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1. Introduction

Multimedia systems have to deal with the processing of large amount of data in a bounded
time window. In order to fulfill the demanded requirements, the critical part of the system
functionality has traditionally been implemented using custom hardware. The result is the
improvement of both the throughput and the performance of the final system.

The first approaches dealing with hardware-based acceleration were based on the design of
custom ASICs (Application Specific Integrated Circuits) or the use of DSPs (Digital Signal
Processors). Lately, the emergence of high capacity reconfigurable devices such as FPGAs
(Field Programmable Gate Arrays) is encouraging developers to use this technology for
the implementation of multimedia embedded systems. Some of the reasons that back up
this trend are: short development/prototyping time, the ability to customize hardware, its
flexibility, or reconfiguration facilities, just to name a few of them.

Ideally, the development of a multimedia embedded system should be the result of a simple
design process, where a set of cores are chained according to a certain execution flow, and later
tuned to fit into a certain target platform. To achieve this scenario, a library of platform and
vendor independent parameterized components is required. However, nowadays, this is an
utopian vision since no standard with such characteristics is available. Each vendor develops
their applications and components according to their own needs, without agreeing a common
interface nor synchronization mechanisms with other third party actors. As a result, this
implies extra difficulties when trying to port working solutions to other platforms. Therefore,
a set of standards for developers is necessary in order to assure cross-platforms designs.

Currently, there are some standards for multimedia systems and applications development.
However, vendors would rather not assume the cost derived from the adaptation of their
products (legacy or new) in order to be compliant with these new norms.

The lack of standardization is the source of ad-hoc solutions whereas the adoption of
standards would provide a portable, flexible and reusable answer to the problems that arise
in multimedia embedded systems design, and the related applications (i.e. delays in the
commercialization of new products, reduced productivity, increment of the development
costs, etc.).

www.intechopen.com



130 Embedded Systems — High Performance Systems, Applications and Projects

In this chapter, a Hw/Sw framework for SoC based embedded multimedia systems is
described. In addition to the benefits inherited from the use of the FPGA technology, our
solution is also based on the use of OpenMAX standard [1]. This allows building multimedia
embedded systems in a reasonable time and, at the same time, being such systems fully
reusable and portable.

OpenMAX is an open standard promoted by the Khronos Group ! which pursuits to reduce
the cost and complexity of porting multimedia software to new processors and architectures.
Since the OpenMAX standard provides an only software reference implementation, it has been
necessary to revisit and redesign all the architectural concepts and protocols of OpenMAX for
the heterogeneous embedded systems ecosystem; this means that the proposed framework
is intended for hybrid (Hw/Sw) multimedia systems development. Therefore, a flexible
and transparent mechanism to manage Hw/Sw interfacing is necessary. Moreover, to cope
with the demanded temporal and computational requirements, it is mandatory to keep the
overload introduced by the integration infrastructure to a minimum.

The framework described in this work borrows the facilities provided by the Object Oriented
Communication Engine (OOCE) [5]. OOCE is an heterogeneous middleware for SoCs.
It provides basic and advanced in-chip communication services to transparently handle
communication between the software and the hardware parts of an embedded system. In
order to meet the performance levels demanded by multimedia systems, in this work we have
extended OOCE with new features and some optimizations. The framework also follows a
design approach based on MDA (Model Driver Architecture, [6]), in order to ease the design
workflow (as it is stated in the “MDA manifest” [7]). The main purpose of the framework is
then raising the level of abstraction when defining the multimedia system, in order to facilitate
the automatization of the design, analysis and verification through the use of executables
models.

2. Related works

Multimedia applications have their own requirements that differentiate such applications
from other domains. For example: an intensive traffic of data and use of the memory
subsystem, a characteristic application model, real time restrictions, etc. These particular
features have led the research community to invest a significant amount of effort in projects
addressing the specific challenges imposed by the development of multimedia (embedded)
systems.

The most widespread solution to improve the throughput relates to to the development of
the multimedia platform with hardware acceleration in mind. This solution is mentioned
in [8] and [9], which respectively implement the computational cores as coprocessors or
heterogeneous reconfigurable engines.

The Cell BroadBand Processor [10], with its characteristic four bus ring, combines a
general-purpose Power Architecture core with streamlined coprocessing elements which
greatly accelerate multimedia and vector processing applications.

Recently, many-core architectures for graphical applications, such as NVidia GPUs arrays,
have gained a great importance mainly due to the availability of CUDA [11], an open software
development framework based on a standard widespread language as it is C.

Ihttp://www.khronos.org/
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PeaCE [12] is another alternative to develop Hw/Sw multimedia platforms. PeaCE provides
a development flow (from functional simulation to the synthesis process) to multimedia
applications with real time constraints.

An important factor of these platforms is how the components in the system communicate.
Generally, communication mechanisms are fixed, with a null or limited capability to be
customized. Since there are many factors that can affect to the communication performance
that should be considered, offering the ability to reorganize the communication channels in
run time is essential. This would also be a useful tool for designers that could quickly and
easily perform a design space exploration.

