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1. Introduction  

Information about hydrologic conditions is of critical importance to real-world applications 
such as agricultural production, water resource management, flood prediction, water 
supply, weather and climate forecasting, and environmental preservation. Improved 
hydrologic condition estimates are useful for agriculture, ecology, civil engineering, water 
resources management, rainfall-runoff prediction, atmospheric process studies, climate and 
weather/climate prediction, and disaster management (Houser et al. 2004).  

While ground-based observational networks are improving, the only practical way to 
observe the hydrologic cycle on continental to global scales is via satellites. Remote sensing 
can make spatially comprehensive measurements of various components of the hydrologic 
system, but it cannot provide information on the entire system (e.g. evaporation), and the 
observations represent only an instant in time. Hydrologic process models may be used to 
predict the temporal and spatial hydrologic variations, but these predictions are often poor, 
due to model initialization, parameter and forcing, and physics errors. Therefore, an 
attractive prospect is to combine the strengths of hydrologic models and observations (and 
minimize the weaknesses) to provide a superior hydrologic state estimate. This is the goal of 
hydrologic data assimilation. 

Data Assimilation combines observations into a dynamical model, using the model’s 
equations to provide time continuity and coupling between the estimated fields. Hydrologic 
data assimilation aims to utilize both our hydrologic process knowledge, as embodied in a 
hydrologic model, and information that can be gained from observations. Both model 
predictions and observations are imperfect and we wish to use both synergistically to obtain 
a more accurate result. Moreover, both contain different kinds of information, that when 
used together, provide an accuracy level that cannot be obtained individually. 

Figure 1 illustrates the hydrologic land surface data assimilation challenge to merge the 
spatially comprehensive remote sensing observations with the dynamically complete but 
typically poor predictions of a hydrologic Land Surface Model (LSM) to yield the best 
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possible hydrological system state estimation. In this illustration, the LSM is a component of 
a General Circulation Model (GCM) or Earth System Model (ESM). Model biases can be 
mitigated using a complementary calibration and parameterization process. Limited point 
measurements are often used to calibrate the model(s) and validate the assimilation results 
(Walker and Houser 2005). 

 

Fig. 1. Schematic description of the data assimilation process in a land surface model 
coupled to a general circulation model. 

In this Chapter, we will first provide background on hydrologic observation, modelling and 
data assimilation. Next we will discuss various hydrologic data assimilation challenges, and 
finally conclude with several case studies that use hydrologic data assimilation to address 
disaster management issues.  

2. Background: Hydrologic observations 

Remote sensing has transformed our appreciation and modelling of the Earth system over, 
particularly in the meteorological and oceanographic sciences. However, historically, remote 
sensing data have not been widely used in land surface hydrology. This can be ascribed to: 
(i) a lack of focused hydrologic state (water and energy) remote sensing instruments; (ii) 
insufficient retrieval algorithms for deriving hydrologic information from remote sensing; 
(iii) a lack of distributed hydrologic models for incorporating remote sensing information; 
and (iv) a lack of techniques to objectively improve and constrain hydrologic model 
predictions using remote sensing. Remote sensing observations have been used in 
hydrologic models in several ways: (i) to assign parameter input data such as soil and land 
cover properties; (ii) to assign better atmospheric forcing conditions, such as precipitation, 
(iii) to set model initial conditions data, such as soil moisture; and (iv) as time-varying land 
state data, such as snow water content, to constrain model predictions. 

The historic lack of remotely sensed hydrological missions and observations has been the 
result of an historical emphasis on meteorological and oceanographic operations and 
applications, due to the large scientific and mission communities that drive those fields. 
However, significant progress has been made over the past decade on defining 
hydrologically-relevant remote sensing observations through focused ground and airborne 
field studies. Gradually, remotely-sensed hydrological data are becoming available; land 
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surface skin temperature and snow cover data have been available for many years, and 
satellite precipitation data are becoming available at increasing space and time resolutions. 
In addition, land cover/use maps, vegetation parameters (photosynthesis, structure, etc.), 
and snow observations of increasing sophistication are becoming available from a number 
of sensors. Novel observations such as saturated fraction and soil moisture changes, 
evapotranspiration, water level and velocity (i.e., runoff), and changes in total terrestrial 
water storage are also being developed. Furthermore, near-surface soil moisture, a 
parameter shown to play a critical role in weather, climate, agriculture, flood, and drought 
processes, is currently available from non-ideal sensor configuration observations. 
Moreover, two missions targeted at measuring near-surface soil moisture with ideal sensor 
configuration are expected before the end of the decade (SMOS and SMAP; see Table 1).  

Class Observation Ideal Technique Ideal Time Scale
Ideal Space 
Scale

Currently available 
data

Parameters 

Land cover/change optical/IR daily or changes 1km AVHRR, MODIS, 
NPOESS 

Leaf area & greenness optical/IR daily or changes 1km AVHRR, MODIS, 
NPOESS 

Albedo optical/IR daily or changes 1km MODIS, NPOESS 

Emissivity optical/IR daily or changes 1km MODIS, NPOESS 

Vegetation structure lidar daily or changes 100m ICESAT 

Topography in-situ survey, radar changes 1m–1km GTOPO30, SRTM 

Forcings 

Precipitation microwave/IR hourly 1km TRMM, GPM, SSMI, 
GEO-IR, NPOESS 

Wind profile Radar hourly 1km QuickSCAT 

Air humidity & temp IR, microwave hourly 1km TOVS, AIRS, GOES, 
MODIS, AMSR 

Surface solar radiation optical/IR hourly 1km GOES, MODIS, 
CERES, ERBS 

Surface LW radiation IR hourly 1km GOES, MODIS, 
CERES, ERBS 

States 

Soil moisture microwave, IR 
change

daily 1km SSMI, AMSR, SMOS, 
NPOESS, TRMM 

Temperature IR, in-situ hourly-monthly 1km IR-GEO, MODIS, 
AVHRR, TOVS 

Snow cover or SWE optical, microwave daily or changes 10m-100m SSMI, MODIS, AMSR, 
AVHRR, NPOESS 

