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1. Introduction

In the direct human interaction, the verbal and nonverbal communication modes play a
fundamental role by jointly cooperating in assigning semantic and pragmatic contents to
the conveyed message and by manipulating and interpreting the participants’ cognitive and
emotional states from the interactional contextual instance. In order to understand, model,
analyse, and automatize such behaviours, converging competences from social and cognitive
psychology, linguistic, philosophy, and computer science are needed.

The exchange of information (more or less conscious) that take place during interactions
build up a new knowledge that often needs to be recalled, in order to be re-used, but
sometime it also needs to be appropriately supported as it occurs. Currently, the international
scientific research is strongly committed towards the realization of intelligent instruments
able to recognize, process and store relevant interactional signals: The goal is not only to
allow efficient use of the data retrospectively but also to assist and dynamically optimize the
experience of interaction itself while it is being held. To this end, both verbal and nonverbal
(gestures, facial expressions, gaze, etc.) communication modes can be exploited. Nevertheless,
voice is still a popular choice due to informative content it carries: Words, emotions,
dominance can all be detected by means of different kinds of speech processing techniques.
Examples of projects exploiting this idea are CHIL (Waibel et al. (2004)), AMI-AMIDA (Renals
(2005)) and CALO (Tur et al. (2010)).

The applicative scenario taken here as reference is a professional meeting, where the system
can readily assists the participants and where the participants themselves do not have
particular expectations on the forms of supports provided by the system. In this scenario,
it is assumed that people are sitting around a table, and the system supports and enrich the
conversation experience by projecting graphical information and keywords on a screen.

A complete architecture of such a system has been proposed and validated in (Principi et al.
(2009); Rocchi et al. (2009)). It consists of three logical layers: Perception, Interpretation and
Presentation. The Perception layer aims to achieve situational awareness in the workplace
and is composed of two essential elements: Presence Detector and Speech Processing Unit.
The first determines the operating states of the system: Presence (the system checks if there
are people around the table); conversation (the system senses that a conversation is ongoing).
The Speech Processing Unit processes the captured audio signals and identifies the keywords
that are exploited by the system in order to decide which stimuli to project. It consists of

1

www.intechopen.com



2 Speech Processing

two main components: The multi-channel front-end (speech enhancement) and the automatic
speech recognizer (ASR).

The Interpretation module is responsible of the recognition of the ongoing conversation.
At this level, semantic representation techniques are adopted in order to structure both the
content of the conversation and how the discussion is linked to the speakers present around
the table. Closely related to this module is the Presentation one that, based on conversational
analysis just made, dynamically decides which stimuli have to be proposed and sent. The
stimuli are classified in terms of conversation topics and on the basis of their recognition, they
are selected and projected on the table.

The focus of this chapter is on the speech enhancement stage of the Speech Processing Unit
and in particular on the set of algorithms constituting the front-end of the ASR. In a typical
meeting scenario, participants’ voices can be acquired through different type of microphones.
Depending on the choice made, the microphone signals are more or less susceptible to
the presence of noise, the interference from other co-existing sources and reverberation
produced by multiple acoustic paths. The usage of close-talking microphones can mitigate
the aforementioned problems but they are invasive and the meeting participants can feel
uncomfortable in such situation. A less invasive and more flexible solution is the choice of
far-field microphone arrays. In this situation, the extraction of a desired speech signal can be
a difficult task since noise, interference and reverberation are more relevant.

In the literature, several solutions have been proposed in order to alleviate the problems
(Naylor & Gaubitch (2010); Woelfel & McDonough (2009)): Here, the attention is on
two popular techniques among them, namely blind source separation (BSS) and speech
dereverberation. In (Huang et al. (2005)), a two stage approach leading to sequential
source separation and speech dereverberation based on blind channel identification (BCI)
is proposed. This can be accomplished by converting the multiple-input multiple-output
(MIMO) system into several single-input multiple-output (SIMO) systems free of any
interference from the other sources. Since each SIMO system is blindly identified at
different time, the BSS algorithm does not suffer of the annoying permutation ambiguity
problem. Finally, if the obtained SIMO systems room impulse responses (RIRs) do not
share common zeros, dereverberation can be performed by using the Multiple-Input/Output
Inverse Theorem (MINT) (Miyoshi & Kaneda (1988)).

