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1. Introduction  

The world today cannot deny the prospect of 'peak oil', higher prices and depletion of 
petrochemical feed stocks. At the same time, there is an environmental concern of the 
widely used synthesized plastic from petroleum industry because of its non- degradable 
nature. Plastics, solid wastes, and pollutants of all kinds not only accumulate as carbon 
footprint, but also pose a threat to the global warming issues. If they are disposed by open 
air burning. The United Nation’s International Center for Science and High Technology 
(ICS) thus launched a program focusing on the development of degradable biopolymeric 
materials and plastic waste disposal in developing countries. Recycling, reuse, incineration, 
composting, and new technology for development of environmental friendly degradable 
plastics are making a highly efficient contribution to the mitigation of environmental 
problems. In addition, concerned researchers and the industrial sector have seen the 
importance of producing bio-based plastics and biopolymers from agricultural crops based 
on locally available biomass resources. 

2. Polyhydroxyalkanoates (PHAs)  

2.1 Definition  

Polyhydroxyalkanoates (PHAs) or polyhydroxyalcanoic acid, the main kind of biodegradable 
and biocompatible biopolymer, are classified as linear polyesters. Typically, PHAs can be 
produced in nature by several microorganisms such as yeast, fungi and mostly by various 
bacterial strains. The bacteria could accumulate as intracellular carbon and energy storage 
under imbalanced growth conditions such as excess in carbon sources but limiting in nutrients 
of nitrogen, phosphorous and potassium etc (Yu et al., 2005). In addition, fermentation 
processes from renewable resources such as sugar, starch and even lipid based materials are 
also affected on the production of PHAs (Kaewkannetra et al, 2008). 

2.2 Classification  

Since 1925, PHAs were the first biomaterial, discovered by the French microbiologist, M. 
Lemoigne, accumulated as intracellular substance in a bacterial strain of Bacillus 
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megaterium (Lemoigne, 1926; Anderson & Dawes, 1990; Jacquel et al., 2008). Nowadays, 
biopolymers have been synthesised or are formed in nature during the growth curves of 
all microorganisms. Depending on the evolution of the synthesis process, different 
classifications of the different biopolymers have been proposed. In this case, they are 
classified into the following 4 categories. However, it should be noted that only 3 
categories (from 2.2.1 to 2.2.3) are obtained from renewable resources and the remainder 
is obtained by chemical synthesis. 

 Biopolymers derived from biomass such as from agro-resources (e.g., starch, lingo-
cellulosic materials, protein and lipids)  

 Biopolymers obtained by microbial production as the PHAs  

 Biopolymers conventionally and chemically synthesised and the monomers are 
obtained from agro-resources, e.g., the poly-lactic acids or PLAs  

 Biopolymers whose monomers and polymers are obtained conventionally by chemical 
synthesis such as aliphatic and aromatic hydrocarbon. 

2.3 PHAs structures  

PHAs are produced by the bacteria to store carbon and energy reserves (Keshavarz, Roy, 
2010). Previous works stated that an intracellular accumulation of PHAs improves the 
survival of general bacteria under environmental stress conditions (Kadouri et al., 2005; 
Zhao et al., 2007). Various microorganisms are produced in different properties of 
biopolymer depending on the types of microorganisms and carbon sources used. More than 
150 different monomers can be combined within this family to give materials with extremely 
different properties (Chen & Wu, 2005).  

PHAs structure is composed of a monomer of 3-hydroxyalkanoic (HA) acid. The general 
formulae of the monomer unit is -[O-CH(R)-CH2-CO]- as seen in Fig.1 (Lee, 1995). The (R)-
3HA monomer units are all in the R configuration due to sterospecificity of polymerizing 
enzyme PHAs synthase. According to the size of the alkyl substituent (R), the mechanical 
properties of PHAs can typically be divided into three groups by number of carbon atoms in 
their side chain. Short chain length (scl) PHAs are composed of 3-5 carbon atoms, while 
medium chain length (mcl) PHAs consist of 6-15 carbon atoms and long chain length (lcl) ones 
comprise 15 and above carbon atoms. The structure of PHAs depends on supplying carbon 
sources and microbial types. The composition of PHAs depends on the microorganisms and 
nature of the carbon sources allowing the formulation of new polymers with different 
physicochemical properties, i.e., short or mid-chain and long-chain fatty acids. 

