stage 
pipelined multiplier and adder, which is shared by both the main data path and the look-up 
table, is used. 

At the verification stage, an FPGA board is utilized to implement the MFCC system 
prototype. First, synthesizable Verilog-HDL descriptions are coded. Synopsys FPGA 
Express (www.synopsys.com) generates the corresponding netlist files. The Xilinx Flow-
Engine completes generating placement, routing, and bit-stream files. The design is 
implemented successfully in the XC4062XL FPGA chip. 

3. Embedded system design for sound localization 

This section introduces a sound localization system, which exploits the average magnitude 
difference function (AMDF), for finding the directions of environmental signal sources. To 
verify the accuracy of the algorithm, the entire system is implemented on a single FPGA 
development board using the Quartus II software tool. Then, the System-on-Chip (SoC) 
design, based on the FPGA code with the 0.18μm CMOS process, is implemented. The 
experimental results indicate that the proposed system can achieve higher accuracy with 
reduced complexity and area of the hardware. 

3.1 Methodology 

Figure 3 presents the overall architecture of the sound localization system, including a 
sound signal amplifier, an analogue-to-digital (AD) converter, a sound activity detector, and 
an AMDF module. External acoustic signals are received by a pair of microphones and 
magnified by an amplifier. The AD converter transforms analogue data to digital data. The 
sound activity detection block consists of threshold value detection, zero-crossing rate 
(ZCR), and end-point detection modules. Three methods are utilized to distinguish desired 
segments from silent periods. Finally, the AMDF module (Wang et al., 2008a; Wang et al., 
2009) estimates the delay based on the desired signal segments, and converts the delay into 
angles. A brief workflow of the system is shown in Fig. 4 

 

 

Fig. 3. Overview of the sound localization system (Wang et al., 2011). 
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Fig. 4. Workflow of the sound localization system. 

3.1.1 Sound activity detection 

When the pair of microphones receives the sound signals, the system begins to determine 
whether the input signal needs to be handled. The detection of sound activity comprises 
three steps, which are as follows. 

 Threshold Value Detection: Whether the amplitude of the input signal exceeds a 
threshold is determined by this step. If the amplitude exceeds the threshold, then the 
system begins to store the input signal data in memory. 

 Zero-Crossing Rate Estimation: In acoustics, a sound wave has positive and negative 
values of displacement around the zero amplitude. Zero-crossing rates are calculated by 
counting the crossings of the baseline over time. The presence of an active ZCR signal 
can improve threshold value detection. 

 End-Point Detection: An end-point beacon is generated when an ongoing input signal 
falls below the threshold for a preset period. 

3.1.2 Direction-of-arrival estimation 

Figure 5 displays a microphone array, where x1(t) and x2(t) represent the acoustic signals 
that are received by microphones 1 and 2 respectively; d denotes the distance between these 
two microphones; ǉ is the direction between the array and an unknown source, whose signal 
is represented as s(t). The source is assumed to be far enough from the microphone array so 
that the acoustic wave-front that impinges upon the microphone array can be approximated 
as a plane wave. Let microphone 1 be the reference point; the relationship between the 
received signals and the source signal in the time domain is given by the equation, 

 

Fig. 5. Direction-of-arrival illustration. 
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where τ is the propagation delay from the source to the microphone. As shown in the figure, 

after the wave-front impinges on microphone 2, the wave-front takes time “τ” to reach 

microphone 1. The distance between the wave-front and microphone 1 is dcosǉ (Chen et al., 

2010). Therefore,  

 
cosd

c

   (7) 

where c is the sound velocity. In real-life applications, noise and reverberation may distort 

wave shapes, potentially affecting the propagation delay. A feasible way to estimate the 

accurate time delay involves using the AMDF. The AMDF firstly fixes the signal at 

microphone 1, and then shifts the signal at microphone 2 to calculate the time delay. When 

both signals are the most similar, the difference between the waves will be minimized. In 

other words, the τ value is obtained when the correlation between the waveforms of the 

both microphone signals is maximal. Let N be the total number of windows and i represent 

the sliding window index. The AMDF can be expressed as 

    1 2
1

1
ˆ arg min

N
i i

i

x t x t
N

 