A real-time implementation of this approach has been presented in (Rotili et al. (2010)), where
the optimum inverse filtering approach is substituted by an iterative technique, which is
computationally more efficient and allows the inversion of long RIRs in real-time applications
(Rotili et al. (2008)). Iterative inversion is based on the well known steepest-descent algorithm,
where a regularization parameter taking into account the presence of disturbances, makes the
dereverberation more robust to RIRs fluctuations or estimation errors due to the BCI algorithm
(Hikichi et al. (2007)).

The major drawback of such implementation is that the BCI stage need to know “who
speaks when” in order to estimate the RIRs related to the right speaker. To overcome the
problem, in this chapter a solution which exploits a speaker diarization system is proposed.
Speaker diarization steers the BCI and the ASR, thus allowing the identification task to be
accomplished directly on the microphone mixture.

2 Speech Enhancement, Modeling and Recognition – Algorithms and Applications
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A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios 3

The proposed framework, is developed on the NU-Tech platform (Squartini et al. (2005)),
a freeware software which allows the efficient management of the audio stream by means
of the ASIO interface. NU-Tech provides a useful plug-in architecture which has been
exploited for the C++ implementation. Experiments performed over synthetic conditions
at 16 kHz sampling rate confirm the real-time capabilities of the implemented architecture
and its effectiveness as multi-channel front-end for the subsequent speech recognition engine.
The chapter outline is the following. In Sec. 2 the speech enhancement front-end, aimed at
separating and dereverberating the speech sources is described, whereas Sec. 3 details the
ASR engine and its parametrization. Sec. 4 is targeted to discuss the simulations setup and
performed experiments. Conclusions are drawn in Sec. 5.

2. Speech enhancement front-end

Let M be the number of independent speech sources and N the number of microphones. The
relationship between them is described by an M × N MIMO FIR (finite impulse response)
system. According to such a model, the n-th microphone signal at k-th sample time is:

xn(k) =
M

∑
m=1

hT
nmsm(k, Lh), k = 1, 2, ..., K, n = 1, 2, ..., N (1)

where (·)T denotes the transpose operator and

sm(k, Lh) = [sm(k) sm(k − 1) · · · sm(k − Lh + 1)]T . (2)

is the m-th source. The term

hnm = [hnm,0 hnm,1 · · · hnm,Lh−1]
T , n = 1, 2, ..., N, m = 1, 2, ..., M (3)

is the Lh-taps RIR between the n-th microphone and the m-th source. Applying the z
transform, Eq. 1 can be rewritten as:

Xn(z) =
M

∑
m=1

Hnm(z)Sm(z), n = 1, 2, ..., N (4)

where

Hnm(z) =
Lh−1

∑
l=0

hnm,lz
−1. (5)

The objective is recovering the original clean speech sources sm by means of a speech
dereverberation approach: Indeed, it is necessary to automatically identify who is speaking,
accordingly estimating the unknown RIRs and then apply a seperation and dereverberation
process to restore the original speech quality.

The reference framework proposed in (Huang et al. (2005); Rotili et al. (2010)) consists
of three main stages: source separation, speech dereverberation and BCI. Firstly source
separation is accomplished by transforming the original MIMO system in a certain number
of SIMO systems and secondly the separated sources (but still reverberated) pass through the
dereverberation process yielding the final cleaned-up speech signals. In order to make the
two procedures properly working, it is necessary to estimate the MIMO RIRs of the audio
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4 Speech Processing

channels between the speech sources and the microphones by the usage of the BCI stage.
As mentioned in the introductory section, this approach suffers from the BCI stage inability
of estimating the RIRs without the knowledge of the speakers’ activities. To overcome this
disadvantage a speaker diarization system can be introduced to steer the BCI stage. The block
diagram of the proposed framework is shown in Fig. 1 where N = 3 and M = 2 have been
considered. Speaker Diarization takes as input the central microphone mixture and for each

Separation Dereverberation

)(ˆ2 ks

)(1̂ ks

Speaker Diarization

BCI

P1 P2

ASR

ASR

)(2 kx

)(1 kx

)(2,1 kys

)(3 kx )(3,2 kys

)(, ky psm

Multi-channel Front-end

words

words

ĥ

Fig. 1. Block diagram of the proposed framework.

frame, the output Pm is “1” if the m-th source is the only active, and “0” otherwise. In such a
way, the front-end is able to detect when to perform or not to perform the required operation.
Using the information carried out by the Speaker Diarization stage, the BCI will estimate the
RIRs and the speech recognition engine will perform recognition if the corresponding source
is the only active.