Freeze/thaw radar daily or changes 10m-100m Quickscat, IceSAT, 
CryoSAT 

Ice cover radar, lidar daily or changes 10m-100m IceSAT, GLIMS 

Inundation optical/microwave daily or changes 100m MODIS 

Total water storage gravity changes 10km GRACE 

Fluxes 

Evapotranspiration optical/IR, in-situ hourly 1km MODIS, GOES 

Streamflow microwave, laser hourly 1m-10m ERS2, TOPEX / 
POSEIDON, GRDC 

Carbon flux In-situ hourly 1km In-situ 

Solar radiation optical, IR hourly 1km MODIS, GOES, 
CERES, ERBS 

Longwave radiation optical, IR hourly 1km MODIS, GOES 

Sensible heat flux IR hourly 1km MODIS, ASTER, 
GOES

Table 1. Characteristics of remotely sensed hydrological observations potentially available 
within the next decade. 
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3. Background: Hydrologic modelling 

Advances in understanding of soil-water dynamics, plant physiology, micrometeorology 
and the hydrology that control biosphere-atmosphere interactions have spurred the 
development of hydrologic Land Surface Models (LSMs), whose aim is to represent simply, 
yet realistically, the transfer of mass, energy and momentum between a vegetated surface 
and the atmosphere (Sellers et al., 1986). LSM predictions are regular in time and space, but 
these predictions are influenced by errors in model structure, input variables, parameters 
and inadequate treatment of sub-grid scale spatial variability. These models are built upon 
the analysis of signals entering and leaving the system; they predict relationships between 
physical system variables as a solution of mathematical structures, like simple algebraic 
equations or differential equations. Hydrologic processes are part of the total of global 
processes controlling the earth, which are typically represented in global general circulation 
models (GCMs). The major state variables of these models include the water content and 
temperature of soil moisture, snow and vegetation. Changes in these state variables account 
for fluxes, e.g., evapotranspiration or runoff. Recently, coupling of hydrological models with 
vegetation models has received some attention, to serve more specific ecological, 
biochemical or agricultural purposes. 

Most LSMs used in GCMs view the soil column as the fundamental hydrological unit, 
ignoring the role of topography on spatially variable processes (Stieglitz et al. 1997) to limit 
the complexity and computations for these coupled models. Increasingly, LSMs are being 
built with a higher degree of complexity in order to better represent hydrologic atmosphere 
interactions within GCMs or to meet the need for local state and process knowledge for use 
in conservation or agricultural management. This includes the treatment of more biological 
processes, the representation of subgrid heterogeneity and the development of spatially 
distributed or gridded models. Improved process representation should result in 
parameters that are easier to measure or estimate. However, more complex process 
representations results in more parameters to be estimated, and may lead to over-
parameterized given the data available for parameter calibration. 

Model calibration relies on observed data and can be defined as a specific type of data 
assimilation, as its goal is to minimize model bias using observations. For large scale 
hydrologic modelling, full calibration is nearly impossible. Some examples of widely used 
LSMs are the NCAR Community Land Model (CLM), the Princeton/U. Washington 
Variable Infiltration Capacity Model (VIC), and the NOAA-Noah Model. 

4. Background: Hydrologic data assimilation 

Charney et al. (1969) first suggested combining current and past data in an explicit 
dynamical model, using the model’s prognostic equations to provide time continuity and 
dynamic coupling amongst the fields. This concept has evolved into a family of techniques 
known as data assimilation. In essence, hydrologic data assimilation aims to utilize both our 
hydrological process knowledge as embodied in a hydrologic model, and information that 
can be gained from observations. Both model predictions and observations are imperfect 
and we wish to use both synergistically to obtain a more accurate result. Moreover, both 
contain different kinds of information, that when used together, provide an accuracy level 
that cannot be obtained when used separately. 
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For example, a hydrological model provides spatial and temporal near-surface and root 
zone soil moisture information at the model resolution, including error estimates. On the 
other hand, remote sensing observations contain near-surface soil moisture information at 
an instant in time, but do not give the temporal variation or the root zone moisture content. 
While the remote sensing observations can be used as initialization input for models or as 
independent evaluation, providing we use a hydrological model that has been adapted to 
use remote sensing data as input, we can use the hydrological model predictions and remote 
sensing observations together to keep the simulation on track through data assimilation 
(Kostov and Jackson 1993). Moreover, large errors in near-surface soil moisture content 
prediction are unavoidable because of its highly dynamic nature. Thus, when measured soil 
moisture data are available, their use to constrain the simulated data should improve the 
soil moisture profile estimate, provided that an update in the upper layer is well propagated 
to deeper layers. 

Data assimilation techniques were established by meteorologists (Daley 1991) and have been 
used very successfully to improve operational weather forecasts. Data assimilation has also 
been successfully used in oceanography (Bennett 1992) for improving ocean dynamics 
prediction. However, hydrological data assimilation has a smaller number of case studies 
demonstrating its utility and has very distinct features compared to atmospheric or 
oceanographic assimilation. Hydrological data assimilation development has been accelerated 
by building on knowledge derived from the meteorological and oceanographic data 
assimilation, with significant recent advancement and increased interdisciplinary interaction. 