For example, Na Ra Yang et al. [13] propose double buffer, open row access and interleaved
memory techniques in order to achieve an efficient communication. Another alternative to
improve the communication performance is described in [14] which presents a solution based
on a time multiplexed memory approach, where the system memory is accessed several times
during a single bus cycle. To allow this, the memory and the DMA logic must be operated at
a clock frequency which is a multiple of the clock frequency of the microprocessor.

In relationship to the performance analysis of communications in multimedia dedicated
platform, in [15] several alternatives for a shared memory data exchange mechanism are
compared: point-to-point connection, and based on bus architecture using DMA. In the
the final part of the work, they present a performance estimation tool based on a Bus and
Synchronization Event Graph (BSE graph) that is used to obtain statistical results.

Concerning the use of MDA techniques for multimedia embedded systems, MARTES
(Model-based Approach to Real-Time Embedded Systems development, [16]) is a project
whose main goal is the use of UML and SystemC in embedded systems. MARTES has taken
some ideas from MDA, particularly, the separation of the application model from the target
platform. Ying Wang et al [17] propose an MDA approach combining UML and SystemC in
order to promote stepwise semiautomatic conversion from UML specification to executable
SystemC code. They intend to build a smooth SoC design flow in which the implementation
can be derived directly from the specification.

3. OpenMAX

The OpenMAX standard is an initiative promoted by the Khronos Group that aims to unify
the way media components interoperate, in order to reduce the cost and complexity of porting
multimedia software to new processors and architectures.

As shown in figure 1, OpenMAX is composed of three layers:

* OpenMAX Application Layer (AL, [2]) provides a standardized interface between an
application and the multimedia middleware that provides the services needed to perform
an expected API functionality. OpenMAX AL provides application portability with regard
to the multimedia interface.

¢ The OpenMAX Integration Layer (IL, [3]) is an API that provides access to the software
components in a system. In this layer, a standardized procedure is defined for the
activation, initialization, creation and disposal of components.

This layer contains three main entities (figure 2):
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Fig. 1. OpenMAX Portability Library [1]

— The OpenMAX IL Client is the entity that interacts with IL Core. Normally it is a
functional piece of a framework or application.

— The OpenMAX IL Core is used for dynamically loading and unloading components
and facilitating component communication. Once loaded, the API allows the user to
directly communicate with the component, which reduces the system overhead.

— The OpenMAX IL Components (OMX Components) represent individual blocks of
functionality. Components can be sources, sinks, codecs, filters, splitters, mixers, or
any other data operator.

OpenMAX IL Client

Fig. 2. OpenMAX IL structure

* The OpenMAX Development Layer (DL, [4]) defines a set of low-level multimedia
kernels, or media processing building blocks, that might be used to accelerate traditional
computational hotspots. The functional scope of the DL API spawns several key domains
to mobile multimedia platforms, including the following: signal and image processing,
audio coding, image coding, and video coding.

The typical multimedia application topology in OpenMAX depicts a chain of OMX
Components that process the data flowing from their inputs to their outputs. OpenMAX
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offers a standardized component interface for each of the following domains: audio, video
and image data.

OMX Components handle data communication through ports. A port is an interface that
represents: the connection to other components, the type of streamed data and the buffers
needed to maintain such connection. In OpenMAX a buffer is an entity that holds the
information and represents the minimum unit of data that can be exchanged between two
OMX Components. One OMX Component sends/receives buffers to/from other OMX
Components through output/input ports.

3.1 OpenMAX communication models

Communication between components can take place in three different ways, as it is described
in the standard. The designer is free to choose the one best suited to his needs. Therefore, the
variety of communication models provided by OpenMAX makes the adaption of applications

easier. Briefly, we summarize the three types of communication which are depicted in figure
3:

* Non-Tunneled: the communication between components is established through the entity
that implements the application control. In figure 3 OMX Components A and B use this
scheme.

* Tunneled: the communication between components takes place directly. To this end, the
standard defines a buffer exchange convention. In figure 3 OMX Components B and C use
this scheme.

* Proprietary: the communication between components takes place directly but, opposite
to the tunneled case, the mechanism is not defined by the standard. In figure 3 OMX
Components C and D use this scheme.

Nen-Tunneled
Communication

OpenMAX IL Core ]

Tunneled
Communication

Propietary
Communication

Fig. 3. OpenMAX communication models

3.2 OpenMAX in this project

Lately, the utilization of FPGAs to instantiate components for multimedia system acceleration
has grown significantly. Through the use of OpenMAX in embbedded systems, developers
can reduce the effort required to design multimedia hardware because: (a) the whole core
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Fig. 4. Example of an implementation of an heterogeneous Hw/Sw multimedia processing
chain with Hw OpenMAX Cores

logic can be reused when targeting a new platform (standardized interfaces), (b) it is not
necessary to hand write the drivers or code that depends on such components and, (c)
communication issues are separated from the processing primitives (same synchronization
protocols, standardized communication mechanism, etc.).

However, the standard only specifies the primitives and services which conform the different
API layers, always from an only-software point of view. So, the OpenMAX vision has been
extended, mainly working at the Integration and Development layers of the standard, to
embrace hardware components implementing accelerated multimedia functions.

