
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

2

Determining a Non-Collision Data Transfer
Paths in Hypercube Processors Network

Jan Chudzikiewicz and Zbigniew Zieliński
Military University of Technology

Poland

1. Introduction

Fault tolerant systems are called systems capable of performing certain tasks despite of

some unfitness (Kulesza et al., 1999; Kulesza, 2000; Chudzikiewicz, 2002; Chudzikiewicz &

Zielinski, 2010). One of the conditions to be met by the structure used in fault tolerant

systems is redundancy of the system components, namely use of redundant structures (see

definition 2). Example of a structure, which ensures adequate number of communication

lines is a binary n-dimensional hypercube n
H structure (see definition 1). Structures of this

type have large reliability (Kulesza, 2000, 2003) and large diagnostic deepness in the sense of

network coherence (Kulesza, 2000; Chudzikiewicz, 2002). The hypercube structures find

wide application in data processing systems, especially for building fault tolerant systems,

because such structures have natural features of redundancy.

Interconnection networks with the hypercube logical structure possess already numerous
applications in critical systems and still they are the field of interest of many theoretical
studies. In this kind of network the faulty processor may be replaced with a spare fault free
processor (e.g. after network reconfiguration) or may be eliminated from the network and the
new (degraded) network continues to operate, provided that it meets certain requirements.
The last kind of such network is called a soft degradation network. A system’s dependability is
maintained by ensuring that it can discriminate between faulty and fault-free processors. The
process of identifying faulty processors is called diagnosis of the processors’ network.

We assume, that processors that are determined as faulty could not be repaired or replaced
with spare equipment. The elimination of the faulty processor from the network induces (in
the general case) the structure of several components of consistency. If the obtained
(reduced) logical structure of the network is not the working structure, then the network
loses its ability to operate (this network state will be determined as the network failure).

Correct diagnosis is another condition to tolerate failures in such systems. The quality of this
diagnosis is critical to restore the suitability of the system by replacing the failure units, or
isolation of such elements (soft system degradation) and perform reconfiguration tasks (Wang,
1999; Kulesza, 2000; Chudzikiewicz & Murawski, 2006; Zielinski et al., 2010). This requires the
use of most effective diagnosis methods (Chudzikiewicz & Zielinski, 2003; Zielinski, 2006). In
the case of distributed processing systems, a methods which uses the results of mutual testing
of the system elements may be used (Kulesza & Zieliński 2010; Zielinski et al., 2011).

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

20

Both, from the viewpoint of functional tasks for which the system was built as well as the
implementation of a system diagnosis it is important to ensure an effective mechanism for
communication between system components (Chudzikiewicz & Zielinski, 2010; Kulesza et
al., 1999).

In multiprocessor systems, effective communication between processors is one of the critical

elements of data processing. Processors in multiprocessor systems communicate with each

other by sending messages. The problem of data transfer in hypercube systems has been

widely analyzed in the literature. Among other things, Gordon and Stout present the

method called by them "sidetracking" (Gordon & Stout, 1988). This method assumes that

each node stores information about the reliability state of their neighbors. Information from

a given node is sent by a random path which is adjacent to a faulty free node. In the case of

no path adjacent to the faulty free nodes, information is blocked and sent back to the node

from which it was originally sent. A disadvantage of this method is little probability to

submit information for a specified number of unfit nodes and large time delay. Another

method proposed by Chen is called "backtracking" (Chen & Shin, 1990). This method

assumes that the information on subsequent nodes, which mediated in data transmission is

stored in the transmitted data. In the case that the data reaches the node that is adjacent to

the unfit nodes, the information is used to send data back to the earlier node. Disadvantage

of this solution is that the redundant information is moved in transmitted data and large

time delays. Both methods - "sidetracking" and "backtracking" may lead to situation where

the same intermediate nodes will be used to send data from different system components

that communicate with each other (pairs of nodes). This may cause significant overload of

individual links, while others will have unused resources. Moreover, individual data

packets can be sent over different paths and reach out customers in a different (not always

consistent with the assumed) sequence. This is especially inadvisable in the case of the need

to ensure the efficiency of communication e.g. video conference realization.

This chapter presents the method of the data transmission paths reconfiguration in

a hypercube-type processor network. The method is based on the determining strongly and

mutually independent simple chains (see definition 4) between communicating pairs of

nodes, which are called – I/O ports1. The method assumes that each node stored

information about the reliability state of the system. The implementation problem of the

presented method in embedded systems has also been raised. Mechanisms based on

operating systems of Windows CE class are also presented, which will facilitate the

implementation of the developed method.

2. Basic definitions

Let nZ indicate the set of n-dimensional binary vectors.