Hydrologic data assimilation progress has been primarily limited by a lack of suitable large-
domain observations. With the introduction of new satellite sensors and technical advances, 
hydrologic data assimilation research directions are changing (Margulis et al. 2006). Walker 
et al. (2003) gave a brief history of hydrological data assimilation, focusing on the use and 
availability of remote sensing data, and stated that this research field is still in its “infancy”. 
Walker and Houser (2005) gave an overview of hydrological data assimilation, discussing 
different data assimilation methods and several case studies in hydrology. van Loon and 
Troch (2001) gave a review of hydrological data assimilation applications and added a 
discussion on the challenges facing future hydrological applications. McLaughlin (1995) 
reviewed some developments in hydrological data assimilation and McLaughlin (2002) 
transferred the options of interpolation, smoothing and filtering for state estimation from 
the engineering to hydrological sciences. 

Soil moisture and soil temperature have been the most studied variables for hydrologic 
model estimation, because of their well-known impact on weather forecasts (Zhang and 
Frederiksen 2003; Koster et al. 2004) and climate predictions (Dirmeyer 2000). Besides these 
variables, also snow and vegetation properties have received attention. Hydrologic state 
variables are highly variable in all three space dimensions, so a complete and detailed 
assessment of these variables is a difficult task. Therefore, most studies have focused on data 
assimilation in one or two dimensions (e.g. soil moisture profiles or single layer fields) 
and/or relatively simple models.  

Data assimilation was meant for state estimation, but in the broadest sense, data 

assimilation refers to any use of observational information to improve a model (WMO 1992). 

Basically, there are four methods for “model updating”, as follows:  
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• Input: corrects model input forcing errors or replaces model-based forcing with 
observations, thereby improving the model’s predictions; 

• State: corrects the state or storages of the model so that it comes closer to the 
observations (state estimation, data assimilation in the narrow sense); 

• Parameter: corrects or replaces model parameters with observational information 
(parameter estimation, calibration);  

• Error correction: correct the model predictions or state variables by an observed time-
integrated error term in order to reduce systematic model bias (e.g. bias correction).  

The data assimilation challenge is: given a (noisy) model of the system dynamics, find the 

best estimates of system states from (noisy) observations. Most current approaches to this 

problem are derived from either the direct observer (i.e., sequential filter) or dynamic 

observer (i.e., variational through time) techniques. Figure 2 illustrates schematically the key 

differences between these two approaches to data assimilation. To help the reader through 

the large amount of jargon typically associated with data assimilation, a list of terminology 

has been provided (Table 2).  

 

Fig. 2. Schematic of the (a) direct observer and (b) dynamic observer assimilation 
approaches. 

State condition of a physical system, e.g. soil moisture
State error deviation of the estimated state from the truth
Prognostic a model state required to propagate the model forward in time 

Diagnostic 
a model state/flux diagnosed from the prognostic states – not required to 
propagate the model 

Observation measurement of a model diagnostic or prognostic 
Covariance matrix describes the uncertainty in terms of standard deviations & correlations 
Prediction model estimate of states
Update correction to a model prediction using observations
Background forecast, prediction or state estimate prior to an update
Analysis state estimate after an update
Innovation observation-prediction, a priori residual
Gain matrix correction factor applied to the innovation
Tangent linear model linearized (using Taylor’s series expansion) version of a non-linear model 
Adjoint operator allowing the model to be run backwards in time

Table 2. Commonly used data assimilation terminology. 

Data assimilation has significant benefits beyond the improved state estimates, as follows 
(adapted from Rood et al. 1994). 
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• Organizes: By interpolating information from observation space to model space, the 
observations are organized and given dynamical consistency with the model equations, 
thereby enhancing their usefulness; 

• Supplements: By constraining the model’s physical equations with observations, 
unobserved quantities can be better estimated, providing a more complete 
understanding of the true hydrological system;  

• Complements: By propagating information using observed spatial and temporal 
correlations, or the model’s physical relationships, areas of sparse observations can be 
better estimated; 

• Quality control: By comparing observations with previous forecasts, spurious 
observations can be identified and eliminated. By performing this comparison over 
time, it is possible to calibrate observing systems and identify biases or changes in 
observation system performance; 

• Hydrological model improvement: By continuously confronting the model with real 
observations, model weaknesses and systematic errors can be identified and corrected. 
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Fig. 3. Example of how data assimilation supplements data and complements observations: 
a) Numerical experiment results demonstrating how near-surface soil moisture 
measurements are used to retrieve the unobserved root zone soil moisture state using (left 
panel) direct insertion and (right panel) a statistical assimilation approach (Walker et al. 
2001a); b) Six Push Broom Microwave Radiometer (PBMR) images gathered over the USDA-
ARS Walnut Gulch Experimental Watershed in southeast Arizona were assimilated into the 
TOPLATS hydrological model using several alternative assimilation procedures (Houser et 
al. 1998). The observations were found to contain horizontal correlations with length scales 
of several tens of km, thus allowing soil moisture information to be advected beyond the 
area of the observations. 

5. Hydrologic data assimilation techniques  

Direct insertion. One of the earliest and most simplistic approaches to data assimilation is 
direct insertion. As the name suggests, the forecast model states are directly replaced with 
the observations. This approach makes the explicit assumption that the model is wrong (has 
no useful information) and that the observations are right, which both disregards important 
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information provided by the model and preserves observational errors. The risk of this 
approach is that unbalanced state estimates may result, which causes model shocks: the 
model will attempt to restore the dynamic balance that would have existed without 
insertion. A further key disadvantage of this approach is that model physics are solely relied 
upon to propagate the information to unobserved parts of the system (Houser et al. 1998; 
Walker et al. 2001a).  