2.1 Blind channel identification

Considering a SIMO system for a specific source sm∗ , a BCI algorithm aims to find the RIRs
vector hnm∗ = [hT

1m∗ hT
2m∗ · · · hT

Nm∗ ]T by using only the microphone signals xn(k). In order
to ensure this, two identifiability condition are assumed satisfied (Xu et al. (1995)):

1. The polynomial formed from hnm∗ are co-prime, i.e. the room transfer functions (RTFs)
Hnm∗ (z) do not share any common zeros (channel diversity);

2. C{s(k)} ≥ 2Lh + 1, where C{s(k)} denotes the linear complexity of the sequence s(k).

This stage performs the BCI through the unconstrained normalized multi-channel
frequency-domain least mean square (UNMCFLMS) algorithm (Huang & Benesty (2003)).
It is an adaptive technique well suited to satisfy the real-time constraints imposed by the
case study since it offers a good compromise among fast convergence, adaptivity, and low
computational complexity.

Here, we briefly review the UNMCFLMS in order to understand the motivation of its choice
in the proposed front-end. Refer to (Huang & Benesty (2003)) for details. The derivation
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A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios 5

of UNMCFLMS is based on cross relation criteria (Xu et al. (1995)) using the overlap-save
technique (Oppenheim et al. (1999)).

The frequency-domain cost function for the q-th frame is defined as

J f =
N−1

∑
n=1

N

∑
i=i+1

eH
ni(q)eni(q) (6)

where eni(q) is the frequency-domain block error signal between the n-th and i-th channels
and (·)H denotes the Hermitian transpose operator. The update equation of the UNMCFLMS
is expressed as

ĥnm∗ (q + 1) = ĥnm∗ (q)− ρ[Pnm∗ (q) + δI2Lh×Lh
]−1

×
N

∑
n=1

DH
xn
(q)eni(q), i = 1, . . . , N

(7)

where 0 < ρ < 2 is the step-size, δ is a small positive number and

ĥnm∗ (q) = F2Lh×2Lh

[
ĥnm∗ (q) 01×Lh

]T
,

eni(q) = F2Lh×2Lh

[
01×Lh

{
F−1

Lh×Lh
eni(q)

}T
]T

,

Pnm∗ (q) =
N

∑
n=1,n �=i

DH
xn
(q)Dxn (q) (8)

while F denotes the discrete Fourier transform (DFT) matrix. The frequency-domain error
function eni(q) is given by

eni(q) = Dxn (q)ĥnm∗ (q)− Dxi (q)ĥim∗ (q) (9)

where the diagonal matrix

Dxn (q) = diag
(

F
{
[xn(qLh − Lh) xn(qLh − Lh + 1) · · · xn(qLh + Lh − 1)]T

})
(10)

is the DFT of the q-th frame input signal block for the n-th channel. From a computational
point of view, the UNMCFLMS algorithm ensures an efficient execution of the circular
convolution by means of the fast Fourier transform (FFT). In addition, it can be easily
implemented in a real-time application since the normalization matrix Pnm∗ (q) + δI2Lh×Lh

is
diagonal, and it is straightforward to compute its inverse.

Though UNMCFLMS allows the estimation of long RIRs, it requires a high input
signal-to-noise ratio. In this paper, the presence of noise has not been taken into account and
therefore the UNMCFLMS still remain an appropriate choice. Different solutions have been
proposed in literature in order to alleviate the misconvergence problem of the UNMCFLMS
in presence of noise. Among them, the algorithms presented in (Haque et al. (2007); Haque &
Hasan (2008); Yu & Er (2004)) guarantee a significant robustness against noise and they could
be used to improve our front-end.

5A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios
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6 Speech Processing

2.2 Source separation

Here we briefly review the procedure already described in (Huang et al. (2005)) according to
which it is possible to transform an M × N MIMO system (with M < N) in M 1 × N SIMO
systems free of interferences, as described by the following relation:

Ysm ,p(z) = Fsm ,p(z)Sm(z) + Bsm ,p(z), m = 1, 2, . . . , M, p = 1, 2, . . . , P (11)

where P = CM
N is the number of combinations. It must be noted that the SIMO systems

outputs are reverberated, likely more than the microphone signals due to the long impulse
response of equivalent channels Fsm ,p(z). Related formula and the detailed description of
the algorithm can be found in (Huang et al. (2005)). Different choices can be made in order
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Fig. 2. Conversion of a 2 × 3 MIMO system in two 1 × 3 SIMO systems.