Let us determine:

),},,,{(}))},{()(())()((:{),...,(nixszxsszxsZzss iiiiii
n 1101021

1 I/O port is a node representing an element in a real system which can communicate with external
networks.

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

21

where:

x indicates the indefinite value (0 or 1),

()Z s – is a set of 0-dimensional cubes (vector set 1(,...,)nz z z ({0, 1}, 1)iz i n of cube

())ns s S .

Definition 1

An n-dimensional binary hypercube is the ordinary graph (, ,G G E G
1| | 2 ,| | 2)n nE U n with 2n nodes, each of which is described with an adequate binary

vector 1((,...,), {0, 1}, 1 , , | | 2)n n n
n iz z z z z i n z Z Z and 12nn edges

connecting these nodes, which vectors that describe them are distant by 1 according to the

Hamming measure.

Hereinafter the a nodes graph nH will represent real processors, and its edges the data

transmission paths between processors, which are adjacent to a specific edge.

The Hamming distance between two binary vectors ()ib and ()ib , which are the poles of

the chain i , complies with the dependency:

{1,..., }

((), ()) (() ())i i i k i k
k n

b b b b

where:

()i kb – the k-th element of the binary vector ()ib ,

 –modulo 2 sum.

Definition 2

Redundant network logical structure is a structure whose graph (,)G G E U meets the

condition: | | | |U E .

Definition 3

A chain with a length (0 2)nk k in nH is called a coherent subgraph of the nH

graph if it includes 1k nodes from which only two are of the first degree.

The node of the first degree chain is called the pole of this chain.

Let ()Z and () (() ())B B Z indicate the set of nodes and the poles of the chain

respectively.

The chain will be presented both in the form of a subgraph () nZ H as well as in the

form of a set ()S of 1()ns s S 1-dimensional subcubes such that:

[()] [, () :]s S z z Z z z s .

Definition 4

It is said that chains and in nH are strongly and mutually independent, if

)()(ZZ .

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

22

An example of hypercube structure 4H is shown in Figure 1. This structure is characterized

by 4 4 1| | 2 16,| | 4 2 32E U . In parentheses in Figure 1 the binary label values

assigned to individual nodes are given. The set nZ of nodes is of the form as below:

{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}nZ

Fig. 1. An example of the 4H structure.

Damage to the processor in the system described by the nH graph and a lack of

interchangeability causes the creation of a working structure, which is a partial subgraph of

the graph nH . An example of this type of structure is the structure shown in Figure 2,

which is a partial subgraph of the graph 4H shown in Figure 1. The processors labeled

0111 and 1000 are damaged.

3. The method of determining non-collision paths in a cube-type structure

The method of determining non-collision paths in hypercube structures is based on
determination of simple chains between the nodes representing processors, which want to
communicate with each other. An example of such a structure is shown in Figure 3.

Suppose that in the present structure the nodes from the E set (nodes: 0000, 0010, 0100) and

E set (nodes: 0011, 1011, 1110)))(),((EEEEE represent processors, which

are connected to I/O ports. Sending data from the processor represented by a node from the

E set to the processor represented by a node from the E set, requires a mediation of

processors represented by nodes from the E set))(\(EEEE .

Let us accept the following assumptions:

 minimum cost to send data – interpreted as the minimum number of elements in the
transmission of intermediary data;

 possibility of implementing parallel data transfer between several pairs of processors –
each pair communicates through independent pathways.

(0011)

(0001)

(0101)

(0100) (0010)

(0110)

(0111)

(0000)

(1101)

(1100)

(1110)

(1111)

(1001)

(1011) (1000)

(1010)

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

23

Fig. 2. An example of a partial subgraph of the structure shown in Figure 1.

Fig. 3. An example of the 4H structure with indicated I/O ports.

Determining connections between the nodes)(Eee and)(Eee means

determination of the shortest chain (see definition 3) between these nodes. Implementation
of parallel transmission between nodes from the set E and the nodes from the set E
requires calculation of strongly and mutually independent chains between specific nodes.

The final result of the method is to determine all paths between elements, which at the given

moment intend to exchange data in such a way so that they do not interfere with other
transmissions.

(0011)

(0001)

(0101)

(0100) (0010)

(0110)

(0000)

(1101)

(1100)

(1110)

(1111)

(1001)

(1011)

(1010)

(0011)

(0001)

(0101)

(0100) (0010)

(0110)

(0111)

(0000)

(1101)

(1100)

(1110)

(1111)

(1001)

(1011) (1000)

(1010)

Device 5

Device 6

Device 4

 Device 3

 Device 2

 Device 1

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

24

The proposed method is implemented in two phases. In the first phase, all possible
simple chains between nodes that want to implement data exchange are determined.
Determined for a specific pair of nodes, simple chains can’t contain other nodes that are
I/O ports.