   . (8) 

3.2 FPGA implementation 

The entire sound localization system (except for the microphone signal amplifiers) was 

implemented on a single Altera DE2-70 FPGA board. Software design was developed by 

using the Quartus II software tool. Firstly, on the FPGA board, the AD converter controller 

used the I2C protocol to control serial input and serial output data. The sound activity 

detection block was divided into three modules and implemented separately. At the time-

delay estimation stage, the AMDF block used conventional basic operational logic elements, 

such as shift registers, subtraction, absolute value operands, and accumulation, to facilitate 

the entire design. All blocks implemented the pipeline technique to further accelerate 

computation. Finally, the output result is displayed on the DE2-70 board using a seven-

segment display and LEDs. The system used a total of around 15,600 logic elements (around 

188,000 logic gates). 

3.3 SoC implementation 

After the FPGA simulation and validation were complete, the sound localization system was 

ported to the chip level. In this system, after an input signal passed through the sound 

activity detection module, it was stored in the left and right SRAMs respectively. Next, the 

subtraction/absolute/accumulation (SAA) (Wang et al., 2011) module performed the major 

operations in the AMDF, including subtraction, taking absolute values, and accumulation. 

Hence, the AMDF block was able to estimate the time delay using the SAA module and 

convert it into a direction by accessing a predefined table in the ROM. 
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However, while running the AMDF, the system must perform the correlation analysis, 

1 21

N i i

i
x x


   , N times. The variable N is set herein to 64 for convenience of chip 

implementation. To reach a favorable trade-off between the chip area and performance, the 
system used a folding technique to realize the SAA architecture (Fig. 6 and (9)). A 
comparison with the unfolded SAA architecture revealed that the number of adders had 
been reduced from 127 to eight, and the number of units that performed the absolute value 
operation had been decreased from 64 to four. The length of the critical paths was effectively 
minimized, enhancing the clock rate. 

 

   

   

4

accumulative1 2
1

4

1 2
1

when   16 .

when   16 1,2,...,15.

j j

j

j j

j

x t x t t j

x t x t t j






   

  
   





 (9) 

 

Fig. 6. Folded SAA architecture (Wang et al., 2011). 

3.4 Experimental results 

The sound localization system was tested with sources in different directions, ranging from 
15° to 90° in steps of 15°, at five distances (1–5m). The experimental results indicated that the 
average accuracy was 80%–90%. The estimation error could be maintained in the range ±5°–
±10°. With respect to chip performance, the number of logic gates was reduced to 32,616. 
Also, the core size and power consumption were minimized (see (Wang et al., 2008a; Wang 
et al., 2009; Wang et al., 2011) for details). 

4. Embedded system design for speaker identification/verification 

The field of speaker recognition has existed for five decades (Furui, 2004). Recently, speaker 
recognition systems have found many applications in the real world. It is highly flexible and 
convenient for a wide range of daily-life applications. Various approaches, involving neural 
networks (Clarkson et al., 2001), Gaussian mixture models (GMMs) (Burget et al., 2007), and 

www.intechopen.com



 
Embedded Systems – High Performance Systems, Applications and Projects 

 

182 

support vector machines (SVMs) (Cortes et al., 1995), have been adopted for recognizing 
speakers. Among them, SVM-based speaker recognition has recently attracted much 
attention. 

Based on the idea of the working set, Platt et al. (1998) proposed the use of the sequential 

minimal optimization (SMO) algorithm, which is a widely used learning algorithm that 

involves decomposition, to solve the quadratic programming (QP) problem. Basically, the 

SMO algorithm performs the following two processes repeatedly: 1) selecting a fixed 

number of Lagrange multipliers, and 2) solving the QP problem of the multipliers until an 

optimal solution is found. Although the SMO algorithm makes SVM learning feasible when 

the number of training samples is very large, the number of required computational 

iterations still results in a heavy computational burden, which makes it unsuitable for use 

with stand-alone embedded devices. 