In Figure 4 a representation of a heterogeneous multimedia processing chain is depicted. Some
of the components are implemented, using our approach, as hardware accelerators. In this
example, components B and C in the chain are mapped to a hardware implementation of an
OpenMAX Core. Every Hw OMX Component in the FPGA fabric has a software wrapper
that implements the OpenMAX Component class interface in order to maintain the compatibility
with the standard. However, the software wrapper has no responsibility at all in the data
transmission process between Hw OMX Components that is actually performed without any
software intervention. Synchronization, control and data flow management is performed by
the hardware thanks to the Hardware-to-Hardware Tunneled invocation semantics provided by
the integration infrastructure, which is described in more detail in the next subsection. This
has a positive impact in performance since the processor is not mediating in every single data
transfer that takes place in the system.
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4. Object Oriented Communication Engine

OOCE is a middleware designed to manage the communications in a SoC through
message passing. OOCE defines a series of architectural elements that provide a set of
basic communication services inspired in the Distributed Object Paradigm and the Remote
Method Invocation (RMI, [18]) semantics. The Distributed Object Model is the basis for an
homogeneous communication mechanism, realized through an infrastructure that hides the
implementation details from the designer.

In OOCE, every element in the system is an object that can be implemented either in hardware
or software. Those objects make use of a set of components and hardware/software artifacts
to invoke a functionality from others.

The OOCE infrastructure was designed with these key features in mind:

* Support all communication scenarios that can take place in a SoC. This even includes
communication with external objects (outside the chip) through a network interface.

* Provide transparency and a unified view of the communications in the system.

¢ Facilitate the programmability, making the embedded software development simpler and
more productive because of the use of automatic generation tools.

* Be efficient, scalable and fault tolerant, keeping the integration infrastructure overload in
minimum levels.

* Be independent from a specific communication protocol or data transport layer.

OOCE is based on the Client/Server communication model with several additions in order
to implement RMI semantics. The number and type of the messages exchanged between
clients and servers are defined in order to invoke certain functionality in the latter. A message
stands for a invocation and embodies: all the necessary information to reach its destiny
(header), the parameters and a callback address if necessary (i.e. to deliver the response
back to the client). Then, sending a message means to perform one or several transactions
over the communication media (e.g., bus writes) with the destination address built from the
header information. This communication scheme is common for any communication scenario
regardless of the nature (Hw or Sw) of the objects involved. In the case of Hw actors, special
adapters to the bus (proxies and skeletons) implementing the FSM which controls this process
are generated in an automatic way.

4.1 OOCE workflow

One of the strengths of using OOCE is the capability to design the whole system with a single
model (the object model), valid for all the system components regardless their implementation
technology. This feature, together with a set of tools that enable the automatic generation
of the platform-dependent communication adapters, makes OOCE very practical from the
designer’s point of view. Hence, each developer must be only focused in what he is really
good for (for example, a hardware developer is concerned in writing efficient VHDL code),
whilst the responsible of application coding has only to write good algorithms, using any
available resource as a regular object.

As it can be seen in figure 5, application experts make homogeneous use of any platform
resource in the form of object interfaces. The OOCE middleware provides the developers
with the corresponding interface compilers for every technology involved in the system.
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DOMAIN-SPECIFIC DEVELOPERS
HDL, Verilog @ 9'1
Iface SWObject { face HWObject { face RemoteObject {
void MethodA[ ); void MethodA[ void MethodA{_):
int MethodB(...}; int MethodB{...}); int MethodB( )
}

Algorithm() {
SW Object obj1;
HW Object obj2;
Remote Object obj3:

65}1 MethodA(...);
obj2 MethodA(.. J;
obj3 MethodAl...);

Fig. 5. Separation of roles, unified model and automatic generation in OOCE

Object interfaces are described using an Interface Description Language (IDL). In OOCE the
IDL used to this end is Slice (Specification Language of ICE, the Internet Communication
Engine, [19]). Once the interfaces have been declared, the interface compiler generates the
adapters for each object (proxies and skeletons that are responsible for building/decoding
the invocation/response messages). Depending on the nature of the object, the task can
be “slice2vhdl” for hardware objects or “slice2<object_language>" for software objects. The
generated adapters are optimized to keep the overhead to a minimum. Through this adapters
and thanks to OOCE infrastructure each object can communicate in an homogeneous and
transparent way with the rest of the object of the system.

As an example of what a hardware object for OOCE actually means, let see figure 6. Here,
the entity interface for a hardware module and its skeleton (which connects to the bus) are
shown, for example, and interprets the protocol and signals, redirecting the transactions that
mean the activation of an operation on the hardware module. If another hardware object
needs to execute some functionality from OBJ A, a skeleton module will be attached to it
(see figure 6 on the right side). The skeleton is the mirror image of OB] A, with the same
entity interface. Thus, OBJ B will use the point-to-point invocation protocol whereas the actual
invocation takes place through the bus. Since both of them are generated in an automatic
way from the object interface description, the internal format used to code the messages is
completely transparent to the user. Developers should only focus their efforts on implement
the functionality of the object respecting its interface.
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Fig. 6. Automatically Generated Hw Object

4.2 O0OCE communication models

As mentioned in the previous subsection, OOCE oversees every transaction between objects
in the SoC. The actual methods implemented by the communication systems are characterized
by the following features: (a) Hw objects interoperate transparently with the Sw subsystem
and conversely; (b) efficient communication mechanisms between any kind of component

and; (c) flexibility.