The most common PHAs’ forms found in microorganism cells are polyhydroxybutyrate (PHB) 
and polyhydroxyvalerate (PHV). However, the majority of the published research on PHAs 
rather than PHB has concentrated on two bacterial strains, i.e., Alcaligenes eutrophus and A. 
latus (Slater, et al, 1988; Kim, et al, 1994; Yamane, et al, 1996, Shi, et al, 1997; Wang & Lee, 
1997; Tsuge, et al, 1999; Yu, et al, 2005; Yezza, et al, 2007). 

These monomers are biodegradeable and used for the production of bioplastics. PHAs 
produced from the process are usually composed of 100-30,000 monomers and exist in a 
short chain. Naturally, the properties of PHAs are similar to thermoplastics that are 
obtained from petrochemical industry such as polypropylene (PP) and polyethylene (PE) as 
shown in Table 1 (Evan and Sikdar, 1990). 
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Fig. 1. PHAs structure (Lee, 1995) 

Property PHB Polypropylene 

Melting point (Tm), oC 

Crystallinity, % 

Molecular weight, Daltons 
Glass transition (Tg), oC 
Density, g/cm3 
Tensile strength, Mpa 

175 
80 

5 x105 
15 

1.25 
40 

176 
70 

20 x105 
-10 

0.905 
38 

(Evan and Sikder, 1990) 

Table 1. Properties of polyhydroxybutyrate (PHB) and polypropylene (PP) 

They can be either thermoplastic or elastomeric materials with melting points ranging from 

40 to 180°C and the percentage of crystallinity (up to 70-80) is similar (Blumm & Owen, 

1995). Thus, they can tolerate organic solvents and even lipid and oil. The mechanical and 

biocompatibility of PHAs can also be easily changed by blending, forming, modifying the 

surface or combining PHAs with other polymers, enzymes and inorganic materials, making 

it possible for a wider range of applications such as bottles, bags and wrap films and even in 

pharmaceutical and medical areas such as drug coating and drug delivery (Steinbuchel & 

Fuchtenbusch, 1998, Jacquel, et al., 2008).  

3. Sweet sorghum 

Sweet sorghum (Sorghum bicolor L. Moench) is a 3 annual crop and a 4 carbons (C4) 
containing plant with high biomass productivity. As a high photosynthetic efficient crop, 
it does not only produce grains, but also yields large amount of sugars in the stems. 
Typically, it mainly consists of sucrose (up to 55% of dry weight biomass), fructose and 
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glucose which are ideal for preparing fermentation media (Kaewkannetra et al., 2008; 
Laopaiboon et al., 2009; Gao et al., 2010). 

 

Fig. 2. Sweet sorghum (strain Khon Kean University 40 : KKU 40) from agricultural 
plantation area of Khon Kaen University, Khon Kaen, Thailand 

In the age of petroleum crisis, sweet sorghum (see Fig. 2), especially grains and stems, has 
already proven advantages over other crops such as sugar cane, cassava, palm, in terms of 
residue or agricultural wastewater. These crops are feedstock for producing bio-fuels by 
squeezing the juice and then fermenting into bio-ethanol (Laopaiboon et al (2009), bio-
hydrogen (Antonopoulou, et al., 2008). They have recently been used as carbon sources for 
algae during bio-diesel production (Gao et al., 2010) owing to their sustainability, processing 
efficiency and superior byproducts, such as bagasse, which serves as high-quality cattle 
feed. The crops can be cultivated under dry, non-arable land, or warm conditions and are 
inexpensive to grow. Thus, they are more typically grown for forage, silage, and sugar 
production than many other crops. The crops are also competitive on the cost aspect of 
ethanol production. 