to calculate the equivalent SIMO system. In the block scheme of Fig. 2, representing the
MIMO-SIMO conversion, is depicted a possible solution when M = 2 and N = 3. With
this choice the first SIMO systems corresponding to the source s1 is

Fs1,1(z) = H32(z)H21(z)− H22(z)H31(z),

Fs1,2(z) = H32(z)H11(z)− H12(z)H31(z),

Fs1,3(z) = H22(z)H11(z)− H12(z)H21(z). (12)

The second SIMO system corresponding to the source s2 can be found in a similar way, thus
results, Fs1,p(z) = Fs2,p(z) with p = 1, 2, 3. As stated in the previous section the presence of
additive noise is not taken into account in this contribution and than all the terms Bsm ,p(z)
of Eq. 11 are equal to zero. Finally it is important to highlight that in using this separation
algorithm a lower computation complexity w.r.t. traditional independent component analysis
technique is achieved and since the MIMO system is decomposed into a number of SIMO
systems which are be blindly identified at different time the permutation ambiguity problem
is avoided.
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A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios 7

2.3 Speech dereverberation

Given the equivalent SIMO system Fsm∗ ,p(z) related to the specific source sm∗ , a set of inverse
filters Gsm∗ ,p(z) can be found by using the MINT theorem such that

P

∑
p=1

Fsm∗ ,p(z)Gsm∗ ,p(z) = 1, (13)

assuming that the polynomials Fsm∗ ,p(z) have no common zeros. In the time-domain, the
inverse filter vector denoted as gsm∗ , is calculated by minimizing the following cost function:

C = ‖Fsm∗ gsm∗ − v‖2 , (14)

where ‖ · ‖ denote the l2-norm operator and

gsm∗ =
[
gT

sm∗ ,1 gT
sm∗ ,2 · · · gT

sm∗ ,P

]T
, (15)

gsm∗ ,p =
[
gsm∗ ,p(1) gsm∗ ,p(2) · · · gsm∗ ,P(Lg)

]T
, (16)

v = [0, · · · , 0︸ ︷︷ ︸
d

, 1, · · · , 0]T , (17)

with p = 1, 2, · · · , P. The vector v is the target vector, i.e. the Kronecker
delta shifted by an appropriate modeling delay (0 ≤ d ≤ PLg) while Fsm∗ =[
Fsm∗ ,1 Fsm∗ ,2 · · · Fsm∗ ,P

]
where Fsm∗ ,p is the convolution matrix of the equivalent FIR filter

fsm∗ ,p =
[

fsm∗ ,p(1) fsm∗ ,p(1) · · · fsm∗ ,p(L f )
]

of length L f . When the matrix Fsm∗ is obtained as

shown in the previous section, the inverse filter set can be calculated as

gsm∗ = F†
sm∗ v (18)

where (·)† denotes the Moore-Penrose pseudoinverse. In order to have a unique solution Lg

must be chosen in such a way that Fsm∗ is square i.e.

Lg =
L f − 1

P − 1
. (19)

Considering the presence of disturbances, i.e. additive noise or RTFs fluctuations, the cost
function Eq. 14 is modified as follows (Hikichi et al. (2007)):

C = ‖Fsm∗ gsm∗ − v‖2 + γ ‖gsm∗ ‖
2 , (20)

where the parameter γ(≥ 0), called regularization parameter, is a scalar coefficient
representing the weight assigned to the disturbance term. It should be noticed that Eq. 20
has the same form to that of Tikhonov regularization for ill-posed problems (Egger & Engl
(2005)).

Let the RTF for the fluctuation case be given by the sum of two terms, the mean RTF (Fsm∗ )

and the fluctuation from the mean RTF (F̃sm∗ ) and let E〈F̃T
sm∗ F̃sm∗ 〉 = γI. In this case a general

7A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios
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8 Speech Processing

cost function, embedding noise and fluctuation case, can be derived:

C = gT
sm∗F

TFgsm∗ − gT
sm∗F

Tv − vTFgsm∗ + vTv + γgT
sm∗ gsm∗ (21)

where

F =

{
Fsm∗ (noise case)
Fsm∗ (fluctuation case).