The operation of the proposed system based on SMO involves a training phase and an 

identification phase. Since the SMO training algorithm has huge computational load, it is 

realized as a dedicated, very large-scale integration (VLSI) module, which is a hardware 

component. The rest processes of the system, such as speech preprocessing, speech feature 

extraction, and SVM-based voting, are implemented in software. The proposed system has 

90% less training time than the embedded C-based ARM processor, and achieves an 89.9% 

accuracy with the 2010 speaker recognition database of the National Institute of Standards 

and Technology (NIST). The proposed system was tested and found to be fully functional 

on a Socle CDK prototype development board (www.socle-tech.com.tw) with an AMBA-

based Xilinx FPGA board and an ARM926EJ processor. 

4.1 Methodology 

4.1.1 Support vector machine 

Support vector classification (Cortes et al., 1995) is a computationally efficient means of 

finding hyperplanes in a high-dimensional feature space. Training an SVM is the equivalent 

to finding a hyperplane with the maximum margin. 

The canonical representation of a decision hyperplane is (10), 

    1, 1,...,T
i iy w x b i N     (10) 

where w is the weights of training instances; b is a constant; yi is the label of xi. The 

optimization problem involves minimizing 
2

w . In imperfect separation, the optimal 

hyperplane is obtained by solving the following constrained optimization problem (11), 

 , ,
1

1
min

2

( ( ) ) 1 0, 0, 1

N
T

i
w b

i

i i i i

w w C

y w x b i N




  


  
  

  
       


 (11) 

where C is a real-valued cost parameter, and ξi is a penalty parameter (slack variable). If 

( )i ix x  , the SVM finds a linear separating hyperplane with the maximal margin. An SVM 
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is called a nonlinear SVM when φ maps xi into a higher-dimensional space. Equation (12) is 

the Lagrange function for imperfect separation. 

 
1 1 1

1

1
arg max  

2

0, 0 , 1

i

N N N
T

D i i j j i j
i i j

N

i i i
i

L y y x x

y C i N


  

 

  




 



     


 


 (12) 

Basically, (12) is a QP problem and can be solved using the SMO algorithm. 

4.1.2 Sequential Minimal Optimization 

The basic problem of the SMO algorithm is the need to find hyperplane parameters, w and b, 
by updating Lagrange parameter α. The SMO algorithm searches through the feasible region 
of the dual problem and maximizes the objective function by choosing two α terms and 
jointly optimizes them (with the values of the other α terms fixed) in each iteration. Then, the 
objective function can be written as (13). 
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Let 
2

0DL







, yielding (14). 
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where old
1E  and old

2E  are prediction errors, and ǈ is given by (15). 
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Let the minimum and maximum feasible values of α2 be L and H, respectively. The 

unconstrained new
2  must be checked to determine whether it is in the feasible range. Then, 

a clipping function, (16), is used to generate the new constrained new,clipped
2 . 
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Eventually, new
1  can be obtained from (17). 

 
new old
1 1 1
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1 1 2 2y y
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 
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The terms Δα1 and Δα2 are used to update the hyperplane parameters w and b according to 
(18) and (19). 

 1 1 1 2 2 2w y x y x       (18) 
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4.2 Hardware implementation 

The proposed system can perform both speaker training and identification. Based on the 
complexity analysis in Fig. 7, the SMO training, which takes 90.89% of the training time, is 
the computational bottleneck. Hence, the SMO is realized in hardware and the rest 
processes, including preprocessing, feature extraction and voting analysis, are implemented 
in software. As shown in Fig. 8, the proposed design comprises four blocks, which are the 
software-based extraction block (SEB), hardware-based training block (HTB), and software-
based voting block (SVB). The SEB mainly performs speech preprocessing and speech 
feature extraction. The HTB executes the SMO algorithm, and the SVB is designed to find 
the target speaker based on a multiclass SVM. This design can be applied to a fast-trainable 
system in a stand-alone embedded environment (see (Kuan et al., 2010) for details). 