Presently, the cost of PHAs production is a main limiting factor for extensive production in 
an industrial scale. The carbon source contributes most significantly (up to 50%) to the 
overall cost in PHAs production. An attempt to produce PHAs by applying cheap carbon 
sources could reduce the total cost of the production. Previously, production of PHAs by 
using cheap carbon sources such as molasses, maple sap and cassava were studied (Grothe 
et al 1999; Yezza, et al., 2007; Koller et al., 2008). However, sweet sorghum had not been 
explored so far as a carbon source for PHAs production until in 2008 (Kaewkannetra, et al., 
2008). Currently, it is planted in more than 90 countries around the world including 
Thailand, which is one of the agro-industrial countries in the Southeast Asia with plentiful 
cheap carbon sources. A number of crops such as cassava, sugar cane, corn, potato, can be 
extensively used as raw materials to produce degradable polymer and biomaterials via 
fermentation process by microorganisms. Sweet sorghum, among all the crops mentioned, is 
of high potentiality to help mitigate environment problems if it can be produced as 
biodegradable plastics.  
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3.1 Classification 

Sorghum can be classified into 5 categories: grain, grass, broom, pop and sorgo or sweet 
sorghum. Typically, it is used for animal feed and as sweeteners, primarily in the form of 
sweet sorghum syrup similar to sugar cane. Recently researchers found rich sugar content in 
the stem of sweet sorghum, commonly expressed with juice brix degree, but the relation 
between sugar content and brix degree has not been very clear due to different varieties 
during their growth. The results revealed a scientific basis for the arrangement in their 
sowing dates.  

3.2 Characterization 

Since the duration of sweet sorghum for maturation is approximately 3-5 months, 2-3 
crops could be harvested annually in Thailand. Therefore, the production yields of sugar 
would be double or triple. We can see the possibility of reducing the world energy crisis if 
sweet sorghum can be converted to energy efficiently. Typically, after harvest, the leaves 
of the fresh crop are stripped and the stems are squeezed in a roller mill (Fig.3) to obtain 
sweet sorghum juice. It should be noted that the stems are stored at 4o C while the juice is 
kept at -20o C prior to use.  

 

Fig. 3. Stems of sweet sorghum are squeezed by a roller mill for preparing sweet sorghum 
juice (SSJ)  

Table 1 shows variations of types and sugar content in sweet sorghum collected from 
several areas, which depend on the strain, planting seasons, areal conditions, etc. For 
examples, the total sugar, analyzed by phenol-sulfuric method, was 207.43 g/l. Analysis 
by means of High Performance Liquid Chromatography (HPLC) has proved contents of 
175.97 g/l sucrose, 12.32 g/l glucose, 5.75 g/l fructose in sweet sorghum juice. Normally, 
the initial sugar concentration of 30-40 g/l is suitable and sufficient for using as carbon 
source for microbial growth. Therefore, the juice for 1 liter can be diluted as fermentation 
medium for 4-5 liters (Kaewkannetra et al., 2008). 
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cultivation 
area 

Harvest 
month 

Sugar types (g/l) Total 
Sugar (g/l)

Sources 

sucrose glucose fructose

Thailand July 175.97 12.32 5.75 194.04 
Kaewkannetra et al 

(2008) 

Thailand * 124.1 20.9 16.8 161.8 
Laopaiboon et al 

(2009) 

USA October 143.3 39.3 61.0 242.6 Liang et al (2010) 

Hungary September 75.1 25.0 18.1 118.2 Sipos et al (2009) 

Greece November 211.9 20.1 - 232.0 Mamma et al (1995) 

*Not specific 

Table 1. Type and sugar contents in sweet sorghum collected from several areas  

4. Fermentation 

4.1 Definition 

Fermentation implies an intracellular biochemistry process. It is believed to have been the 

primary means of energy production in earlier organisms before oxygen was at high 

concentration in the atmosphere. Therefore, it would generate Adenosine Triphosphate (ATP) 

of the energy molecule of cells even in the presence of oxygen and is synthesized mainly in 

mitochondria and chloroplasts. In other words, it means the anaerobic enzymatic conversion 

of organic compounds to simple compounds producing energy in the form of ATP.  