From the whole system point of view, the main advantage is the transparency in the
communications between HW /SW objects with a low overhead. In order to achieve this, the
system must support three types of communication scenarios: Hw/Hw, Hw /Sw and Sw/Hw.
Apart from these three types, OOCE offers the possibility of establishing communication with
objects that are outside the chip (“External communication”). Such objects can be regular ICE
objects running on a computer or OOCE Hw /Sw objects in a OOCE-compliant SoC.

To establish any communication in the system implies that there must be at least one proxy for
each client object that wants to make an invocation, and exactly one skeleton for each server
object.

In figure 7 there is an example of a system composed by four OOCE objects: two clients
(“Obj4” is a Sw object and “Obj2” is a Hw object) and two servers (“Objl” in Hw and
“Obj3” in Sw). Clients can require the functionality provided either by a Hw or Sw server
through their proxies. There is also an external object that is connected with “Objl” through
the Remote Object Adapter (ROA). The three types of communication paths, plus external
communication, are represented in the figure.

4.2.1 Hw/Hw communication

This type of communication occurs between two hardware objects that are connected to a
common transport architecture. Within the SoC framework we focused on bus interfaces and
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hierachies but this approach is flexible and easy to port to other paradigms such as Networks
on Chip.

Back to Hw-Hw communication, the elements involved are: (a) A hardware client object, (b)
the proxy of the client, (c) a hardware server object and (d) the skeleton of the server. The
sequence of generic Hw/Hw invocation steps will be described:

1. The client makes the invocation, activating the corresponding signals of its object interface.

2. The proxy receives the invocation and its parameters and translates them into one or more
transactions that are sent through the bus.

3. The skeleton recognizes the address of the transaction, so it reads the data contained in the
bus transfer.

4. Finally the skeleton transforms the transaction into an invocation and sends it to the server
through the server interface signals.

Figure 7 represents Hw to Hw communication between the client object “Obj2” and the server
object “Obj1”.

4.2.2 Hw/Sw and Sw/Hw communication

OOCE offers a unique sight of all system objects and a common semantic to their functionality
access. In OOCE communication between Hw and Sw objects is done transparently. In
order to establish a Hw/Sw communication it is only necessary to incorporate a minimal
infrastructure, since the nature of the objects is different, that does not affect the former
implementation of the Hw object nor the way the application uses such objects. The elements
that have been incorporated to achieve this goal are: the Local Network Interface (LNI) and
the Local Object Adapter(LOA).

In this case, the Hw client object invokes through the proxy which generates the
corresponding bus transactions. Then, the LNI (which serves as a bridge to the Sw objects
that are running in the processor) forwards the traffic whose address is linked to any of the
Sw object references.
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The LNI has a routing table in which there is information to map physical address (object
identifier) to running software processes. The invocation and its parameters are passed to the
LOA that finds the proxy/skeleton in charge to process them.

In the figure 7, both types of communication are represented between: (a) the client object
“Obj2” and the server object “Obj3” for Hw/Sw communication and (b) the client object
“Obj4” and the server object “Objl” for Sw/Hw communication.

4.2.3 External communication

OOCE allows other entities (typically other OOCE objects in a different SoC or ICE Sw
objects) to communicate with internal objects. This service is totally transparent to the internal
objects. Again, transparency applied to this scenario means that objects and OOCE associated
infrastructure should not change or adapt their behavior to this new scenario. For this
reason, OOCE defines a subset of features that are 100% compatible with the ICE commercial
middleware. The system data type and encoding rules of OOCE distributed object model are
fully compatible with the data coding scheme of ICEP (ICE Protocol). This make it easier, to
provide OOCE with the ability to communicate with ICE objects, because it is not necessary
to re-encoded the body of the message when it travels from the in chip environment to the
external network.

The Remote Object Adapter (ROA) is devoted to adapt the external and internal
communication protocol.

4.3 OOCE extension

The need to extend OOCE appears when it is necessary to support the requirements of
multimedia systems. Indeed, the first step was to identify the features of the OpenMAX
standard that would mean changes or adjustments in the former OOCE architecture.
Following, we enumerate the most important ones:

( OMX Component \

OOCE Object
WRAPPER
OMX Component Interface
0OCE Skeleton l ]
Extended 0OCE
Extended 00CE Proxy Skeleton

: 4

Fig. 8. From object model to component model

* The communication in OOCE (Hw/Hw, Hw/Sw and Sw/Hw) is message oriented, not
intended for shared memory communication (data oriented). Therefore, OOCE must allow
the components to exchange information through shared memory in a safe way.
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* OpenMAX offers three types of communication mechanisms that should be implemented
by OOCE, so both proxies and skeletons must be upgraded with new data types and
control logic.

* OOCE objects should behave as OMX Components, so it is necessary to provide
OOCE objects with a wrapper that implements the part of the OpenMAX Component’s
functionality that is relevant from a hardware implementation option (e.g., parameter
initializaton).

¢ The logic to manage the communication and the object state must be added.

* The implementation of the OpenMAX methods should not affect the OOCE objects.