(22)

The filter that minimizes the cost function in Eq. 21 is obtained by taking derivatives with
respect to gsm∗ and setting them equal to zero. The required solution is

gsm∗ =
(
FTF + γI

)−1
FTv. (23)

The usage of Eq. 23 to calculate the inverse filters requires a matrix inversion that, in the
case of long RIRs, can result in a high computational burden. Instead, an adaptive algorithm
(Rotili et al. (2008)) has been here adopted to satisfy the real-time constraint. It is based on the
steepest-descent technique, whose recursive estimator has the form

gsm∗ (q + 1) = gsm∗ (q)−
μ(q)

2
∇C. (24)

Moving from Eq. 21 through simple algebraic calculations, the following expression is
obtained:

∇C = −2[FT(v −Fgsm∗ (q))− γgsm∗ (q)]. (25)

Substituting Eq. 25 into Eq. 24 is

gsm∗ (q + 1) = gsm∗ (q) + μ(q)[FT(v −Fgsm∗ (q))− γgsm∗ (q)], (26)

where μ(q) is the step-size. The convergence of the algorithm to the optimal solution is
guaranteed if the usual conditions for the step-size in terms of autocorrelation matrix FTF
eigenvalues hold. However, the achievement of the optimum can be slow if a fixed step-size
value is chosen. The algorithm convergence speed can be increased following the approach in
(Guillaume et al. (2005)), where the step-size is chosen in order to minimize the cost function
at the next iteration. The analytical expression obtained for the step-size is the following:

μ(q) =
eT(q)e(q)

eT(q) (FTF + γI) e(q)
(27)

where
e(q) = FT [v −Fgsm∗ (q)]− γgsm∗ (q).

In using the previously illustrated algorithm, different advantages are obtained: The
regularization parameter which takes into account the presence of disturbances, makes the
dereverberation process more robust to estimation errors due to the BCI algorithm (Hikichi
et al. (2007)); the real-time constraint can be met also in the case of long RIRs since no matrix
inversion is required. Finally, the complexity of the algorithm has been decreased computing
the required operation in the frequency-domain by using FFTs.

8 Speech Enhancement, Modeling and Recognition – Algorithms and Applications
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A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios 9

2.4 Speaker diarization

The speaker diarization stage drives the BCI and the ASRs so that they can operate into
speaker-homogeneous regions. Current state-of-the-art speaker diarization systems are
based on clustering approaches, usually combining hidden Markov models (HMMs) and
the bayesian information criterion metric (Fredouille et al. (2009); Wooters & Huijbregts
(2008)). Despite their state-of-art performance, such systems have the drawback of operating
on the entire signals, making them unsuitable to work online as required by the proposed
framework.

The approach taken here as reference has been proposed in (Vinyals & Friedland (2008)),
and its block scheme for M = 2 and N = 3, is shown in Fig. 3. The algorithm operation
is divided in two phases, training and recognition. In the first, the acquired signals, after
a manual removal of silence periods, are transformed in feature vectors composed of 19
mel-frequency cepstral coefficients (MFCC) plus their first and second derivatives. Cepstral
mean normalization is applied to deal with stationary channel effects. Speaker models are
represented by mixture of Gaussians trained by means of the expectation maximization
algorithm. The number of Gaussians and the end accuracy at convergence have been
empirically determined, and set to 100 and 10−4 respectively. In this phase the voice activity
detector (VAD) is also trained. The adopted VAD is based on bi-gaussian model of the
log-energy frame. During the training a two gaussian model is estimated using the input
sequence: The gaussian with the smallest mean will model the silence frames whereas the
other gaussian corresponds to frames of speech activity.

Feature 
Extraction

GMM Training

Feature 
Extraction

Identification 
(Majority Vote)

Models

Demultiplexer
1P

2P

SPK1 SPK2 ... SPK2

VAD
)(2 kx

)(2 kx

Fig. 3. The speaker diarization block scheme: “SPK1” and “SPK2” are the speaker identities
labels assigned to each chunk.

In the recognition phase, the first operation consists in a voice activity detection in order
to remove the silence periods: frames are tagged as silence or not based on the bi-gaussian
model, using a maximum likelihood criterion.

After the voice activity detection, the signals are divided into non overlapping chunks, and the
same feature extraction pipeline of the training phase extracts feature vectors. The decision is
then taken using majority vote on the likelihoods: every feature vector in the current segment
is assigned to one of the known speaker’s model based on the maximum likelihood criterion.
The model which has the majority of vectors assigned determines the speaker identity on the
current segment. The Demultiplexer block associates each speaker label to a distinct output
and sets it to “1” if the speaker is the only active, and “0” otherwise.

It is worth pointing out that the speaker diarization algorithm is not able to detect overlapped
speech, and an oracle overlap detector is used to overcome this lack.