 

Fig. 4. Fermentation of sweet sorghum in fermentor (Kaewkannetra et al., 2008) 

Fermentation occurs naturally in various microorganisms such as bacteria, yeasts, fungi and 
in mammalian muscle. Yeasts were discovered to have connection with fermentation as 
observed by Louis Pasteur and originally defined as respiration without air. However, it does 
not have to always occur in anaerobic condition. For example, starch when fermented under 
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anaerobic conditions gives alcohols or acids. Yeasts, in ethanol fermentation, use an 
anaerobic respiration primarily when oxygen is not present in sufficient quantity for normal 
cellular respiration. However, in large-scale fermentation, the breakdown and re-assembly 
of biochemicals for industry often carry on in aerobic growth conditions. 

4.2 Types of fermentation 

Normally, fermentation processes can be classified depending on the objective of study. 
For example, in terms of products fermentation is divided into 4 types, namely, microbial 
cell, microbial enzyme, microbial metabolite and transformation process. If considering 
due to its contaminating conditions, it will be classified into 3 types: septic, semi-septic 
and aseptic fermentation. However, in general, the fermentation processed are classified 
into 3 types as follows. 

4.2.1 Batch fermentation 

Batch fermentation means the cultivation of microorganisms, where the sterile growth 
medium in desired volume is inoculated with the microorganisms into the bioreactor and no 
additional growth medium is added during the fermentation. The product will be harvested at 
the end of the process. Typically, PHA’s production is performed using batch fermentation 
because of low cost for investment and no special control. In addition, sterilization of the feed 
stock is easier than other fermentation processes, and operation is flexible.  

Previous studies have investigated batch fermentation of both carbon sources and 
microorganisms. The microorganisms will accumulate PHAs after the cell reached the 
maximum growth coupled with the depletion of nitrogen or phosphorus (Braunegg et al 
1998; Wang & Bakken, 1998; Chien et al, 2007). 

 

Fig. 5. Growth curve and PHAs production during batch fermentation of sweet sorghum by 
Bacillus arybhattai in 3 L fermentor (Tanamool et al., 2011) 
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Fig. 5 shows batch fermentation of sweet sorghum juice (SSJ) by Bacillus aryabhattai in 3 L 
fermentor under cultivating condition with agitation rate at 200 rpm, air rate at 1.5 l/min 
and temperature at 30° C. Growth monitoring and PHAs production were investigated 
including total sugar, dry cell weight (DCW) and variations of fructose, glucose and sucrose 
as functions of time. It was found that the maximum cell and PHAs product reached at 
about 10.38 g/l and 4.36 g/l. Both slightly increased after 72 hr. The sugar trend then 
changed. Sucrose was almost depleted within 36 hr while glucose and fructose were slightly 
increased at the beginning and reached maximum at 24 hr. Then the cells started to use both 
types of sugar (Tanamool et al., 2011).  

Bacterium PHAs 
carbon 

source 

Culture 

time (h)

Cell 

conc.

(gl-1)

PHAs 

conc. 

(gl-1) 

PHAs 

content 

(%) 

Productivity 

(gl-1 h-1) 

Alcaligenes 

eutrophus 
P(3HB) Glucose 50 164 121 76 2.42 

A. eutrophus P(3HB) CO2 40 91.3 61.9 67.8 1.55 

A. eutrophus P(3HB)
Tapioca 

hydrolysate
59 106 61.9 57.5 1.03 

A. eutrophus 
P(3HB-

co-3HV)

Glucose+ 

propionic 

acid 

46 158 117 74 2.55 

A. latus P(3HB) Sucrose 18 143 71.4 50 3.97 

Azotobacter 

vinelandii 
P(3HB) Glucose 47 40.1 32 79.8 0.68 

Chromobacterium 

violaceum 
P(3HV) Valeric acid - 39.5 24.5 62 - 

Methylobacterium

organophilum 
P(3HB) Methanol 70 250 130 52 1.68 

Protomonas 

extoquens 
P(3HB) Methanol 170 233 149 64 0.88 

Pseudomonas 

olevorans 

P(3HBx-

co-3HO)
n-octane D=0.2h-3 11.6 2.9 25 0.58 

P. oleovorans 
P(3HBx-

co-3HO)
n-octane 38 37.1 12.1 33 0.32 

Recombinant 

Escherichia coli 
P(3HB) Glucose 39 101.4 81.2 80.1 2.08 

Rec. Klebsiella 

aerogenes 
P(3HB) Molasses 32 37 24 65 0.75 

Table 2. Production of PHAs by various bacteria and carbon sources (Yamane, 1996)  