In addition, the overhead introduced by the above modifications should be as small as
possible.

5. An OMX realization for FPGAs

The solution architecture that we propose is based on FPGA devices (in particular ML507
Virtex-5 Development System). In order to easily port the OpenMAX libraries to this board,
an adapted version of a Linux Kernel (Linux-2.6-xInx.git for XUPV5-LX110T) has been used as
the operating system in our prototypes. This allowed us to have the multimedia application
implemented entirely in software, as the starting point.

Then, the application components that are candidates for hardware acceleration have to be
implemented as Hw OMX Component (described in detail next). At this point is where
the extended OOCE comes in, providing the standard compliant Hw/Sw communication
mechanism.

So, the bulk of this proposal is the implementation of all communication alternatives between
two OMX Components. Communication between two OMX Components that remain
implemented in Sw is not treated here since it follows the same principles and mechanism
as defined in the standard, and the implementation reference provided by Khronos. So,
we concentrate on those scenarios where a Hw version of the OMX Component is present.
Every Hw OMX Component needs a software counterpart that interacts with the rest of
the OpenMAX middleware and other software components. This is mandatory in order to
keep the rest of the application unchanged. Such software wrapper stands for the hardware
component and exactly implements the same API required by the standard. The difference
is that this is a modified version of the Sw OMX Component, that is, a facade that only
redirects to the Hw OMX Component invocations related to the hardware. As an example,
the SetupTunnel primitive involving two Hw OMX Components is translated by our OMX
Component (the software wrapper) into several OOCE invocations to configure the internal
registers in the hardware. These registers indicate the base address where data must be written
or read.

To illustrate what transparency and easy integration of Hw components actually mean, let us
introduce the listing 1 where an extract of an OpenMAX application example running in a
FPGA is represented. The application receives one video frame from the Ethernet interface,
it transforms the RGB picture to grey scale, it applies a border detection algorithm and it
finally sends the result via Ethernet. The img_ethreader and image_ethsink components are in
charge of the acquisition of the image to be processed by the chain, and the delivery of the
result, respectively. These components run in software, whereas the hw.img_RGB2BW and
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hw.img_sobel components are implemented in hardware. Nonetheless, there are no distinctions
between the use of the hardware components and the software ones since both of them are
OMX compatible.

Listing 1. Example of an implementation of an heterogeneous Hw /Sw multimedia
processing chain with Hw OpenMAX Cores.

=

int main(int argc, charx*x argv) {
/+Getting Components Handlerx/
OMX\_GetHandle (&appPriv->ethreader, ‘‘omx.ext.image.ethreader’’, NULL,
&readercallbacks) ;
OMX\_GetHandle (&appPriv->hwrgb2bw, ‘‘omx.hw.img\_RBG2BW’’, NULL,
&RGB2BWcallbacks) ;
OMX\_GetHandle (&appPriv->hwsobel, ‘‘omx.hw.img\_sobel’’, NULL,
&hwsobelcallbacks) ;
OMX\_GetHandle (&appPriv->ethsink, ‘‘omx.ext.image.ethsink’’, NULL,
&sinkcallbacks) ;
/+*Set the size for img Hw OMX Components=*/;
sSize.sWidth.nValue = 640;
13 sSize.sHeigth.nValue = 480;
14 OMX\_SetConfig (&appPriv->hwrgb2bw, EXT\_OMX\_IndexConfigImgSize,
15 &sSize);
16 OMX\_SetConfig (&appPriv->hwsobel, EXT\_OMX\_IndexConfigImgSize,
17 &sSize);
18 /+*Setting up tunneled communication=/
19 OMX\_SetupTunnel (appPriv->hwrgb2bw, 1, appPriv->hwsobel,0);
20 /+ Change HW OMX Component state =/
21 OMX\_SendCommand (appPriv->hwrgb2bw, OMX\_CommandStateSet,

O 0 N N G s W N

== =
N = O

2 OMX\_StateIdle, NULL);

23 OMX\_SendCommand (appPriv->hwsobel, OMX\_CommandStateSet,
24 OMX\_StateIdle, NULL);

25 OMX\_SendCommand (appPriv->hwrgb2bw, OMX\_CommandStateSet,
26 OMX\_StateExecuting, NULL);

27 OMX\_SendCommand (appPriv->hwsobel, OMX\_CommandStateSet,
28 OMX\_StateExecuting, NULL);

30 OMX_DeInit ();
31 return 0O;
32}

Behind the scenes, there is much more to take into account for hardware components.
In figure 9, a sequence of messages for a tunneled communication between Hw OMX
Components is represented. The diagram shows how the OMX Component, that is
used as a wrapper, extends the behavior of standardized messages by adding hardware
invocations. For example, when a OMX Component receives the “start execution” by
OMX_SendCommand(OMX_CommandStateSet, OMX_StateExecuting) notification, it sends
an “active” invocation to Hw OMX Components.

Following in this section, the different communication models will be described, but before
this it is important to define: “ What a Hw OMX Component is”.
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Fig. 9. Init sequence diagram of tunneled communication between two Hw OMX
Components

5.1 Hw OMX component

The effort of a multimedia embedded systems developer is too high. The OMX IL hardware
adaptation we present in this work helps to reduce this effort enabling the designer to access
to standardized procedures, automatic generation, etc.