Statistical correction. A derivative of the direct insertion approach is the statistical 
correction approach, which adjusts the mean and variance of the model states to match 
those of the observations. This approach assumes the model pattern is correct but contains a 
non-uniform bias. First, the predicted observations are scaled by the ratio of observational 
field standard deviation to predicted field standard deviation. Second, the scaled predicted 
observational field is given a block shift by the difference between the means of the 
predicted observational field and the observational field (Houser et al. 1998). This approach 
also relies upon the model physics to propagate the information to unobserved parts of the 
system. 

Successive correction. The successive corrections method (SCM) was developed by 
Bergthorsson and Döös (1955) and Cressman (1959), and is also known as observation 
nudging. The scheme begins with an a priori state estimate (background field) for an 
individual (scalar) variable, which is successively adjusted by nearby observations in a 
series of scans (iterations, n) through the data. The analysis at time step k is found by 
passing through a sequence of updates.  

The advantage of this method lies in its simplicity. However, in case of observational error 
or different sources (and accuracies) of observations, this scheme is not a good option for 
assimilation, since information on the observational accuracy is not accounted for. Mostly, 
this approach assumes that the observations are more accurate than model forecasts, with 
the observations fitted as closely as is consistent. Furthermore, the radii of influence are 
user-defined and should be determined by trial and error or more sophisticated methods 
that reduce the advantage of its simplicity. The weighting functions are empirically chosen 
and are not derived based on physical or statistical properties. Obviously, this method is not 
effective in data sparse regions. Some practical examples are discussed by Bratseth (1986) 
and Daley (1991). 

Analysis correction. This is a modification to the successive correction approach that is 
applied consecutively to each observation s from 1 to sf as in Lorenc et al. (1991). In practice, 
the observation update is mostly neglected and further assumptions make the update 
equation equivalent to that for optimal interpolation (Nichols 1991).  

Nudging. Nudging or Newtonian relaxation consists of adding a term to the prognostic 
model equations that causes the solution to be gradually relaxed towards the observations. 
Nudging is very similar to the successive corrections technique and only differs in the fact 
that through the numerical model the time dimension is included. Two distinct approaches 
have been developed (Stauffer and Seaman 1990). In analysis nudging, the nudging term for 
a given variable is proportional to the difference between the model simulation at a given 
grid point and an “analysis” of observations (i.e., processed observations) calculated at the 
corresponding grid point. For observation nudging, the difference between the model 
simulation and the observed state is calculated at the observation locations. 
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Optimal interpolation. The optimal interpolation (OI) approach, sometimes referred to as 

statistical interpolation, is a minimum variance method that is closely related to kriging. OI 

approximates the “optimal” solution often with a “fixed” structure for all time steps, given 

by prescribed variances and a correlation function determined only by distance (Lorenc 

1981). Sometimes, the variances are allowed to evolve in time, while keeping the correlation 

structure time-invariant. 

3-D variational. This approach directly solves the iterative minimization problem given 

(Parrish and Derber 1992). The same approximation for the background covariance matrix 

as in the optimal interpolation approach is typically used.  

Kalman filter. The optimal analysis state estimate for linear or linearized systems 

(Kalman or Extended Kalman filter, EKF) can be found through a linear update equation 

with a Kalman gain that aims at minimizing the analysis error (co)variance of the analysis 

state estimate (Kalman 1960). The essential feature which distinguishes the family of 

Kalman filter approaches from more static techniques, like optimal interpolation, is the 

dynamic updating of the forecast (background) error covariance through time. In the 

traditional Kalman filter (KF) approach this is achieved by application of standard error 

propagation theory, using a (tangent) linear model. (The only difference between the 

Kalman filter and the Extended Kalman filter is that the forecast model is linearized using 

a Taylor series expansion in the latter; the same forecast and update equations are used 

for each approach.)  

A further approach to estimating the state covariance matrix is the Ensemble Kalman filter 
(EnKF). As the name suggests, the covariances are calculated from an ensemble of state 
forecasts using the Monte Carlo approach rather than a single discrete forecast of 
covariances (Turner et al. 2007). 

Reichle et al. (2002b) applied the Ensemble Kalman filter to the soil moisture estimation 

problem and found it to perform as well as the numerical Jacobian approximation approach 

to the Extended Kalman filter, with the distinct advantage that the error covariance 

propagation is better behaved in the presence of large model non-linearities. This was the 

case even when using only the same number of ensembles as required by the numerical 

approach to the Extended Kalman filter. 

4D-Var. In its pure form, the 4-D (3-D in space, 1-D in time) “variational” (otherwise 
known as Gauss-Markov) dynamic observer assimilation methods use an adjoint to 
efficiently compute the derivatives of the objective function with respect to each of the 
initial state vector values. Solution to the variational problem is then achieved by 
minimization and iteration. In practical applications the number of iterations is usually 
constrained to a small number. While “adjoint compilers” are available for automatic 
conversion of the non-linear forecast model into a tangent linear model, application of 
these is not straightforward. It is best to derive the adjoint at the same time as the model is 
developed.  

Given a model integration with finite time interval, and assuming a perfect model, 4D-Var 

and the Kalman filter yield the same result at the end of the assimilation time interval. 

Inside the time interval, 4D-Var is more optimal, because it uses all observations at once 

(before and after the time step of analysis), i.e., it is a smoother. A disadvantage of sequential 
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methods is the discontinuity in the corrections, which causes model shocks. Through 

variational methods, there is a larger potential for dynamically based balanced analyses, 

which will always be situated within the model climatology. Operational 4D-Var assumes a 

perfect model: no model error can be included. With the inclusion of model error, coupled 

equations are to be solved for minimization. Through Kalman filtering it is in general 

simpler to account for model error.  