In the second phase, from the set of simple chains, strongly and mutually independent

chains are determined for pairs of nodes that communicate with each other. The method to

determine the simple chain uses the algorithm based on the adjacency binary matrix. The

algorithm determining data transmission paths between node pairs is given below and the

adjacency binary matrix for the structure from Figure 3 is shown in Figure 4.

Let us denote:

),(zzŁ - a set of chains connecting nodes z and z ,

)(jZ - a set of nodes that create chain j ,

)(jB - a set of poles of chain j ,

W – a set of pairs of poles among, which simple chains

))}()(),((),(:))(),({(BezezEeeezezW will be determined;

P – a set of strongly and mutually independent chains connecting communicating pairs of
nodes.

Step 1. Select an unselected node as initial pole z from the set W with the smallest label.

As the end pole, select the node z , so that: Wzz),(.

Step 2. Determine the set),(zzŁ of chains connecting nodes z and z , so that:

}))(\)((:{),(WBZzzŁ .

If the set of chains is determined for all pairs of the set W go to step 3, otherwise

go to step 1.

Step 3. Take the chain from the chain set),(zzŁ for Wzz),(. \),(),(zzŁzzŁ .

Step 4. Step 4Add the selected chain to set P , if:

|})|,...,{,))()(())()(((PiPZZBB iii 1 .

If the condition is met go to step 5.

If the condition is not met and),(zzŁ go to step 3.

If the condition is not met and),(zzŁ go to step 5.

Step 5. If |||| WP the set of chains for all pairs Wzz),(is determined. Go to step 6.

If |||| WP determine the next pair Wzz),(. Go to step 3.

Step 6. The end of the algorithm.

On the adjacency matrix from Figure 4 colors mark rows and columns corresponding to the

I/O ports.

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

25

 0
0
0
0

00
01

0
0
1
0

0
0
1
1

01
00

01
01

01
10

01
11

10
00

10
01

10
10

1
0
1
1

11
00

11
01

1
1
1
0

11
11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 0 1 1 1 1

0001 1 1 1 1 1
0010 2 1 1 1 1

0011 3 1 1 1 1
0100 4 1 1 1 1

0101 5 1 1 1 1

0110 6 1 1 1 1

0111 7 1 1 1 1

1000 8 1 1 1 1

1001 9 1 1 1 1

1010 10 1 1 1 1
1011 11 1 1 1 1

1100 12 1 1 1 1

1101 13 1 1 1 1
1110 14 1 1 1 1

1111 15 1 1 1 1

Fig. 4. Adjacency matrix for the structure shown in Figure 3.

For illustration of the algorithm let us trace designation of a simple chain between nodes:
0100 and 1011. In the first step the algorithm has appointed the node 0101 moving along the
4-th column to 5 row of this matrix. This is shown in Figure 5.

 00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0

0001 1 1 1

0010 2

0011 3

0100 4 1 1 1

0101 5 1 1 1 1

0110 6 1 1

0111 7 1 1 1

1000 8 1 1 1

1001 9 1 1 1 1

1010 10 1 1

1011 11 1 1 1

1100 12 1 1 1

1101 13 1 1 1 1

1110 14

1111 15 1 1 1

Fig. 5. Illustration of the first step of the algorithm. The matrix does not contain others I/O
ports.

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

26

In the second step the algorithm has appointed 0001 node moving along the 5th row of the
matrix. This is shown in Figure 6.

The algorithm in the next steps, alternating moving along columns and rows has appointed
simple chain linking nodes: 0100 and 1011. This is shown in Figure 7.

The algorithm in six steps, has appointed the single simple chain linking nodes: : 0100 and
1011 the following form: {0100, 0101, 0001, 1001, 1000, 1010, 1011}.

For the structure from Figure 3 the algorithm determined sets of simple chains),(zzŁ as

shown in Table 1.

In the second phase of the method from the set of a simple chains, as shown in Table 1, for
each pair of I/O ports, will be chosen the shortest simple chains allowing for the
implementation of collision-free data transfer, as shown in Figure 8.

Let us consider the case when nodes: 0111 and 1000 are damaged. According to the

presented method the new configuration will be determined by choosing from the set

shown in Table 1 simple chains, which do not contain damaged nodes. The algorithm

assigned new sets of simple chains),(zzŁ shown in Table 2. Figure 9 shows the network

configuration rejecting the unfit nodes: 0111 and 1000 and allows implementation of the

collision-free data transfer.