 
 

 

 

Fig. 7. Complexity analysis for speaker identification. 
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Fig. 8. Proposed hardware/software co-design system for speaker identification 

4.3 Experimental results 

The NIST 2010 speaker recognition evaluation (SRE10) speech corpus (by nine speakers) 
was adopted to evaluate the proposed hardware/software co-design framework. Six 
datasets, including nine speakers’ files in SRE10, were used to evaluate a speaker 
identification system for an entrance security application. The training utterance of each 
speaker was 10s long. The duration of the testing utterances was 2–6s. The order of the 
linear predictive cepstral coefficients (LPCCs) was 18. 

Figure 9 presents a time-cost comparison between the proposed hardware/software system 
and the embedded C code system (ARM-ported system). The proposed design had a 90% 
lower time-cost than the embedded C code one in the case of interest. Details of the 
evaluation can be found in (Wang et al., 2008b). 

 

Fig. 9. Performance evaluation based on time cost. 
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5. Embedded system design for interactive retrieval of spoken  
documents 

Owing to the increasingly widespread use of personal portable devices, an efficient method 

for retrieving spoken data with limited resources is required. This section proposes an 

efficient feature-based sentence-matching algorithm for speaker-dependent personal spoken 

sentence retrieval. Such a system can efficiently retrieve database sentences only partially 

matched to query sentence inputs. A whole matching plane-based accumulation (WMPB) 

scheme is then designed to determine the global similarity score. The proposed algorithms 

are based on the feature-level comparison and do not require acoustical and language 

models. 

5.1 Methodology 

5.1.1 Sentence matching for retrieving spoken sentences 

Sentence matching is performed to determine the similarity between two sentences. 

Consider two spoken sentences A and B: Assume that  1 2 ... mA a a a  is an m-word spoken 

sentence and  1 2 ... nB b b b  is an n-word spoken sentence. The similarity between A and B 

can then be directly determined from the number of matched words (common words) in 

these two sentences. For example, if spoken sentences A and B are “I have a meeting in 

London tomorrow” and “Where is my meeting tomorrow?” respectively, then “meeting” 

and “tomorrow” are the matched words. Since only subsets of words in sentences are 

matched, sentence matching is a form of partial matching. This partial sentence-matching 

concept can be applied to spoken sentence retrieval. 

Because this similarity is defined semantically, using a speech recognition system with 

acoustical and language models to transcribe spoken sentences into semantic texts is 

intuitive. To develop a language-independent retrieval system with a small required 

memory and favorable performance for a medium-sized sentence database, feature-level 

partial matching algorithms that do not use acoustic and language models are proposed 

herein. 

5.1.2 Spoken sentence retrieval based on feature-level partial matching 

This subsection presents a new partial matching system that is applied to the feature level. 

Figure 10 shows the proposed feature-level partial matching. First, the features of the 

spoken sentence are extracted frame by frame. The feature sequence is then segmented into 

equally sized matching units that are called feature pattern units (FPUs). Given a query 

sentence Q with l FPUs and a database sentence D with k FPUs, the sentences Q and D are 

denoted by Q =  1 2 ...F F F
sub sub sublq q q  and D =  1 2 ...F F F

sub sub subkd d d . These equally sized FPUs of 

the query and database sentences form a matching plane, shown in Fig. 11. Each matching 

block in the matching plane is associated with an FPU in the query sentence and the 

database sentence. 

Let   be the feature-level similarity function. The global similarity score for Q and D in the 

feature-level is calculated  
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where [ , ]F F
subj subid q  is the local similarity score, which quantifies the similarity between 

FPUs F
subiq  and F

subjd ; ( ) 1 /FM D k  represents the normalization factor for different 

database sentences. 