Since the OMX IL is in the middle of the OMX software stack it bears some of the
most important functionalities in OMX (initialization and connection of component as
well as resource, communication and synchronization management). Therefore a Hw
implementation of the main OMX IL Components will help to raise the throughput of an
OMX based multimedia platform.

The Hw OpenMAX Component is the most important component in this layer since it embeds
the hardware module that actually implements the multimedia function. That module, the
inner one that appears in figure 10, is called Processing Core (PCore) and provides hardware
acceleration to the corresponding multimedia function in the Development Layer.

As previously mentioned, each Hw OMX Component has an associated software wrapper.
This wrapper principally acts as the facade to other OMX framework and application
components, with the following goal:

¢ To act as a bridge for Hw/Sw interfacing operations. This includes, the configuration of
the component, or the establishment of the Processing chain, for example. In this case, the
standardized OMX Component class would have to be specialized and its methods would
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Fig. 10. Hw OMX Component structure

be rewritten to translate software invocations to input/output transactions over the bus
through the OOCE middleware.

The OOCE skeleton detects and interprets OOCE messages that encapsulate the invocations
addressed to the Hw OMX Component turning them into specific request to the internal units.

The architecture of the Hw OMX Component is thought as the placeholder for the PCore.
Getting into details, the PCore has a fixed physical interface to the Hw OMX Component
which makes it independent of the bus technology and, therefore, the platform in which it
is going to be deployed. Figure 10 shows the structure of a Hw OMX Component mainly
dominated by the presence of two local memories, where input and output data are stored. A
complete buffer (the minimum data unit to be processed by a Hw OMX Component) must be
in the input memory before any other action.

Then, an OMX “EmptyBuffer” operation needs to be received in order to “start” reading the
input memory. Another signal, the “can_write” signal, is used to control whether it is possible
or not to store data comming from the PCore in the output memory.

The number of data words that PCore has to consume is indicated by “words_in" signal. Once
the buffer has been consumed (which means, completely read by the PCore and it activates
“read_done” signal) a new one is demanded to the previous component (source_address
register stores the address) in the chain (“FillBuffer” OMX operation). Notice that it is not
necessary to wait for the Hw OMX Component to finish the processing of one buffer before
asking for a new one. This optimization allows to parallelize component’s execution with
buffer transmission over the on-chip bus.
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Once the component finishes the processing of the current buffer and writes the last word
in the output memory (PCores activates the “write_done” signal), it transfers the output
buffer to the next-in-the-chain component’s input memory (addressed by the content of the
Target_address register) using a local DMA (Direct Memory Access) engine with a dedicated
OOCE proxy. Now, the component is ready again to process the next buffer.

The Hw OMX Component implements two out of the three communication mechanisms
described in the standard. Proprietary data exchange is not considered in this work since
we believe the best benefit from an application is derived from the use of flexible and open
models. As briefly sketched in the above paragraph, synchronization operations are handled
separately (by the skeleton) from the data flow (by the internal DMA).

Although the Hw OMX Component can communicate in two different ways, we advocate
the use of tunnel communication, which represents a decentralized model, because efficiency
is an essential part in dealing with data transmissions in multimedia systems. This model is
optimal in hardware since synchronization, control and data flow management are performed
without intervention of the software, thanks to the Hardware-to-Hardware invocation
semantics provided by the integration infrastructure (OOCE). It is easy to see the tremendous
positive impact in performance this method has, since the processor is not mediating in every
single data transfer that takes place in the system.

5.2 Hardware-to-Hardware communication model

Hardware-to-Hardware communication is based on the OMX Tunneled communication and
is the most efficient communication type available in the standard.

OpenMAX defines a set of methods and primitives that must be observed when a buffer
is exchanged between components. The communication meets the producer/consumer
pattern and the components involved in the communication exchange “FillBuffer” and
“EmptyBuffer” message types.

The goal is to transfer one buffer between two components without the intervention of
any other component in the system. The sequence of steps in a Hardware-to-Hardware
communication is the following:

1. The input local memory is empty. The component, as a consumer, sends a “FillBuffer”
message to the producer component.

2. The consumer waits. The producer writes the buffer in the consumer’s input memory and
sends a “EmptyBuffer” notification.

3. The consumer receives the “EmptyBuffer” invocation and begins to process the input
buffer.

4. As the component processes the buffer, the resulting data are saved in the output memory.

5. When the consumer has read the last word from the buffer (not necessarily processed) it
sends a “FillBuffer” notification to the producer again, avoiding unnecessary waiting.

6. When the output buffer is full and the consumer is ready to process The next buffer
(“FillBuffer” message, step 1), the local DMA logic transfers the buffer.

7. Finally, the component playing the role of producer sends the “EmptyBuffer” notification.

In figure 11 a Hardware-to-Hardware Tunneled Communication between three Hw OMX
Components is represented. The sequence of messages is also described in the picture. The
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Fig. 11. Sequence of messages in Hw-to-Hw Tunneled Communication

tirst component in the chain is the Source Component which only produces buffers that are
fed into the chain (a video streaming producer, ethernet reader or a simple file reader, as
examples). The second is a Filter Component which plays the role of both a producer and a
consumer. The last component in the chain receives the name of Sink which only consumes
data (typically for storing, transmitting or displaying).