 00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0

0001 1 1 1

0010 2

0011 3

0100 4 1 1 1

0101 5 1 1 1 1

0110 6 1 1

0111 7 1 1 1

1000 8 1 1 1

1001 9 1 1 1 1

1010 10 1 1

1011 11 1 1 1

1100 12 1 1 1

1101 13 1 1 1 1

1110 14

1111 15 1 1 1

Fig. 6. Illustration of the second step of the algorithm.

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

27

 00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0

0001 1 1 1

0010 2

0011 3

0100 4 1 1 1

0101 5 1 1 1 1

0110 6 1 1

0111 7 1 1 1

1000 8 1 1 1

1001 9 1 1 1 1

1010 10 1 1

1011 11 1 1 1

1100 12 1 1 1

1101 13 1 1 1 1

1110 14

1111 15 1 1 1

Fig. 7. Illustrate appointed by the algorithm the single simple chain between nodes: 0100
and 1011.

),(00110000Ł),(11100010Ł),(10110100Ł
0 ; 1 ; 3

0 ; 1 ; 5 ; 7 ; 3

0 ; 1 ; 5 ; 13 ; 15 ; 7 ; 3

0 ; 1 ; 9 ; 8 ; 12 ; 13 ; 5 ; 7 ; 3

0 ; 1 ; 9 ; 8 ; 12 ; 13 ; 15 ; 7 ; 3

0 ; 1 ; 9 ; 13 ; 5 ; 7 ; 3

0 ; 1 ; 9 ; 13 ; 15 ; 7 ; 3

0 ; 8 ; 9 ; 1 ; 3

0 ; 8 ; 9 ; 1 ; 5 ; 7 ; 3

0 ; 8 ; 9 ; 1 ; 5 ; 13 ; 15 ; 7 ; 3

0 ; 8 ; 9 ; 13 ; 5 ; 1 ; 3

0 ; 8 ; 9 ; 13 ; 5 ; 7 ; 3

0 ; 8 ; 9 ; 13 ; 15 ; 7 ; 3

0 ; 8 ; 9 ; 13 ; 15 ; 7 ; 5 ; 1 ; 3

0 ; 8 ; 12 ; 13 ; 5 ; 1 ; 3

0 ; 8 ; 12 ; 13 ; 5 ; 7 ; 3

0 ; 8 ; 12 ; 13 ; 9 ; 1 ; 3

0 ; 8 ; 12 ; 13 ; 9 ; 1 ; 5 ; 7 ; 3

0 ; 8 ; 12 ; 13 ; 15 ; 7 ; 3

0 ; 8 ; 12 ; 13 ; 15 ; 7 ; 5 ; 1 ; 3

2 ; 6 ; 7 ; 5 ; 1 ; 9 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 5 ; 1 ; 9 ; 8 ; 12 ; 13 ; 15 ; 14

2 ; 6 ; 7 ; 5 ; 1 ; 9 ; 8 ; 12 ; 14

2 ; 6 ; 7 ; 5 ; 1 ; 9 ; 13 ; 12 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 5 ; 1 ; 9 ; 13 ; 12 ; 14

2 ; 6 ; 7 ; 5 ; 1 ; 9 ; 13 ; 15 ; 14

2 ; 6 ; 7 ; 5 ; 13 ; 9 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 5 ; 13 ; 9 ; 8 ; 12 ; 14

2 ; 6 ; 7 ; 5 ; 13 ; 12 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 5 ; 13 ; 12 ; 14

2 ; 6 ; 7 ; 5 ; 13 ; 15 ; 14

2 ; 6 ; 7 ; 15 ; 13 ; 5 ; 1 ; 9 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 15 ; 13 ; 5 ; 1 ; 9 ; 8 ; 12 ; 14

2 ; 6 ; 7 ; 15 ; 13 ; 9 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 15 ; 13 ; 9 ; 8 ; 12 ; 14

2 ; 6 ; 7 ; 15 ; 13 ; 12 ; 8 ; 10 ; 14

2 ; 6 ; 7 ; 15 ; 13 ; 12 ; 14

2 ; 6 ; 7 ; 15 ; 14

2 ; 6 ; 14

2 ; 10 ; 8 ; 9 ; 1 ; 5 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 9 ; 1 ; 5 ; 7 ; 15 ; 13 ; 12 ; 14

2 ; 10 ; 8 ; 9 ; 1 ; 5 ; 7 ; 15 ; 14

2 ; 10 ; 8 ; 9 ; 1 ; 5 ; 13 ; 12 ; 14

2 ; 10 ; 8 ; 9 ; 1 ; 5 ; 13 ; 15 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 9 ; 1 ; 5 ; 13 ; 15 ; 14