In Table 2, different carbon sources were evaluated and it was found that each strain 
produced different amounts of PHAs. For example, Alcaligenes eutrophus or Rastonia eutropha 
prefers to use fructose (Khanna & Srivastava, 2005). A. latus is in favour of sucrose (Grothe 
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et al, 1999) while Azotobacter valandii can use glucose (Lin & Sadoff, 1968). Currently, genetic 
engineering techniques can modify strains such as rec. E. coli and rec. Klebsiella aerogenes are 
used to produce PHAs in cheap carbon sources, such as molasses (Slater et al., 1988; 
Ramachander et al., 2002). 

4.2.2 Fed-batch fermentation 

Fed-batch fermentation process is a production technique between batch and continuous 
fermentation. A proper medium feed rate is required to add sequentially into the 
fermentor during the process and the product is harvested at the end of fermentation just 
like a batch type.  

Fed-batch contains many advantages compared to other cultures. It can be easily concluded 
that under controllable conditions and with the required knowledge of the microorganism 
involved in the process, the feed of the required components for growth and/or other 
substrates are also important due to catabolic repression. The product will never be depleted, 
the nutritional environment can be maintained approximately constant and the extension of 
the operating time, high cell concentrations can be achieved and thereby, improve 
productivity. This is greatly favored in the production of growth-associated products.  

Fig. 6 shows a fed batch fermentation of sweet sorghum juice (SSJ) by Bacillus aryabhattai in 3 
L fermentor under cultivating condition with agitation rate at 200 rpm, air rate of 1.5 l/min, 
at 30° C and feeding time at 18 and 24 hr during log phase of the culture. It was found that 
the cell could continuously produce both biomass and PHAs. Maximum cells were obtained 
at about 14.20 g/l at 54 hr when PHAs content reached 4.84 g/l after 66 hr (Tanamool et al., 
2011). In addition, in Table 2, fed batch fermentation by A. latus was used for the production 
of PHAs (Yamane et al, 1996; Wang & Lee, 1997). It could yield high productivity with the 
use of cheap carbon sources.  

 

Fig. 6. Growth monitoring and PHAs production during fed-batch fermentation of sweet 
sorghum by Bacillus arybhattai in 3 L fermentor (Tanamool et al., 2011) 
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4.2.3 Continuous fermentation 

Continuous fermentation is process in which feeds, containing substrate, culture medium 

and other requirements, are pumped continuously into the agitated bioreactor where the 

microorganisms are active. Final product is withdrawn from the upper part of the tank. 

Typically the process is performed by eliminating the inherent down time for cleaning 

and sterilization and the long lags before the organisms enter a brief period of high 

productivity. 

However, it should be noted that there is a small percentage of the total time in which 

productivity rate is near its maximum. It is sometimes possible to maintain very high rates 

of products for a long time with continuous fermentation. Although it can get much more 

productivity from the fermentor, enhancement over batch fermentation in terms of the total 

volume of fermentor is not high because equipment needs to be sterilized to support the 

continuous tank.  

Previously, Yu et al (2005) studied the increase of a co-biopolymer of PHBV by Ralstonia 
eutropha in a continuous stirred tank reactor. It was found that the productivity rate 
increased when sodium propionate was used as the carbon source. Later, Yezza et al (2007) 
investigated the use of maple sap as a carbon for PHB production by A. latus. The 
productivity of PHB reached 2.6 gl-1 h-1.  

5. Microorganisms 

The majority of PHAs biosynthesis is performed by various microorganisms, especially 

bacteria. They can produce PHAs from a number of substrates and accumulate in their cells 

as carbon source and energy reserve under imbalanced growth conditions such as nutrient 

limitation. Fig.7 shows PHA accumulated in their cells that are characterized by 

transmission electron microscopic (TEM) technique.  