9A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios
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10 Speech Processing

2.5 Speech enhancement front-end operation

The proposed front-end requires an initial training phase where each speaker is asked to
talk for 60 s. During this period, the speaker diarization stage trains the both the VAD and
speakers’ models.

In the testing phase, the input signal is divided into non overlapping chunks of 2 s, the speaker
diarization stage provides as output the speakers’ activity Pm. This information is employed
both in the BCI stage and ASR engines: only when the m-th source is the only active the related
RIRs are updated and the dereverberated speech recognized. In all the other situations the BCI
stage provide as output the RIRs estimated at the previous step while the ASRs are idle.

The Separation stage takes as input the microphone signals and outputs the interference free
signals that are subsequently processed by Dereverberation stage. Both stages perform theirs
operations using the RIRs vector provided by the BCI stage.

The front-end performances are strictly related to the speaker diarization errors. In particular,
the BCI stage is sensitive to false alarms (speaker in hypothesis but not in reference) and
speaker errors (mapped reference is not the same as hypothesis speaker). If one of these
occurs, the BCI performs the adaptation of the RIRs using an inappropriate input frame
providing as output an incorrect estimation. An additional error which produces the
previously highlighted behaviour is the miss speaker overlap detection.

The sensitivity to false alarms and speaker errors could be reduced imposing a constraint in
the estimation procedure and updating the RIR only when a decrease in the cost function
occurs. A solution to miss overlap error would be to add an overlap detector and not to
perform the estimation if more than one speaker is simultaneously active. On the other hand,
missed speaker errors (speaker in reference but not in hypothesis) does not negatively affect
the RIRs estimation procedure, since the BCI stage does not perform the adaptation in such
frames. Only a reduced convergence rate can be noticed in this case.

The real-time capabilities of the proposed front-end have been evaluated calculating the
real-time factor on a Intel® Core™i7 machine running at 3 GHz with 4 GB of RAM. The
obtained value for the speaker diarization stage is 0.03, meaning that a new result is output
every 2.06 s. The real-time factor for the others stage is 0.04 resulting in a total value of 0.07
for the entire front-end.

3. ASR engine

Automatic speech recognition has been performed by means of the Hidden Markov Model
Toolkit (HTK) (Young et al. (2006)) using HDecode, which has been specifically designed for
large vocabulary speech recognition tasks. Features have been extracted through the HCopy
tool, and are composed of 13 MFCC, deltas and double deltas, resulting in a 39 dimensional
feature vector. Cepstral mean normalization is included in the feature extraction pipeline.
Recognition has been performed based on the acoustic models available in (Vertanen (2006)).

The models differ with respect to the amount of training data, the use of word-internal or
cross-word triphones, the number of tied states, the number of Gaussians per state, and
the initialization strategy. The main focus of this work is to achieve real-time execution
of the complete framework, thus an acoustic model able to obtain adequate accuracies and
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real-time ability was required. The computational cost strongly depends on the number of
Gaussians per state, and in (Vertanen (2006)) it has been shown that real-time execution can
be obtained using 16 Gaussians per state. The main parameters of the selected acoustic model
are summarized in Table 1.

Training data WSJ0 & WSJ1
Initialization strategy TIMIT bootstrap
Triphone model cross-word
# of tied states (approx.) 8000
# of Gaussians per state 16
# of silence Gaussians 32

Table 1. Characteristics of the selected acoustic model.

The language model consists of the 5k words bi-gram model included in the Wall Street
Journal (WSJ) corpus. Recognizer parameters are the same as in (Vertanen (2006)): using such
values, the word accuracy obtained on the November ’92 test set is 94.30% with a real-time
factor of 0.33 on the same hardware platform mentioned above. It is worth pointing out that
the ASR engine and the front-end can jointly operate in real-time.

4. Experiments

4.1 Corpus description

The acoustic scenario under study is made of an array of three microphones and two speech
sources located in a small office. The room arrangement is depicted in Fig. 4. The data set

4.00 m

3
.0

0
 m

M1 M2

M3

S1 (0.70 m, 1.25 m, 1.40 m)

S2 (3.30 m, 1.25 m, 1.40 m)

M1 (1.65 m, 2.00 m, 1.40 m)

M2 (2.35 m, 2.00 m, 1.40 m)

M3 (2.00 m, 1.65 m, 1.40 m)

S1 S2

Fig. 4. Room setup.

used for the speech recognition experiments has been constructed from the WSJ November
’92 speech recognition evaluation set. It consists of 330 sentences (about 40 minutes of speech),
uttered by eight different speakers, both male and female. The data set is recorded at 16 kHz
and does not contain any additive noise or reverberation.