2 ; 10 ; 8 ; 9 ; 13 ; 5 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 9 ; 13 ; 5 ; 7 ; 15 ; 14

4 ; 5 ; 1 ; 9 ; 8 ; 10 ; 11

4 ; 5 ; 1 ; 9 ; 8 ; 12 ; 13 ; 15 ; 11

4 ; 5 ; 1 ; 9 ; 11

4 ; 5 ; 1 ; 9 ; 13 ; 12 ; 8 ; 10 ; 11

4 ; 5 ; 1 ; 9 ; 13 ; 15 ; 11

4 ; 5 ; 7 ; 15 ; 11

4 ; 5 ; 7 ; 15 ; 13 ; 9 ; 8 ; 10 ; 11

4 ; 5 ; 7 ; 15 ; 13 ; 9 ; 11

4 ; 5 ; 7 ; 15 ; 13 ; 12 ; 8 ; 9 ; 11

4 ; 5 ; 7 ; 15 ; 13 ; 12 ; 8 ; 10 ; 11

4 ; 5 ; 13 ; 9 ; 8 ; 10 ; 11

4 ; 5 ; 13 ; 9 ; 11

4 ; 5 ; 13 ; 12 ; 8 ; 9 ; 11

4 ; 5 ; 13 ; 12 ; 8 ; 10 ; 11

4 ; 5 ; 13 ; 15 ; 11

4 ; 6 ; 7 ; 5 ; 1 ; 9 ; 8 ; 10 ; 11

4 ; 6 ; 7 ; 5 ; 1 ; 9 ; 8 ; 12 ; 13 ; 15 ; 11

4 ; 6 ; 7 ; 5 ; 1 ; 9 ; 11

4 ; 6 ; 7 ; 5 ; 1 ; 9 ; 13 ; 12 ; 8 ; 10 ; 11

4 ; 6 ; 7 ; 5 ; 1 ; 9 ; 13 ; 15 ; 11

4 ; 6 ; 7 ; 5 ; 13 ; 9 ; 8 ; 10 ; 11

4 ; 6 ; 7 ; 5 ; 13 ; 9 ; 11

4 ; 6 ; 7 ; 5 ; 13 ; 12 ; 8 ; 9 ; 11

4 ; 6 ; 7 ; 5 ; 13 ; 12 ; 8 ; 10 ; 11

4 ; 6 ; 7 ; 5 ; 13 ; 15 ; 11

4 ; 6 ; 7 ; 15 ; 11

4 ; 6 ; 7 ; 15 ; 13 ; 5 ; 1 ; 9 ; 8 ; 10 ; 11

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

28

2 ; 10 ; 8 ; 9 ; 13 ; 12 ; 14

2 ; 10 ; 8 ; 9 ; 13 ; 15 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 9 ; 13 ; 15 ; 14

2 ; 10 ; 8 ; 12 ; 13 ; 5 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 12 ; 13 ; 5 ; 7 ; 15 ; 14

2 ; 10 ; 8 ; 12 ; 13 ; 9 ; 1 ; 5 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 12 ; 13 ; 9 ; 1 ; 5 ; 7 ; 15 ; 14