Both the Kalman filter and 3D/4D-Var rely on the validity of the linearity assumption. 

Adjoints depend on this assumption and incremental 4D-Var is even more sensitive to 

linearity. Uncertainty estimates via the Hessian are critically dependent on a valid 

linearization. Furthermore, with variational assimilation it is more difficult to obtain an 

estimate of the quality of the analysis or of the state’s uncertainty after updating. 

6. Assimilation of hydrologic observations 

Estimation of the hydrologic state has mainly been focused on soil moisture, snow water 

content, and temperature. The observations used to infer state information range from direct 

field measurements of these quantities to more indirectly related measurements like 

radiances or backscatter values in remote sensing products. A few studies have also tried to 

assimilate state-dependent diagnostic fluxes, like discharge or remotely sensed heat fluxes. 

The success of assimilation of observations which are indirectly related to the state is largely 

dependent on a good characterization of the observation operator. This section presents 

examples of research in hydrologic data assimilation, but is not intended to be a 

comprehensive review. 

Truly optimal data assimilation techniques require flawless model and observation error 

characterization. Therefore, recent studies have focused on the first and second order error 

characterization in hydrologic modelling. Typically, either model predictions or 

observations are biased. Studies by Reichle and Koster (2004), Bosilovich et al. (2007) and De 

Lannoy et al. (2007a, b) scratch the surface of how to deal with these hydrologic modelling 

biases. The second order error characterization is of major importance to optimize the 

analysis result and for the propagation of information through the system. Tuning of the 

error covariance matrices has, therefore, gained attention with the exploration of adaptive 

filters in hydrologic modelling (Reichle et al. 2008; De Lannoy et al. 2009). 

Furthermore, it is important to understand that hydrologic data assimilation applications 

are dealing with non-closure or imbalance problems, caused by external data assimilation 

for state estimation. In a first attempt to attack this problem, Pan and Wood (2006) 

developed a constrained Ensemble Kalman filter which optimally redistributes any 

imbalance after conventional filtering. They applied this technique over a 75,000 km2 

domain in the US, using the terrestrial water balance as constraint. 

7. Case studies 

Significant advances in hydrological data assimilation have been made over the past decade 

from which we have selected a few case studies to demonstrate the utility of hydrological 

data assimilation in hazard prediction and mitigation.  
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7.1 Case study 1: Assimilation of water level observations 

By providing predictions of flood hazard and risk over increasing lead-times, flood 

inundation models play a central role in advanced hydro-meteorological forecasting 

systems. As the cost of damage caused by flooding is highly dependent on the warning time 

given before a storm event, the reduction of its predictive uncertainties has received a great 

deal of attention by researchers in recent years (e.g., Montanari et al., 2009, Biancamaria et 

al., 2010). The predictive uncertainty originates from several causes interacting between each 

other, namely input uncertainty (i.e. inflows), model structure and parameter uncertainty. 

The predictive uncertainty can be reduced through a periodical updating of computed water 

surface lines by taking advantage of water level measurements. However, ground based 

data are spatially rather limited, numbers of hydrometric stations are in decline at a global 

scale and major parts of the world still remain largely ungauged to this date. Recent 

developments in remotely sensing-based measurement techniques potentially help 

overcoming data scarcity. For instance, the technique of water stage retrievals from satellite 

measurements with centimeter-scale accuracy (e.g. Alsdorf et al., 2007) can be seen as a 

promising alternative to hydrometric station data.  

Matgen et al. (2010) demonstrated that the real-time assimilation of remote sensing-

derived water elevation into 1D hydraulic models via a Particle Filter enables the 

correction of water depth from a corrupted hydraulic model. In their synthetic 

experiments they found that significant model improvements could be achieved with 

observation error standard deviations up to 5 m. Another interesting result from their 

synthetic experiments is the realization that it is crucial to adjust the fluxes at the 

upstream boundaries of the model in order to significantly and persistently improve the 

hydraulic model. In river hydraulics, the process time scale is relatively short, so that 

stock updates have a limited lifetime. As in Andreadis et al. (2007), the research of Matgen 

et al. (2010) has clearly demonstrated that because of the dominating effect of the 

upstream boundary condition merely updating the state variable of the model (water 

level and hence water storage), only improves the model forecast over a very short time 

horizon. Model predictions rapidly degrade after updating if the forcing data are not 

consistent with observed water levels. Updating the uncertain upstream boundary 

condition leads to more persistent model improvement.  

Giustarini et al. (2011) recently tested the methodology with real event data using water 

level data obtained from ERS-2 SAR and ENVISAT ASAR during the January 2003 flood of 

the Alzette River (Grand-Duchy of Luxembourg). The retrieval of water elevation data from 

SAR is based on three steps (see Hostache et al., 2009 for a detailed description of the 

method). First, the flood extension limits with their respective geolocation uncertainty are 

derived from a SAR image using a radiometric thresholding-based procedure. Next, the 

resulting uncertain flood extent limits are superimposed on a digital elevation model (DEM) 

in order to estimate local water levels. The method takes into account the uncertainty 

stemming from the underlying DEM. The water level information is obtained as model 

cross-section specific intervals of the possible local water level. In the last step, the intervals 

of water levels are hydraulically constrained in order to reduce the estimation uncertainty 

(see Figure 4). The Particle Filter-based assimilation scheme consists in having a single 

particle with water levels at all cross sections as state vector. Hence, the likelihood that is 

www.intechopen.com



 
Approaches to Managing Disaster – Assessing Hazards, Emergencies and Disaster Impacts 

 

52

computed for each particle is derived from its ability to correctly predict water levels along 

the entire river reach. In order to overcome the problem of non-persistent model 

improvements, the forcing of the hydraulic model is updated as well, using information on 

model error that is obtained during the analysis cycle. The approach works well if inflows 

are the main source of error in hydraulic modelling. However, when model behavior is non-

uniform across the model domain, it is preferred to have the Particle Filter assign a separate 

particle set to each cross-section. Giustarini et al. (2011) further conclude that the analysis 

step is of major importance for carrying out an efficient inflow correction over many time 

steps as errors in the analysis will propagate through the inflow correction model, thereby 

potentially degrading the skill of the forecasts. The data assimilation experiments show the 

potential of remote sensing-derived water level data for persistently improving model 

predictions over many time steps (see Figure 5). 