A suitable database representing the described scenario has been artificially created using the
following procedure: The 330 clean sentences are firstly reduced to 320 in order to have the

11A Real-Time Speech Enhancement Front-End for Multi-Talker Reverberated Scenarios

www.intechopen.com



12 Speech Processing

same number of sentences for each speaker. These are then convolved with RIRs generated
using the RIR Generator tool (Habets (2008)). No background noise has been added. Two
different reverberation conditions have been taken into account: the low and the and high
reverberant ones, corresponding to T60 = 120 ms and T60 = 240 ms respectively (with RIRs
1024 taps long).

For each channel, the final overlapped and reverberated sentences have been obtained by
coupling the sentences of two speakers. Following the WSJ November ’92 notation, speaker
440 has been paired with 441, 442 with 443, etc. This choice makes possible to cover all the
combinations of male and female speakers, resulting in 40 sentences per couple of speakers.
The mean value of overlap has been fixed to 15% of the speech frames for the overall dataset.
For each sentence the amount of overlap is obtained as a random value drown from the
uniform distribution on the interval [12, 18]. This assumption allows the artificial database to
reflect the frequency of overlapped speech in real-life scenarios such as two-party telephone
conversation or meeting (Shriberg et al. (2000)).

4.2 Front-end evaluation

As stated in Sec. 2 the proposed speech enhancement front-end consists in four different
stages. Here we focus the attention on the evaluation of the Speaker Diarization and BCI
stages which represent the most crucial parts of the entire system. An extensive evaluation of
the Separation and Dereverberation stages can be found in (Huang et al. (2005)) and (Rotili
et al. (2008)) respectively.

The performance of the speaker diarization algorithms are measured by the diarization error
rate1 (DER). DER is defined by the following expression:

DER =
∑

S
s=1 dur(s)(max(Nref(s), Nhyp(s))− Ncorrect(s))

∑
S
s=1 dur(s)Nref(s)

(28)

where dur is the duration of the segment, S is the total number of segments in which no
speaker change occurs, Nref(s) and Nhyp(s) indicate respectively the number of speakers in the
reference and in the hypothesis, and Ncorrect(s) indicates the number of speakers that speak in
the segment s and have been correctly matched between the reference and the hypothesis. As
recommended by the National Institute for Standards and Technology (NIST), evaluation has
been performed by means of the “md-eval” tool with a collar of 0.25 s around each segment to
take into account timing errors in the reference. The same metric and tool are used to evaluate
the VAD performance2.

Performance for the sole VAD are reported in table Table 2. Table 3 shows the results
obtained testing the speaker diarization algorithm on the clean signals, as well as on the two
reverberated scenarios in the previous illustrated configurations. For the seek of comparison
two different configurations have been considered:

• REAL SD w/ ORACAL-VAD: The speaker diarization system uses an “Oracle” VAD;

1 http://www.itl.nist.gov/iad/mig/tests/rt/2004-fall/
2 Details can be found in “Spring 2005 (RT-05S) Rich Transcription Meeting Recognition Evaluation Plan”.

The “md-eval” tool is available at http://www.itl.nist.gov/iad/mig//tools/
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• REAL SD w/ REAL-VAD: The system described in Sec. 2.4.

The performance across the three scenarios are similar due to the matching of the training and
testing conditions, and are consistent with (Vinyals & Friedland (2008)).

Clean T60 = 120 ms T60 = 240 ms

REAL-VAD 1.85 1.96 1.68

Table 2. VAD error rate (%).

Clean T60 = 120 ms T60 = 240 ms

REAL-SD w/ ORACLE-VAD 13.57 13.30 13.24
REAL-SD w/ REAL-VAD 15.20 15.20 14.73

Table 3. Speaker diarization error rate (%).

The BCI stage performance are evaluated by means of a channel-based measure called
Normalized Projection Misalignment (NPM) (Morgan et al. (1998)) defined as

NPM (q) = 20 log10

(
‖ǫ(q)‖

‖h‖

)
, (29)

where

ǫ(q) = h −
hT ĥ(q)

ĥT(q)ĥ(q)
ĥ(q) (30)

is the projection misalignment vector, h is the real RIR vector whereas ĥ(q) is the estimated
one at the q-th iteration, i.e. the frame index.
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Fig. 5. NPM curves for the “Real” and “Oracle” speaker diarization system.