2 ; 10 ; 8 ; 12 ; 13 ; 15 ; 7 ; 6 ; 14

2 ; 10 ; 8 ; 12 ; 13 ; 15 ; 14

2 ; 10 ; 8 ; 12 ; 14

2 ; 10 ; 14

4 ; 6 ; 7 ; 15 ; 13 ; 5 ; 1 ; 9 ; 11

4 ; 6 ; 7 ; 15 ; 13 ; 9 ; 8 ; 10 ; 11

4 ; 6 ; 7 ; 15 ; 13 ; 9 ; 11

4 ; 6 ; 7 ; 15 ; 13 ; 12 ; 8 ; 9 ; 11

4 ; 6 ; 7 ; 15 ; 13 ; 12 ; 8 ; 10 ; 11

4 ; 12 ; 8 ; 9 ; 1 ; 5 ; 7 ; 15 ; 11

4 ; 12 ; 8 ; 9 ; 1 ; 5 ; 13 ; 15 ; 11

4 ; 12 ; 8 ; 9 ; 11

4 ; 12 ; 8 ; 9 ; 13 ; 5 ; 7 ; 15 ; 11

4 ; 12 ; 8 ; 9 ; 13 ; 15 ; 11

4 ; 12 ; 8 ; 10 ; 11

4 ; 12 ; 13 ; 5 ; 1 ; 9 ; 8 ; 10 ; 11

4 ; 12 ; 13 ; 5 ; 1 ; 9 ; 11

4 ; 12 ; 13 ; 5 ; 7 ; 15 ; 11

4 ; 12 ; 13 ; 9 ; 1 ; 5 ; 7 ; 15 ; 11

4 ; 12 ; 13 ; 9 ; 8 ; 10 ; 11

4 ; 12 ; 13 ; 9 ; 11

4 ; 12 ; 13 ; 15 ; 7 ; 5 ; 1 ; 9 ; 8 ; 10 ; 11

4 ; 12 ; 13 ; 15 ; 7 ; 5 ; 1 ; 9 ; 11

4 ; 12 ; 13 ; 15 ; 11

Table 1. Sets of simple chains determined by algorithm for the structure from Figure 3.

Fig. 8. An example of network configuration that allows collision-free communication
between I/O ports.

)0011,0000(Ł)1110,0010(Ł)1011,0100(Ł
0 ; 1 ; 3 2 ; 6 ; 14

2 ; 10 ; 14

4 ; 5 ; 1 ; 9 ; 11

4 ; 5 ; 1 ; 9 ; 13 ; 15 ; 11

4 ; 5 ; 13 ; 9 ; 11

4 ; 5 ; 13 ; 15 ; 11

4 ; 12 ; 13 ; 5 ; 1 ; 9 ; 11

4 ; 12 ; 13 ; 9 ; 114 ; 12 ; 13 ; 15 ; 11

Table 2. The sets of simple chains without damaged nodes (0111, 1000).

(0011)

(0001)

(0101)

(0100) (0010)

(0110)

(0111)

(0000)

(1101)

(1100)

(1110)

(1111)

(1001)

(1011) (1000)

(1010)

Device 5

Device 6

Device 4
Device 3

 Device 2

 Device 1

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

29

Fig. 9. The sets of simple chains without damaged nodes (0111, 1000).

4. Implementation of the method of determining non-collision paths in
Windows CE

The processor network is based on S3C2440 processor on S3C2440SBC board. This is a 32-bit

RISC processor. It is compatible with the Harvard Architecture model, characterized by

a separate cache for commands (16KB) and data (16KB). It is equipped in: Memory

Management Unit and Internal Advanced Microcontroller Bus Architecture. The family

ARM920T processor is chosen (S3C2440 processor belongs to it), because of the possibility of

installing Windows Embedded CE operating system on S3C2440SBC board. S3C2440SBC

board provides a rich set of communication interfaces: three RS-232 interfaces, four USB 2.0

and one RJ-45 Ethernet. In the developed model of processor network the RS 232 interface is

used to implement communication between the processor modules while the Ethernet

interface is used for communication with external elements in relation to the network of

processors.

To implement communication through the Ethernet interface the mechanism uses NDIS

network drivers. Network driver interface specification is implemented in Windows® as

a library, which defines interfaces between different layers of drivers and separates

hardware drivers (low level) from upper layer drivers such as transport layer (Phung, 2009).

NDIS also stores information on the status and parameters of the network drivers including

indicators for functions, handlers and other values.

NDIS distinguishes the following types of drivers (see Figure 10):

 Miniport driver;

 Intermediate driver;

 Protocol driver.

The protocol driver is the highest in the stack of the NDIS driver and at the same time it is
the lowest located component in an implemented network protocol. The protocol driver

(0011)

(0001)

(0101)

(0100) (0010)

(0110)

(0000)

(1101)

(1100)

(1110)

(1111)

(1001)

(1011)

(1010)

Device 5

Device 6

Device 4
Device 3

 Device 2

 Device 1

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

30

Fig. 10. Types of NDIS drivers.

allocates suitable memory area for the packet, copies data from the application to the

prepared packet and - by calling the NDIS function - sends it to the network adapter. It also

creates an interface for incoming data from the network adapter and sends them to the

application.

Cooperation with other elements of the system is implemented using ProcolXxx functions,

which constitute the interface for drivers situated lower in the stack. The protocol driver

works with situated lower miniport or intermediate drivers in the stack that export a set of

MiniportXxx functions. Transfer of packets by this driver is realized through the NDIS

library by calling the appropriate functions. For example, functions NdisSend and

NdisSendPackets can be used for sending packets.

The network software architecture with division on software layers is shown in Figure 11

(Zieliński et al., 2011).

In the operating system layer it is included a software layer which enables direct access to

communication interfaces. In the communication software layer the dynamic library (*.dll)

was realized to make available SEND() and RECIVE() functions. These functions enable

sending and receiving messages in homogeneous manner - independently of physical

interface.