 

 
 

Fig. 7. (A and B) Images of PHAs accumulated in bacteria Halomonas TD01 based on 
transmission electron microscope (TEM) (Tan et al., 2011) 

www.intechopen.com



 
Fermentation of Sweet Sorghum into Added Value Biopolymer of Polyhydroxyalkanoates (PHAs) 

 

51 

Depending on PHAs accumulation behaviour, microorganisms can be categorized into two 
groups. The first group requires limitation of some nutrients such as nitrogen or phosphate 
while there is an excess in carbon. The members of this group belong to Alcaligenes 
eutrophus, (Kaewkannetra et al, 2008), Cupiavidus necator (formerly known as Ralstronia 
eutropha) (Kim et al, 1994; Yu et al, 2005) and Hydrogenophaga sp. (Yoon & Choi, 1999; 
Mahmoudi et al, 2010). The second group does not depend on nutritional limitation but can 
accumulate PHAs during the growth. Examples are Alcaligenes latus (Yamane et al, 1996; 
Yezza, et al, 2007), Azotobacter vinelandii, P. aeruginosa, (Fernandez et al, 2005), Bacillus 
mycoides (Thakur et al, 2001) and Escherichia coli, etc.  

5.1 Screening, isolation and identification  

Although PHAs obtain interest and are widely studied by many researchers, PHAs production 
is limited by production cost. A major problem to the commercialization of PHAs is much 
higher production cost than petrochemical-based synthetic plastic (Luengo, 2003). 

Many attempts have been devoted to investigate for reducing the cost of PHAs by the 

isolation of better bacterial strains from various sources such as sludge from wastewater 

(Kasemsap & Wantawin, 2007) or marine (Chien et al, 2007) and soil environment 

(Tanamool et al, 2011) using a simple method that can monitor the accumulation of PHAs. 

For example, efficient conditions for bacterial PHB production can be found in soil due to its 

heterogeneous nature. Nitrogen availability in soil varies with microsites. It may become a 

limiting factor for bacterial growth, especially in some nitrogen-poor (carbon-rich) sites 

(Thakur, 2001). Accordingly, some PHAs-producing bacterial strains such as Bacillus, 

Arthrobacter, Corynebacterium, Curtobacterium, Pseudomonas, Micro- coccus, and Acinetobacter, 

etc. can be isolated from soil environments.  

Several simple methods used for detecting intracellular PHAs granules are applied to the 

screening of PHA producers such as Sudan Black staining (Anderson & Dawes, 1990) and 

Nile blue A staining (Wang & Bakken, 1998). The positive result shows a black color or 

fluorescent granules under microscope. Although these methods are feasible and easy, they 

are rather time- and labor-consuming due to requirement of environmental isolation. 

Alternative staining method has recently been developed for directly staining colonies or 

growing bacteria on plates containing Nile blue A or Nile red (Ostle & Holt, 1982). The dye 

can be directly diffused into microbial cytoplasm, resulting in fluorescent colonies that can 

be observed under UV illumination without microscopic observation. It is believed that the 

colony-staining is a suitable method for screening a large number of microbial strains. 

After the samples have been collected from the environment, they are preserved at 4°C to 
protect against contamination prior to isolation. Recently, Tanamool et al, 2011 explained 
the primary isolation of soil microbes by serial dilution technique. In short, the soil 
sample was transferred to nutrient broth (NB) and incubated. Then the culture was 
diluted in normal saline and spread on nutrient agar (NA). Finally, several single colonies 
were picked and transferred to mineral salt agar. After incubation, PHAs producing 
capabilities of the microbes were confirmed by Sudan Black B and Nile blue A staining 
methods as described by Ostle & Holt, 1982; Wang & Bakken, 1998. Viable colonies were 
directly observed under UV light and fluorescence to detect the accumulation of PHAs 
(Spiekermann et al, 1999). 
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The morphology and biochemical characteristics of the isolate then are observed. The PHAs-
producing strains can be identified by sequencing partial sequences of their 16S rDNA as 
described by Edwards et al, (1989). Fig. 8 shows phylogenetic analysis of 16S rDNA 
sequence of the isolate V 33. It was closely related to bacterial strain of Hydrogenophaga sp. 
(99% identity) (Tanamool et al, 2011). Previous studies have reported that Hydrogenophaga 
sp. can be isolated from soil, mud, and water. The strains were gram-negative, rod-shaped 
cell and yellow pigmented hydrogen-oxidizing bacteria (Willem et al, 1989). They can grow 
and produce PHAs from various substrates such as glucose, galactose, xylose, arabinose 
(Choi et al, 1995) whey lactose (Koller et al, 2008) and in fructose (Mahmudi et al, 2010). 