Clearly, [ , ]F F
subj subid q  depends on the feature distances between every pair of FPUs, F

subiq  

and F
subjd . Although [ , ]F F

subj subid q  can also be implemented using [ , ]S S
subj subid q , however, a 

distance threshold is required (Itoh, 2001; Itoh & Tanaka 2002). Further, this threshold is 

difficult to define owing to variation in speech. Without a threshold comparison, an attempt 

is made herein to find a better similarity score function based on only the feature distances. 

 

Fig. 10. Proposed feature-level partial matching algorithm. 

To test which weighting function performs well, experiments on inverse exponential 

weighting (IEW(X) = 1/eX) and inverse distance weighting (IDW(X) = 1 pX , where p is an 

integer weighting power) techniques for summing local similarity scores were conducted 

(see the previous work (Lin & Wang, 2007) for details). Based on this experiment, the IDW 

function outperformed the IEW function; therefore, IDW was used to evaluate the similarity 

score. The global similarity score function Ψ is defined as, 
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      
1 1

, IDW distance ,
l k

F F F F F
subj subi

i j

D Q d q M D
 

      (21) 

where F
subiq  denotes the i-th FPU of the query sentence, and F

subjd  represents the j-th FPU of 

the database sentence. The IDW method provides a measure of estimating uncertainty of 
variables. Moreover, this approach is sufficiently flexible to model the variables in a trend 
curve (Tomczak, 1998). 

5.2 WMPB algorithm 

Based on the above description, the proposed spoken sentence retrieval is summarized as 
follows. 

Step 1. Sentence segmentation and feature extraction 

Assume that the FPU size is n frames. The length of the overlapping between successive 

FPUs is n/2 frames (Ng & Victor, 2000). A spoken query sentence and a spoken sentence 

from the database are segmented based on the FPU size, with n/2 overlapping frames. The 

FPU overlap of n/2 frames is taken from another work (Itoh, 2001). Moreover, such a setting 

covers each frame in the query and database sentences; this scheme of redundancy is 

thought to be advantageous for partial matching. According to Fig. 11, this query sentence 

has l FPUs and the database sentence has k FPUs. 

Step 2. Determination of matching plane 

For a query sentence with l FPUs and a database sentence with k FPUs, a 2-D matching 
plane that contains l×k matching blocks is created. T matching planes are created if the 
database contains T sentences. Figure 11 illustrates the creation of the matching planes. 

Step 3. Calculation of the similarity score of each matching block 

For each matching block, dynamic programming is utilized to calculate the feature distance 
of the two FPUs. These feature distances are then used to determine local similarity scores 
using the IDW function. 

Step 4. Accumulation of similarity scores 

Over the whole matching plane, the similarity scores associated with all of the matching 

blocks are accumulated to yield a global similarity score.  

Step 5. Iterative checking sentences from other databases 

Repeat steps 1 to 4 for the other database sentences until all of their global similarity scores 
are obtained. 

Step 6. Ranking of database sentences 

Rank the database sentences in accordance with global similarity scores. Because the local 

similarity scores of all the matching blocks in the matching plane are accumulated to yield a 

global similarity score, the proposed spoken sentence retrieval method is called the whole 

matching plane-based (WMPB) algorithm. 
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Fig. 11. Example of creation of matching plane. 

5.3 Embedded system implementation 

The proposed spoken sentence retrieval system was realized in a Pocket PC (HP iPAQ 

H5550) with a 128 MB RAM and 48 MB flash memory. The Pocket PC uses an Intel PXA255 

processor (an XScale micro-architecture based on the ARM V5TE), which is a dedicated 

portable chip and suitable for handheld devices (www.intel.com). A 16-bit integrated audio 

codec (AC’97 2.0) was adopted for concurrent real-time speech input/output. The average 

memory size of one sentence was 142.3 kB with a sampling rate of 8 kHz. The Microsoft 

embedded complier based on Visual C++ 4.0 was used for the OS of the Pocket PC. Since the 

PXA255 processor does not support floating-point computation, a fixed-point conversion 

strategy was conducted to tackle the problem (see (Lin & Wang, 2007)). After the conversion 

method transformed the partial-matching program into a fixed-point format, the program 

was burned into the onboard flash memory. The system showed that the program occupied 

only 140 kB memory, which is appropriate for portable devices. 