Fig. 5 shows the NPM curve for the identification of the RIRs relative to source s1 at
T60 = 240 ms for an input signal of 40 s. In order to understand how the performance of
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the Speaker Diarization stage affect the RIRs identification we compare the curves obtained
for ORACLE-SD where the speaker diariazion operates in an “Oracle” fashion, i.e. it operates
at 100% of its possibilities, and REAL-SD case. As expected the REAL-SD NPM is always
above the ORACLE-SD NPM. Parts where the curves are flat indicate speech segment in which
source s1 is the not only active source i.e. it is overlapped to s2 or we have silence.

4.3 Full system evaluation

In this section the objective is to evaluate the recognition capabilities of the ASR engine fed
by speech signals coming from the multichannel DSP front-end, therefore the performance
metric employed is the word recognition accuracy.

The word recognition accuracy obtained assuming ideal source separation and
dereverberation is 93.60%. This situation will be denoted as “Reference” in the remainder of
the section.

Four different setups have been addressed:

• Unprocessed: The recognition is performed on the reverberant speech mixture acquired
from Mic2 (see Fig. 4);

• ASR w/o SD: The ASRs do not exploit the speaker diarization output;

• ASR w/ ORACLE-SD: The ASRs exploit the “Oracle” speaker diarization output;

• ASR w/ REAL-SD: The ASRs exploit the “Real” speaker diarization output.

Fig. 6 reports the word accuracy for both the low and high reverberant conditions when
the complete test file is processed by the multi-channel DSP front-end and recognition is
performed on the separated and dereverberated streams (Overall) for all the three setup. Fig. 7
shows the word accuracy values attained where the recognition is performed starting from
the first silence frame after the BCI and Dereverberation stages converge3 (Convergence).

Observing the results of Fig. 6, it can be immediately stated that feeding the ASR engine with
unprocessed audio files leads to very poor performances. The missing source separation and
the related wrong matching between the speaker and the corresponding word transcriptions
result in a significant amount of insertions which justify the occurrence of negative word
accuracy values.

Conversely, when the audio streams are processed, the ASRs are able to recognize most of the
spoken words, specially once the front-end algorithms have reached the convergence. The
usage of speaker diarization information to drive the ASRs activity significantly increases the
performance. As expected the usage of the “Real” speaker diarization instead of an “Oracle”
one lead to a decrease in performance of about 15% for the low reverberant condition and of
a 10% for the high reverberant condition. Despite this, the word accuracy is still higher then
the one obtained without speaker diarization, providing an average increase of about 20% for
both the reverberation time.

In the Convergence evaluation case study, when T60 = 120 ms and the “Oracle” speaker
diarization is employed, a word accuracy of 86.49% is obtained, which is about 7% less
than the result attainable in the “Reference” conditions. In this case, the usage of the “Real”

3 Additional experiments have demonstrated that this is reached after 20 − 25 s of speech activity.
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speaker diarization lead to decrease of only 8%. As expected, the reverberation effect has a
negative impact on the recognition performances especially in presence of high reverberation,
i.e. T60 = 240 ms. However, it must be observed that the convergence margin is even more
significant w.r.t. the low reverberant scenario, further highlighting the effectiveness of the
proposed algorithmic framework as multichannel front-end.

5. Conclusion

In this paper, an ASR system was successfully enhanced by an advanced multi-channel
front-end to recognize the speech content coming from multiple speakers in reverberated
acoustic conditions. The overall architecture is able to blindly identify the impulse responses,
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to separate the existing multiple overlapping sources, to dereverberate them and to recognize
the information contained within the original utterances. A speaker diarization system able
to steer the BCI stage and the ASRs has been also included in the overall framework. All the
algorithms work in real-time and a PC-based implementation of them has been discussed in
this contribution. Performed simulations, based on a existing large vocabulary database (WSJ)
and suitably addressing the acoustic scenario under test, have shown the effectiveness of the
developed system, making it appealing in real-life human-machine interaction scenarios. As
future works, an overlap detector will be integrated in the speaker diarization system and its
impact in terms of final recognition accuracy will be evaluated. In addition other applications
different form ASR such as emotion recognition (Schuller et al. (2011)), dominance detection
(Hung et al. (2011)) or keyword spotting (Wöllmer et al. (2011)) will be considered in order to
assess the effectiveness of the front-end in other recognition tasks.
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