 

Fig. 8. Phylogenetic analysis of 16S rDNA sequence of the isolate V 33 (Tanamool et al, 2011) 

6. Factors affecting fermentation process 

6.1 Microbial strain 

Tim & Steinbuchel (1990) studied the mechanisms of Alcaligenes spp. and Rhodospirillum 
rubrum for PHB synthesis by using butyric acid. Later, Steinbuchel (1991) confirmed the 
results for the potential of PHAs production and the compositions of PHAs. Under various 
microbial strains used, different contents of PHAs were obtained.  

Table 3 shows PHAs contents in different weights compared to dry cell mass accumulated 
in various microorganisms. It was found that Alcaligenes spp. contains a maximum of 96% 
PHAs in its cell.  

Microbial strain 
Weight/ 

dry cell mass (%) 

Ralstonia eutropha (reclassified Alcaligenes 
eutrophus) 

Azospirillum 
Azotobacter 
Baggiatoa 
Leptothrix 

Methylocystis 
Pseudomonas 

Rhizobium 
Rhodobacter 

96 
 

75 
73 
57 
67 
70 
67 
57 
80 

(Available from www: http://members.rediff.com/jogsn/bp6.htm) 

Table 3. Variations of PHAs contents in various microbial strains 

www.intechopen.com



 
Fermentation of Sweet Sorghum into Added Value Biopolymer of Polyhydroxyalkanoates (PHAs) 

 

53 

6.2 Nitrogen sources  

Nitrogen sources are a nutrient effect on structure and the accumulation of PHAs in 

microbial cells. Nitrogen sources compose one limiting factor for microorganisms during 

cultivation. In 1982, Rhee et al studied the production of PHAs from A. eutrophus. Variation 

of nitrogen sources was also studied and the results were summarized in Table 4. Although 

the microorganisms can be used in the same carbon source, the cell growth and their PHAs 

products are different when nitrogen sources vary. 

Carbon source Nitrogen source
Cell dry 

Weight (g/l) 
PHAs 

content (wt%) 

PHAs 

3HB 3HV 

Glucose 

Yeast extract 3.2 45.2 98.4 1.6 

Urea 1.4 14.8 85.6 14.4 

(NH4)2SO4 1.8 29.3 93.3 6.7 

Sucrose 

Yeast extract 1.5 18.9 98.3 1.7 

Urea 1.3 4.0 93.5 6.5 

(NH4)2SO4 1.2 15.1 92.0 8.0 

Sorbitol 

Yeast extract 3.1 44.8 93.4 6.9 

Urea 1.8 37.2 85.7 14.3 

(NH4)2SO4 1.7 28.1 93.5 6.5 

Mannitol 

Yeast extract 3.4 58.7 94.1 5.9 

Urea 2.2 18.2 92.5 7.5 

(NH4)2SO4 1.8 29.0 93.3 6.7 

Na-gluconate 

Yeast extract 2.3 34.5 91.9 8.1 

Urea 1.6 5.3 78.1 21.9 

(NH4)2SO4 2.7 41.1 66.7 13.3 

Table 4. Effect of nitrogen sources on PHAs production (Rhee et al, 1992) 

6.3 Fermentation time 

Timm & Steinbuchel (1990) revealed the production of PHAs by Pseudomonas aeruginosa. It 
was found that when the cell reached to stationary phase, the intracellular PHAs were 
decreased. Lageveen et al (1998) produced PHAs from n-octane by Pseudomonas oleovorans. 
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It was found that the microorganism has a specific duration for PHAs recovery. However, 
only some strains can accumulate PHAs along their growth or growth-associated strain.  