The SEND() function makes it also possible to send broadcast messages that are used for

broadcasting a new configuration of a degraded network structure. In the "Network

Reconfiguration software" module the method of simple chains determining is implemented

which is presented in Section 3. The structure of communication software layer is shown in

Figure 12.

Transport Driver
Interface (TDI)

Protocol driver

Intermediate driver

Card driverCard driver

Native
Media
Aware

Protocol

Native Media Type

NetCard NetCard

LAN Media Type

N
D

IS
 I

n
te

rf
a

ce

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

31

Fig. 11. The Network Software System Architecture.

Fig. 12. Block diagram of the software communication layer.

Interface block includes hardware and software components that support a single interface.
The notion of interface determines both a network card, as well as RS232 or USB 2.0. The

Communication
Interface

Interface Service
Thread

Interface Read
Buffer

Interface Write
Buffer

Write
Thread

Read Thread Main Read
Buffer

Main Write
Buffer

Routing Table

Send()

Recive()

Interface
Block

Data Flow

Data Received Event

Configuration Data Readout

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

32

number of blocks depends on the number of active interfaces. Identification of the active
interface is realized at the stage of initial system configuration.

Write thread performs operations of: data download from main write buffer, adding
additional information to a data packet and forwarding the package to the interface write
buffer. Choosing an interface to be used to send a package is realized based on destination
host ID and Routing Table.

Read thread performs operations of: data download from the interface read buffer and
forwarding the data to the Main Read Buffer. Data read is performed after receiving an
event – “data ready” generated by the handler of thread interface. In the case of a broadcast
message, this data is copied back to the Main Write Buffer. This allows sending data to other
network elements.

5. Conclusions

Designed method of data paths reconfiguring allows determining parallel data paths in
degradable hypercube processor network. In view of the searching independent parallel
data paths transmission in a distributed manner and small computational overhead the
method may be used in the systems with high performance requirements and due to
possibility of adapting solutions to the current reliability state also in fault tolerant systems.

The method was implemented in the experimental 4-dimensional hypercube processor
network. The photo of this network with running modules is shown in Figure 12.

Fig. 13. The experimental network operating.

www.intechopen.com

Determining a Non-Collision Data Transfer Paths in Hypercube Processors Network

33

The appearance of the user interface shown in Figure 14. The procedure of diagnosing
comparison method is periodically run in that network. After identifying damaged
processors the reconfiguration algorithm is run on the set of fault-free processors. Currently,
are realized adaptive tests of the experimental network model. Preliminary results of these
tests show that the diagnostic messages are no more than 10% of all traffic in the network
and time of the structure reconfiguration does not exceed 100 ms. Further work are directed
to determine a degradation characteristics of the 4-dimensional hypercube processor
network. Analytical methods were determined. Sets and images of all non-labeled coherent

structures of order p where },...,{ 166p and the powers of sets of labeled structures was

determined by analytical methods. On this basis, it will be possible to build software tool to
determine the cycle of life of such a network. The life cycle of the network can be expressed
as a probability that the network keeps communication skills between defined sets of I/O

ports and certain diagnostic properties after damaging the k processors }),...,{(101k .

Knowing degradation characteristics will allow selection of the best exploitation strategies
of the network. The strategy consists of selecting the optimal (in the sense of
communications capabilities, i.e. number of parallel data transmission paths) new working
network structure and selection of a rational diagnosis method and tests.

Fig. 14. Application User Interface.

6. References

Chen M.-S., Shin K.G. (1990). Depth-first search approach for faulttolerant routing in
hypercube multicomputers, IEEE Transactions Parallel and Distributed Systems, vol. 1,
no. 2, (April 1990), str. 152-159, ISSN: 1045-9219

Chudzikiewicz J. (2002), Sieci komputerowe o strukturze logicznej typu hipersześcianu; Institute
of Automatics and Robotics, Faculty of Cybernetics, Military University of
Technology, ISBN 83-916753-0-0, Warsaw, Poland

www.intechopen.com

Embedded Systems – High Performance Systems, Applications and Projects

34

Chudzikiewicz J., Zieliński Z. (2003). Wyznaczanie m-diagnozowalnych struktur typu PMC
w systemach o zwiększonej odporności na uszkodzenia, Materiały X Konferencji
SCR’ 2003, Ustroń, September 2003

Chudzikiewicz J., Murawski K. (2006). Determining A Non Collision Data Transfer Path In
Hypercube Telecomunication Network, Diagnostyka, No. 3 (39), (2006), pp. 131-136,
ISSN 641-6414

Chudzikiewicz J, Zieliński Z. (2010). Reconfiguration of a processor cube-type Network,
PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), NR 9, pp. 139-145, ISSN
0033-2097

Gordon J.M., Stout Q.F. (1988). Hypercube message routing in the presence of faults, Proc.
Third Conf. on Hypercube Concurrent Computers and Applications, vol. 1, (Jan. 1988),
str. 318-327

Kulesza R., Zieliński Z., Chudzikiewicz J. (1999). Reconfiguration of a ring structure in
a hypercube computer network with faulty links; International Conference on
Technical Diagnostics 9th IMECO TC-10, pp. 159-164, Wroclaw 1999.