5.4 Experimental results 

The experiments are divided into two phases - the parameter setting phase and the 

evaluation phase. In the parameter setting phase, experiments are conducted to find the best 

parameters of the IDW function and the FPU size for the proposed algorithm. Table 6 lists 

the characteristics of the experimental environment. Some experiments were to evaluate the 

retrieval performance of the proposed partial matching algorithm. Sentences were spoken 

naturally by one person without controlling the duration of the words or speaking at a 
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deliberately chosen rate. The query sentences partially matched their related database 

sentences. Here, matching keywords are defined as the terms that are common to queries 

and their related database sentences. Table 7 lists the overall statistics concerning the 

experimental database. The database sentences were ranked by their global similarity scores. 

The retrieval performance was assessed using the most commonly used measurement, 

which is non-interpolated mean average precision (mAP) (Baeza-Yates & Ribeiro-Neto, 

1999; Lo et al., 2002). The mAP is defined as, 

  
1 1 1

1 1 1
mAP precision

ji

Qj

NML

N
ji j k

k
L M N  

       
    

    (22) 

where jN  denotes the total number of relevant sentences for query j ; iM  represents the 

total number of queries in batch i ; L  is the total number of query batches, and 

 precision
Qj

N k  is the precision of jQ  when k  sentences are retrieved. Finally, Table 8 

summarizes the overall statistics for the entire experimental database. 

 
 

Input 
 

Spoken query sentence 

Output Ranking of spoken database sentences 

Acoustical environment In-door environment 

Sampling rate 8 kHz 

Quantization 16 bits 

Frame size 256 samples (32 ms) 

Frame overlapping size 64 samples (8 ms) 

Speech feature 10-order LPCCs 

DTW local path constraint Type 1 

FPU size 22 frames 

IDW 1/X8 

Table 6. Characteristics of experimental environments. 

 

Data set Data set A Data set B Data set C 

Phase 
Parameter 

setting phase 
Evaluation phase 

Number of database sentence 50 Mandarin 50 Mandarin 
50 Mandarin + 

50 English 

Number of query sentence 15 15 30 

Percentage of common words among queries and 
their relevant database sentences 

46.2 42.9 51.3 

Statistics type Min Max Mean Min Max Mean Min Max Mean 

Frame number of database sentence length 68 120 90.2 63 114 88 50 192 92 

Frame number of query sentence length 65 89.1 73.8 62 85 71.6 66 208 76 

Number of relevant database sentence per query 3 7 3.21 2 7 3.47 2 6 3.86 

Table 7. Database statistics. 
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Platform 
Data 
set

# database 
sentences

#query 
sentences

mAP
Response time for one 

query (sec.) 

PC (Pentium 4 3.0GHz with 
512Mb RAM) 

B 50 Mandarin 15 0.887 <0.5 

C 
50 Mandarin +50 

English
30 0.763 <1.0 

iPAQ H5550 PocketPC 
B 50 Mandarin 15 0.799 <1.5 

C 
50 Mandarin +50 

English
30 0.675 <2.5 

Table 8. Experimental results. 

6. Conclusion 

This chapter presented various speech processing approaches for use in embedded systems, 
involving speech feature extraction, sound localization, speaker identification/verification, 
and interactive retrieval of spoken documents. To facilitate implementation, related 
algorithms and methods of improving them are discussed with reference to FPGA and 
ARM-based architectures. Experiments were also conducted using testing datasets; the 
results showed that proper hardware design can improve the performance of the 
approaches, and the efficacy of the improved algorithms was subsequently demonstrated. 
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