 

Fig. 4. Diagram showing an example of: (a) flood extent derived from a satellite image 
superimposed on the DEM and the river cross-section location, (b) illustration of water level 
values extracted for a given cross-section and c) the remote sensing-derived water elevation 
along a portion of stream (c) before and (d) after applying the hydraulic coherence 
constrain. 
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Fig. 5. Stage hydrographs at one river cross-section before and after assimilating remote 

sensing-derived water level intervals from two SAR images into the 1D hydraulic model 

(bottom panel). The forecasting performance is evaluated with the RMSE evolution in time 

(top panel). The cyan line represents the RMSE before assimilation and the black line 

displays the RMSE after assimilation. 

7.2 Case study 2: Assimilation of snow water equivalent and snow cover fraction 

Snowmelt runoff is of major importance to summer water supplies, and plays a considerable 

role in mid-latitude flood events. Snow alters the interface between the atmosphere and the 

land surface through its higher albedo and lower roughness compared to snow-free 

conditions, and by thermally insulating the soil from the atmosphere. Consequently, the 

presence of snow strongly affects the land surface water and energy balance, weather and 

climate. Moreover, snow has a high spatial and temporal variability which is very sensitive 

to global change.  
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Numerical simulation of snow processes is far from perfect (Slater et al., 2001), therefore 

snow data assimilation could provide a more accurate estimate of snow conditions. Satellite-

based snow cover fraction (SCF) observations are available using visible and near-infrared 

measurements from sensors like the Moderate Resolution Imaging Spectroradiometer 

(MODIS, 2000 - present). While accurate, these observations have limitations (Dong and 

Peters-Lidard, 2010), such as the inability to see through clouds. Additionally, SCF 

observations only provide a partial estimate of the snow state, namely snow cover; in 

contrast, hydrologic modeling uses snow water equivalent (SWE, snow mass), so snow 

depletion curves are used to imperfectly translate SCF to SWE. These SCF issues can be 

overcome using SWE observations derived from passive microwave observations such as 

the Scanning Multichannel Microwave Radiometer (SMMR, 1978 − 1987), Special Sensor 

Microwave Imager (SSM/I, 1987-present) and Advanced Microwave Scanning Radiometer 

for the Earth Observing System (AMSR-E, 2002-present). These sensors do not suffer from 

cloud obscuration and allow SWE estimation by relating the microwave brightness 

temperature to snow parameters, but typically have a much coarser resolution and low 

precision (Dong et al., 2005).  

Therefore, an improved snow analyses can be expected by combining the strengths of 

different snow observations and models. De Lannoy et al. (2011) examined the possibilities 

and limitations of assimilating both fine-scale MODIS SCF and coarse-scale AMSR-E SWE 

retrievals into the Noah LSM using an EnKF. Eight years (2002−2010) of remotely sensed 

AMSR-E snow water equivalent (SWE) retrievals and MODIS snow cover fraction (SCF) 

observations were assimilated into the Noah LSM over a domain in Northern Colorado 

using a multi-scale ensemble Kalman filter (EnKF), combined with a rule-based update. De 

Lannoy et al., 2011 discuss several experiments: (a) ensemble open loop without assimilation 

(EnsOL); (b) assimilation of coarse-scale AMSR-E SWE observations (SWE DA); (c) 

assimilation of fine-scale MODIS SCF observations (SCF DA), which involves a mapping 

from SCF to SWE; and (d) joint, multi-scale assimilation of AMSR-E SWE and MODIS SCF 

observations (SWE & SCF DA).  

Figure 6 illustrates the spatial patterns of the satellite observations, the EnsOL estimates, 

and the assimilation estimates (without scaling) for a few representative days during the 

winter of 2009-2010. For this winter, the model and satellite observations have a similar SWE 

magnitude and no explicit bias-correction is needed to interpret the spatial patterns. The 3D 

filter performs a downscaling of the coarse AMSR-E SWE observations and shows a realistic 

fine-scale variability driven by the land surface model integration (De Lannoy et al., 2010). 

For example, high elevations maintain SWE values well above the observed AMSR-E SWE, 

which would not be the case if the AMSR-E pixels were a priori partitioned and assimilated 

with a 1D filter. Furthermore, areas without observations (swath effects) are updated 

through spatial correlations in the forecast errors. The 1D SCF filter imposes the fine-scale 

MODIS-observed variability, and locations without fine-scale observations (due to clouds) 

are not updated. The combined SWE and SCF assimilation shows features of both the SWE 

and SCF assimilation integrations. Assimilation and downscaling of coarse-scale AMSR-E 

SWE as well as MODIS SCF assimilation maintain realistic spatial patterns in the SWE 

analyses. 
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Fig. 6. SWE (at 8:00 UTC) and SCF (at 17:00 UTC) fields at 5 days in the winter of 2009-2010. 
The top 2 series show the assimilated observations, the other plots show SWE and SCF for 
the EnsOL forecast and 3 different data assimilation (DA) analyses. AMSR-E data are 
missing due to the swath effect and MODIS data are missing because of cloud 
contamination. 
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7.3 Case study 3: Assimilation of soil moisture observations 

Soil moisture is an important initialization variable for large-scale weather forecasts and 

climate predictions. Smaller-scale soil moisture conditions have a great impact on 

agriculture, ecology and hydrology. The occurrence of droughts and flooding has a major 

impact on human lives and monitoring the soil moisture helps to prevent or mitigate 

disasters. Regional to global soil moisture data rely mostly on land surface model 

simulations forced by meteorological data or on satellite-based microwave observations. 