Kulesza R. (2000). Podstawy diagnostyki sieci logicznych i komputerowych (Secend edition),
Institute of Automatics and Robotics, Faculty of Cybernetics, Military University of
Technology, ISBN 83-9127747-6-4, Warsaw, Poland

Kulesza R. (2003). Struktury samodiagnozowalne w systemach cyfrowych, In: Bulletin of
Institute of Automatic and Robotics, No 18, (2003), pp. 19-31, ISSN 1427-3578

Kulesza R., Zieliński Z. (2010). The life period of the hypercube processors’ network
diagnosed with the use of the comparison method, Monographs On System
Dependability, In: Monographs of System Dependability. Technical Approach to
Dependability, Sugier J., Mazurkiewicz J., Walkowiak T., Zamojski W., pp. 65-78,
Oficyna Wydawnicza Politechniki Wrocławskiej, ISBN 978-83-7493-528-9, Wrocław

Phung S. (2009). Professional Windows® Embedded CE 6.0, Wiley Publishing, Inc., ISBN: 978-0-
470-37733-8, USA, Canada

Sengupta A., Dahbura A.T. (1992). On Self-Diagnosable Multiprocessor Systems: Diagnosis
by the Comparison Approach, IEEE Transactions on Computers, vol. 41, no. 11,
(November 1992), pp. 1386–1396

Wang D. (1999). Diagnosability of Hypercubes and Enhanced Hypercubes under the
Comparison Diagnosis Model, IEEE Transactions on Computers, vol. 48, no. 12,
(December 1999), pp. 1369–1374

Zielinski Z. (2006). The Simulation Model Of Distributed Network System Diagnostic
Procedures, Diagnostyka, No. 3 (39), (2006), pp. 209-214, ISSN 641-6414

Zielinski Z., Chudzikiewicz J., Arciuch A., Kulesza R. (2011). Sieć procesorów o łagodnej
degradacji i strukturze logicznej typu sześcianu 4-wymiarowego, In: Projektowanie i
implementacja systemów czasu rzeczywistego, Trybus L., Samolej S., pp. 219-232,
Wydawnictwo komunikacji i Łączności, ISBN 978-83-206-1822-8, Warszawa

Zieliński Z., Kulesza R., Strzelecki Ł. (2011). Diagnosability characterization of the
4-dimensional cube type soft degradable processors’ network, In: Monographs On
System Dependability – Problems of Dependability and Modeling, Mazurkiewicz J.,
Sugier J., Walkowiak T., Michalska K., pp. 283–296, Oficyna Wydawnicza
Politechniki Wrocławskiej, ISSN 978-83-7493-612-5, Wrocław

www.intechopen.com

Embedded Systems - High Performance Systems, Applications and

Projects

Edited by Dr. Kiyofumi Tanaka

ISBN 978-953-51-0350-9

Hard cover, 278 pages

Publisher InTech

Published online 16, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Nowadays, embedded systems - computer systems that are embedded in various kinds of devices and play an

important role of specific control functions, have permeated various scenes of industry. Therefore, we can

hardly discuss our life or society from now onwards without referring to embedded systems. For wide-ranging

embedded systems to continue their growth, a number of high-quality fundamental and applied researches are

indispensable. This book contains 13 excellent chapters and addresses a wide spectrum of research topics of

embedded systems, including parallel computing, communication architecture, application-specific systems,

and embedded systems projects. Embedded systems can be made only after fusing miscellaneous

technologies together. Various technologies condensed in this book as well as in the complementary book

"Embedded Systems - Theory and Design Methodology", will be helpful to researchers and engineers around

the world.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jan Chudzikiewicz and Zbigniew Zieliński (2012). Determining a Non-Collision Data Transfer Paths in

Hypercube Processors Network, Embedded Systems - High Performance Systems, Applications and Projects,

Dr. Kiyofumi Tanaka (Ed.), ISBN: 978-953-51-0350-9, InTech, Available from:

http://www.intechopen.com/books/embedded-systems-high-performance-systems-applications-and-

projects/determining-a-non-collision-data-transfer-paths-in-hypercube-processors-network

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