In this kind of systems, in which our work is interested, it is essential to get the maximum
performance from the bus because it is the bottleneck in the communication. There is no
discussion about the bad suitability of bus-based systems when the application bandwidth
exceeds the bus capability. Nonetheless, the scenario we are considering is that where:

* Bus infrastructure is able to absorb the traffic generated by the multimedia application.
¢ Contention or arbitration issues and unoptimized transfers can result into failure.

Further optimizations have been developed in order to reduce the transmission latency of
buffers through the bus and maximize the use of the available bandwidth. With the proposed
optimizations, the number of cycles wasted due to punctual bus congestion is reduced,
redistributing bus workload using techniques that parallelize and interleave all the transfers
between OMX components. This is achieved by means of using the dead times while the
component is processing a buffer.

The first optimization (No Wait Until Fill) configures the local DMA engine to transfer packets
of N-words as soon as they are available in the output memory of the component. In the base
configuration (Wait Until Fill), the whole output buffer must be in the output memory before
the DMA starts transmitting it. The benefit of using this technique is twofold: (1) component’s
execution and output buffer transfer are overlapped; and (2) several buffer transmissions can
take place at the same time (DMA pipelining). The figure 12 represents this optimization, in
which the DMA engine sends data when the buffer is being filled without having to wait for
its filling.

The second optimization (multiple buffering, figure 13) is independent of the DMA
transmission configuration chosen. This technique allows to overlap: (1) in consumer mode,
the reading of the actual input buffer with the writing of a new input buffer; and (2) in
producer mode, the transmission of the actual output buffer with the writing of a new empty
output buffer (Wait Until Fill configuration preferred). To this end, the physical address space
of one memory is logically divided into N independently managed different regions. Thus,
full parallelism is achieved.
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Both optimizations are compatible and they can be used simultaneously, but depending on
the case their effectiveness might vary.

5.3 Hardware-to-Software communication model

Hardware-to-Software communication is also based in OMX Tunneled communication and
it occurs between a Hw OMX Component and a OMX Component (software). This
type of communication is not as efficient as Hardware-to-Hardware model, because of the
unavoidable presence of software routines, with the associated increase in latency.

A Sw OMX Component reserves an area in memory to store buffers, so the exchanging
of buffers takes place between the local memories in Hw OMX Components (Block RAM
memory) and the DDR memory in our platform. In this model the DMA engine of a Hw OMX
Component writes the buffer content into DDR memory and the synchronization messages are
sent/received through the software wrapper used as the facade. It is worth mentioning that,
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from the Hw OMX Component implementation perspective, there is nothing to change since
data transmissions are made through a proxy to memory. Thus, low level details related with
the memory technology and the type of connection used are isolated from the the component’s
logic.

SW Layer

__OMX_FillThisB uffer()

OMX_EmptyThisBuffer(/” .|

FillBuffer

____________________ \MPUT BUFFER

QUTPUT BUFFER

Fig. 14. Hardware-to-Software communication model.

In figure 14, the reader can see an example of Hardware-to-Software Communication model.
As shown in the figure, the OMX Component A serves as a wrapper for the Hw OMX
Component. This wrapper adapts standard methods into FillBuffer /EmptyBuffer invocations
that will be sent or received from/to Hw OMX Component.

5.4 Software-to-Hardware communication model

In this case the Sw OMX Component acts as a producer and the Hw OMX Component as a
consumer. The communication is based in the Tunneled OMX protocol too. In order to avoid
two main memory accesses (one for writing the output buffer data and another for reading
the input buffer data), the output buffer pointer of the Sw OMX Component is mapped to a
region in the input local memory of the Hw OMX Component (see figure 15).

This type of communication has a problem in terms of efficiency because in
Software-to-Hardware communication data is sent word by word, and burst transactions are
not possible, so to use the input buffer of the Hw OMX Component as output buffer of the
Sw OMX Component it is essential to get better communication performance.

With regard to the software wrapper for the Hw OMX Component, the implementation of
the buffer destination pointer has been slightly changed. The Sw OMX Component still uses
a memory reference to a virtual output buffer which really forwards memory writes to bus
transfers that reach the BRAMs in the Hw OMX Component. This represents an advantage
because there is only one copy of the buffer in the system, in contrast to the other models,
requiring less memory resources.
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Fig. 15. Software-to-Hardware communication model.

5.5 Multimedia applications modeling for embedded systems using UML

This work aims to model multimedia embedded systems (based on OpenMAX standard)
using some of the principles defined in Model Driven Architecture (MDA). For the correct
application of MDA, a language that has a precise semantics in the system domain is necessary
and it is being developed and is independent of any particular technology. For such a reason,
the UML (Unified Modeling Language) has been chosen since it can be specialized or extended
for dealing with specific domains or concerns. Moreover, the embedded systems domain
needs to accurately express some domain-specific factors as synchronization mechanisms,
memory capacity, power consumption or concurrency, for example. Because of this, we adopt
MARTE (Modeling and Analysis of Real-Time and Embedded Systems) [20] as the basis to
propose a UML profile intended to model embedded multimedia systems: MAME profile
(Multimedia Application Modeling for Embedded systems).