However, these satellite observations have coarse spatial resolution, only sense the top few 

centimetres of the soil and are only available for a specific area when the satellite happens to 

pass over. Through assimilation of these intermittent surface observations into a model, 

continuous and consistent soil moisture profile estimates could be obtained. 

Liu et al. (2011) illustrated how land surface simulations can be improved by either 

improving the precipitation, or by assimilating surface soil moisture retrievals from the 

Advanced Microwave Scanning Radiometer (AMSR-E) with a 1-D ensemble Kalman filter 

into the NASA Catchment land surface model. The assimilated soil moisture products were 

either the operational NASA Level-2B AMSR-E “AE-Land” product (archived by NSIDC), or 

the Land Parameter Retrieval Model C-band LPRM-C product. The forcings were based on 

the atmospheric forcing fields from Modern Era Retrospective-analysis for Research and 

Applications (MERRA), but the precipitation is corrected with large-scale, gauge- and 

satellite-based precipitation observations from different datasets (CMAP, GPCP, and CPC). 

The soil moisture skill was defined as the anomaly time series correlation coefficient R of the 

model or assimilation results against in situ observations in the continental United States at 

44 single-profile sites within the Soil Climate Analysis Network (SCAN). Figure 7 shows 

that the precipitation corrections and assimilation of satellite soil moisture retrievals 

contribute comparable and largely independent amounts of information to the assimilation 

results. Furthermore, it should be stressed that the satellite observations are only available 

for the surface soil layer and assimilation of these surface data clearly helps to improve the 

soil moisture estimates in the root zone. 

The above example assimilated the coarse-scale AMSR-E data with a 1-D filter and focused 

on improving the temporal characteristics of the assimilation results for large scale 

applications. In another study by Sahoo et al. (2011), coarse-scale AMSR-E observations 

were assimilated with more focus on the fine-scale spatial variability by applying a 3-D 

spatial filter (Reichle and Koster, 2003, De Lannoy et al., 2010) to downscale the observations 

to the fine-scale model resolution over the Little River Experimental Watershed in Georgia. 

A correct assessment of the soil moisture pattern could largely impact flood predictions and 

may be crucial in the effective mitigation of droughts. Furthermore, as numerous previous 

studies (e.g., Walker et al. (2001b), De Lannoy et al. (2006), Liu et al. (2011)), it was 

reconfirmed that the assimilation of surface observations impact the deeper layer soil 

moisture and other water balance variables, but Sahoo et al. (2011) also illustrated that 

assimilation of surface observations helps the model to spin up faster to its balanced state, 

both in the surface and deeper layers. This is shown by the gray arrow in Figure 8, which 

indicates the time difference in model spin up without and with data assimilation. Data 

assimilation thus better prepares and balances the land surface models to provide improved 

short-term soil moisture forecasts. 
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Fig. 7. Average time series correlation coefficient R with SCAN in situ surface and root zone 
soil moisture anomalies for estimates from two AMSR-E retrievals (NSIDC and LPRM-C ), 
the Catchment model forced with four different precipitation datasets (MERRA, CMAP, 
GPCP, and CPC), and the corresponding data assimilation integrations (DA/NSIDC and 
DA/LPRM-C). Average is over 44 SCAN sites for surface soil moisture and over 42 sites for 
root zone soil moisture. Error bars indicate approximate 95% confidence intervals. 

7.4 Case study 4: Soil moisture assimilation and NWP 

Soil moisture can influence the development of the low-level atmosphere, by controlling the 

partition of incoming radiation into latent and sensible heat fluxes. In Numerical Weather 

Prediction (NWP) models, errors in the model forecasts (particularly from precipitation) 

tend to accumulate in the model soil moisture states, causing the modelled soil moisture to 

gradually drift away from reality. At many NWP centers this is prevented by applying 

simple nudging or Optimal Interpolation-based assimilation schemes that correct the model 

soil moisture to reduce errors in forecasts of low-level relative humidity and atmospheric 

temperature, based on screen-level (1.5 - 2m) observations from automatic weather stations. 

While this approach can effectively reduce low-level atmospheric forecast errors (of greatest 

concern to NWP) this is often achieved by degrading the model soil moisture, since it is 

`corrected' to compensate for screen-level errors unrelated to soil moisture, for example due 

to inaccuracies in the land surface flux parameterisations or the radiation physics (Drusch et 

al, 2007).  
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Fig. 8. Sensitivity results of the EnKF 3-D algorithm to the model initialization conditions 
and model spin-up for the Soil Moisture (a) Layer 1, (b) Layer 2, (c) Layer 3 and (d) Layer 4.  
The results are spatially averaged over 16 in-situ locations. OL (dashed) stands for the Open 
Loop model simulation without assimilation, started from different initial soil moisture 
wetness values. 3D (solid line) refers to assimilation results with L (low), M (moderate) and 
H (high) initial soil moisture. The simulations start in the summer (July 1, 2002 = S). 