6.4 Mineral substances 

Mineral substances such as phosphorus, sulphur, magnesium, etc. could affect microbial 

growths in several functions. Phosphorous is assimilated only in form of orthophosphate 

(H2PO4-) and it is essential for all microorganisms. Sulphur is incorporated into S-containing 

amino acid in protein and magnesium functions as a cofactor or effectors for many enzymes 

in microbial metabolism. Each microbial strain needs nutrients and minerals in different 

contents due to suitable limitation of nutrients for PHAs-producing microorganism.  

6.5 Temperature and pH 

Normally, the production of PHAs usually carries on under moderate temperature range of 

30-35°C and at pH 6.5-7.0. This condition may be suitable for most PHA3s-producing 

microbes.  

7. PHAs recovery and their properties 

After fermentation, subsequent midstream to downstream processes such as cell 

disruption, centrifugation, extraction and drying will be carried on for product recovery. 

Fig. 9 shows a white sheet of PHB obtained from fermentation of sweet sorghum juice 
(SSJ) by Bacillus aryabhattai.  

 

 
 

Fig. 9. Biopolymer of PHB obtained from Bacillus aryabhattai 
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In Fig. 10 the sheet was then characterized for the properties such as thermal properties of 

glass temperature (Tg) and melting temperature (Tm) analyzed by Differential Scanning 

Calorimetric (DSC) analysis. The Tg and Tm of the PHB sheet reached 1.11°C and 167.3°C 

when compared to the standard PHB (99.5%) where Tg and Tm are at 2.81°C and 

176.29°C. Thermal properties of PHB sheet obtained were lower than the standard values 

of PHB. This implies that the PHB sheet can be easily further used to blend and form with 

other cheap biopolymers or raw materials by heat treatment during bioplastic production 

process. In Fig.11 shows the degrading temperatures analyzed by Thermo gravimetric 

analysis (TGA) in both standard PHB and the PHB sheet. The degradation will be 

completed at temperature of 450°C for the standard PHB, while the PHB sheet is 

completely degraded at 300°C. It means that the PHB sheet obtained containing of 

improved quality that was better than the standard PHB.  

In addition, physico-chemical characterization, blending and forming steps need to be 

fulfilled to get novel biomaterials for replacing conventional plastic in a wide range of 

further applications. These include packing containers, bottles, wrappings, bags, thin films 

and disposable items (diapers or feminine hygiene products).  

 

 

 

 

Fig. 10. Tg and Tm of standard PHB and PHB obtained from Bacillus aryabhattai 
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Fig. 11. Thermal degradation temperature of standard PHB and PHB obtained from Bacillus 
aryabhattai by Thermo-gravimetric analysis (TGA) 

8. Summary 

Although PHAs are being interested and broadly studied by many researchers for a long 

time, the most important obstacle to commercial application of PHAs is their price. PHAs’ 

production cost is roughly 10 times or more compared to petrochemical-based synthetic 

plastic materials such as PE and PP. Much attempt has been devoted to reduce the 

production cost of PHAs in different ways, for example, use of isolated bacterial strains, 

development of improving strains by genetic techniques such as recombinant DNA of E. 

coli and Streptomyces aureofacienc NRRL, controlling a culture condition via various 

fermentation processes such as batch, fed-batch, repeated-batch/repeated fed-batch, 

enhancing production via optimization of fermentation process using response surface 

methodology (RSM), more economical recovery process, and most importantly, the use of 

cheaper carbon sources. 

A novel non-petroleum based biodegradable plastic produced from sugar based agricultural 

raw materials as sweet sorghum, sugarcane and molasses, having potential properties 

comparable with conventional or synthetic plastics, is under development and could lower 

the contribution of plastic wastes to municipal landfills at about 20% of the total waste by 

volume and 10% by weight and can achieve a satisfactory for the environmental imperative. 
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The gradual transition towards the biobased economy brings opportunities for 'developing' 

countries to leapfrog beyond the petroleum era and into a cleaner, greener and more 

renewable future based on biotechnology knowledge.  
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