MAME integrates OpenMAX in its semantics through the modeling of the main concepts.
MAME profile is divided into two sub-profiles:

* A hardware platform profile to capture application-independent configuration of the SoC
used to deploy the multimedia system. In our case, several prototyping boards from
Xilinx have been modeled. This model feeds a set of scripts that generate automatically
the infrastructure that enables the system implementation on a specific platform.

* An OpenMAX profile for modeling the multimedia applications based on our proposal for
a OMX hardware realization. The definition drives the specification of the application
through three different levels of abstraction.

1. GAM Level (General Application Modeling) offers a general view of the whole
application (see figure 16). This level reflects the different components that make up
the application and concepts related to system architecture as: number of components,
media data types, interconnection network, bitrate of the components, etc.

2. IAM Level (Intermediate Application Modeling) provides a greater level of detail.
In this level, the OMX Components are classified into hardware or software,
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Fig. 16. GAM profile.

characterizing each one differently (see figure 17). The buffer concept is introduced
together with the roles of each component.

3. CAM Level (Communication Application Modeling) incorporates the rest of the
application attributes that have not been taken into account by the GAM and
IAM profiles. It focuses on modeling the communication between the application

components (see figure 18). The model supports the different scenarios of
communication and optimizations described in previous sections.

5.5.1 Performance analysis of the application

As the result of the application of MDA techniques over both the platform and application
models (figure 19), a Platform Specific Model(PSM) is obtained in order to be used to generate:

¢ An EDK-project with the instances of the necessary Hw OMX components.

e SystemC [21] simulation models that conforms an executable platform that allows testing
the performance of the system.

There are two different types of analysis that can be done thanks to the SystemC models and
MAME profiles above mentioned:

* Static. System bottlenecks can be detected or predicted through simple evaluations of the
attribute values of the entities in the UML models using MAME. The goal is not to have
accurate estimations but spot as soon as possible critical parts in the system architecture:
memory bandwidth requirements, processing capacity, theoretical throughput, etc.
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¢ Dynamic. Running the SystemC behavioral models, the developer gets more accurate
timed information about the execution of the application. This simulation model allows
the user to simulate the behavior of the entire system, offering a flexible mean to play with
some component or system configuration parameters (i.e. size of the buffers) and quickly
obtain data to:

Measure the impact of the application of optimization techniques.

Help the designer to explore the design space more efficiently in order to get the
maximum performance.

Know the average time spent by each component processing or transmitting data and
waiting for the bus.

Avoid configurations that would lead to bus congestion.

Maximize the use of the communication infrastructure and at the same time minimizing
the dead times components would be wasting, waiting to be granted by the bus.

After this analysis, the designer can make the appropriate changes and checks the results
running the simulation again.

Marua
Transformation

Fig. 19. Automatic generation from MDA application.

6. Experimental results

In order to provide the reader with a glimpse of the benefits and efficiency of the proposed
approach, two experiments are dissected in this section. Particularly, we have focused in the
analysis of the behaviour “No Wait Until Full” and “Multiple buffering” techniques and how
they help to increase the system performance.

For all the experiments, there is a base configuration that comprises:

¢ 100Mhz clock system.
* 64 bits PLB bus SystemC model provided by GreenSoCs [22].
¢ 1Kword of local memories for all components.

* A 1Mword input file. The simulations consist in feeding the processing chain (variable
components) with synthetic data comming from a file.

For different configurations of the processing chain and parameter values, several simulations
have been carried out. It is worth mentioning that in this case we used PLB, but it is almost
straightforward to perform new estimations over other platforms just changing the TLM
model for the bus.
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The first picture (figure 20) attempts to illustrate the benefits obtained by applying the “No
Wait Until Full” optimization mechanism (described in section 5.2). As it is expected, the
occupancy of the bus increases with the number of components in the processing chain. What
is remarkable is how our proposal scales in a linear pattern. The measured transmission times
are reduced in 20% (mean value) for the six cases when compared with the “Wait Until Full”
strategy.
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Fig. 20. Comparative chart of transferring time based on the number of components and “No
Wait Until Full” optimization.

The second picture (figure 21) represents how the size of the buffer has an influence on the
total transmission time. The benefits of the “Multiple buffering” technique are exposed in this
experiments and its applicability is delimited, identifying such scenarios where its application
makes sense.

Since the size of the local memories is 1Kword, the number of buffers that can be held in
it varies (for example, two buffers for a 512 words buffer-size configuration). In this chart,
we can see what is the best value for a certain buffer size configuration. To increase the
number of buffers means that the control logic also increases, so it is necessary to estimate
the cost/performance relation.

From the picture, two lesson can be learnt: (a) in systems with a low overhead regarding the
bus bandwidth requirements, the bigger the size of the buffer the better the performance of
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Fig. 21. Comparative chart of transferring time based on the number of components and
“Multiple buffering” technique.
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the system; whereas (b) in the opposite situation it is better to reduce the size of the buffer
since several buffers transmissions can be interleaved, reducing the wait times.
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