Ultimately, inaccurate soil moisture in an NWP model will lead to inaccurate atmospheric 
forecasts. Additionally, if accurate soil moisture states could be obtained from NWP models, 
these would be valuable for other operational applications, such as hydrological modelling, 
flood forecasting, and drought monitoring. A promising solution to improving the accuracy 
of the soil moisture in NWP models is to make use of novel remotely sensed observations of 
near-surface soil moisture, such as those available from AMSR-E. Within this context, a 
study by Draper et al. (2011) presents an Extended Kalman Filter (EKF) capable of 
assimilating both screen-level observations and remotely sensed near-surface soil moisture 
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observations into an NWP model. This EKF, based on the Simplified EKF of Mahfouf et al 
(2009), was specifically designed to be computationally affordable within an operational 
NWP model, however the experiments presented here were conducted using an offline land 
surface model (with no feedback to the atmospheric model).  

A series of assimilation experiments was conducted to compare the EKF assimilation of 
AMSR-E derived near-surface soil moisture and screen-level observations into Météo-
France's NWP model over Europe. Figure 9 demonstrates how assimilating each data set 
influenced the fit between the subsequent model forecasts and each of the assimilated data 
sets. When the AMSR-E soil moisture and screen-level observations were assimilated 
separately, there was no clear consistency between the resulting root-zone soil moisture 
analyses, and so Figure 9 shows that assimilating one data set did not improve the model fit 
to the other data set. Hence, for these experiments the screen-level observations could not 
have been substituted with the AMSR-E data to achieve similar corrections to the low-level 
atmospheric forecasts, implying that the remotely sensed soil moisture may not be 
immediately useful for Météo-France's NWP model. However, for the experiments 
assimilating the screen-level observations the soil moisture innovations were dominated by 
a diurnal cycle that was not related to the model soil moisture, reinforcing the need to 
develop the assimilation of alternative data sets. 

 

Fig. 9. Mean daily observation minus model forecast, averaged over Europe, for each day in 
July 2006, for a) temperature at 2m above the surface, T_2m (K), b) relative humidity at 2m 
above the surface, RH_2m (%), and c) surface soil moisture, w_1 (m3m-3), for an open-loop 
(no assimilation; black, solid), assimilation of screen-level variables (black, dashed), 
assimilation of AMSR-E soil moisture (grey, solid), and assimilation of both data sets (grey, 
dashed) experiments. 
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When the AMSR-E and screen-level observations were assimilated together, the EKF slightly 
improved the fit between the model forecasts and both observed data sets, although these 
improvements were very modest, and the root mean square difference over the one month 
experiment over all of Europe between the model forecasts and the assimilated observations 
was reduced by less than 5% of the open-loop values, for all assimilated variables. If this 
result can be substantiated with larger improvements by performing the assimilation in a 
fully coupled NWP model, this would confirm that assimilating remotely sensed near-
surface soil moisture together with screen-level observations has the potential to improve 
the realism of the NWP land surface without degrading the low-level atmospheric forecasts. 

8. Summary 

Hydrological data assimilation is an objective method to estimate the hydrological system 
states from irregularly distributed observations. These methods integrate observations into 
numerical prediction models to develop physically consistent estimates that better describe 
the hydrological system state than the raw observations alone. This process is extremely 
valuable for providing initial conditions for hydrological system prediction and/or 
correcting hydrological system prediction, and for increasing our understanding and 
improving parametrization of hydrological system behaviour through various diagnostic 
research studies.  

Hydrological data assimilation has still many open areas of research. Development of 
hydrological data assimilation theory and methods is needed to: (i) better quantify and use 
model and observational errors; (ii) create model-independent data assimilation algorithms 
that can account for the typical non-linear nature of hydrological models; (iii) optimize data 
assimilation computational efficiency for use in large operational hydrological applications; 
(iv) use forward models to enable the assimilation of remote sensing radiances directly; (v) 
link model calibration and data assimilation to optimally use available observational 
information; (vi) create multivariate hydrological assimilation methods to use multiple 
observations with complementary information; (vii) quantify the potential of data 
assimilation downscaling; and (viii) create methods to extract the primary information 
content from observations with redundant or overlaying information. Further, the regular 
provision of snow, soil moisture, and surface temperature observations with improved 
knowledge of observational errors in time and space are essential to advance hydrological 
data assimilation. Hydrological models must also be improved to: (i) provide more 
“observable” land model states, parameters, and fluxes; (ii) include advanced processes 
such as river runoff and routing, vegetation and carbon dynamics, and groundwater 
interaction to enable the assimilation of emerging remote sensing products; (iii) have valid 
and easily updated adjoints; and (iv) have knowledge of their prediction errors in time and 
space. The assimilation of additional types of hydrological observations, such as streamflow, 
vegetation dynamics, evapotranspiration, and groundwater or total water storage must be 
developed.  

As with most current data assimilation efforts, we describe data assimilation procedures 
that are implemented in uncoupled models. However, it is well known that the high-
resolution time and space complexity of hydrological phenomena have significant 
interaction with atmospheric, biogeochemical, and oceanic processes. Scale truncation 
errors, unrealistic physics formulations, and inadequate coupling between hydrology and 
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the overlying atmosphere can produce feedbacks that can cause serious systematic 
hydrological errors. Hydrological balances cannot be adequately described by current 
uncoupled hydrological data systems, because large analysis increments that compensate 
for errors in coupling processes (e.g. precipitation) result in important non-physical 
contributions to the energy and water budgets. Improved coupled process models with 
improved feedback processes, better observations, and comprehensive methods for coupled 
assimilation are needed to achieve the goal of fully coupled data assimilation systems that 
should produce the best and most physically consistent estimates of the Earth system. 
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