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1. Introduction  

In order to be suitable for tribological applications, polymeric materials, which can usually 
exhibit mechanical strength, lightness, ease of processing, versatility and low cost, together 
with acceptable thermal and environmental resistances, have to show good abrasion and 
wear resistance. This target is not easy to achieve, since the viscoelasticity of polymeric 
materials makes the analysis of the tribological features and the processes involved in such 
phenomena quite complicated.  

Indeed, it is well-known that an improvement of the mechanical properties can be 
effectively achieved  by including “small” inorganic particles in the polymer matrices 
(Dasari et al., 2009).  

For applications taking place in hard working conditions, such as slide bearings, the 
development of composite materials, which possess a high stiffness, toughness and wear 
resistance, becomes crucial. On the one hand, the extent of the reinforcing effect depends on 
the properties of composite components, and on the other hand it is strongly affected by the 
microstructure represented by the filler size, shape, homogeneity of distribution/dispersion 
of the particles within the polymer, and filler/matrix interface extension. This latter plays a 
critical role, since the composite material derives from a combination of properties, which 
cannot be achieved by either the components alone.  

Thus it is generally expected that the characteristics of a polymer, added of a certain volume 
fraction of particles having a certain specific surface area, are more strongly influenced 
when very small particles (nanofillers), promoting an increased interface within the bulk 
polymer, are used (Bahadur, 2000; Chen et al., 2003; Karger-Kocsis & Zhang, 2005; Li et al., 
2001; Sawyer et al., 2003). However, this happens only when a high dispersion efficiency of 
the nanoparticles within the polymer matrix is assessed: indeed, nanoparticles usually tend 
to agglomerate because of their high specific surface area, due the adhesive interactions 
derived from the surface energy of the material. In particular, the smaller the size of the 
nanoparticles, the more difficult the breaking down of such agglomerates appears, so that 
their homogeneous distribution within the polymer matrix is compromised.  

As a consequence, the development of nanocomposites showing high tribological features 
requires a deep investigation on their micro-to-nanostructure, aiming to find synergistic 
mechanisms and reinforcement effects exerted by the nanofillers (Burris et al., 2007).  
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In addition, the way in which nanofillers can improve the tribological properties of 
polymers depends on the requirement profile of the particular application, i.e. the friction 
coefficient and the wear resistance cannot be considered as real material properties, since 
they depend on the systems in which these materials have to function.  

In particular, such applications as brake pads or clutches usually require a high friction 
coefficient and, at the same time, a low wear resistance; however, in other circumstances 
(like in the case of gears or bearings, acting as smooth metallic counterparts under dry 
sliding conditions) the development of polymer composites having low friction and wear 
properties is strongly needed. 

The abrasion performances of polymeric materials depend on several factors, such as the 
wear mechanisms involved, the abrasive test method used, the bulk and surface properties 
of the tested specimens, .... 

Many papers reported in the literature focus on the investigation on the physical processes 
involved in abrasive wear of a wide variety of polymers; the obtained results demonstrate 
that two very different mechanisms of wear may occur in polymers, namely cohesive and 
interfacial wear processes, as schematically shown in Figure 1. 

 

Fig. 1. Schematic representation of cohesive and interfacial wear processes (Adapted from 
Briscoe & Sinha, 2002) 

In the cohesive wear processes, such as abrasion wear, fatigue wear and fretting, which 
mainly depend on the mechanical properties of the interacting materials, the frictional work 
involves quite large volumes close to the interface, either exploiting the interaction of 
surface forces and the consequent traction stresses or through the geometric interlocking 
exerted by the interpenetrating contacts. Contact stresses and contact geometry represent 
two key parameters that determine the extent of such surface zone.    

On the other hand, the frictional work in interfacial wear processes (like transfer wear, 
chemical or corrosive wear) is dissipated in much thinner zones and at greater energy 
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density with respect to cohesive wear processes, so that a significant increase in local 
temperature occurs. Furthermore, the extent of wear damage can be substantially ascribed 
to the chemistry of the surfaces involved, rather than to the mechanical properties of the 
interacting materials. 

As far as cohesive processes are concerned, abrasion wear, which is the most common type of 

wear encountered in polymer composites, can be divided into two-body and three-body 

abrasion wear. The former occurs in the presence of hard asperities that plough and induce 

plastic deformation or fracture of the softer asperities.  

The latter relates to the presence of hard abrasive particles or wear debris in between the 

sliding bodies: such particles or debris derive from environmental contaminants or can be 

the consequence of two-body abrasion processes. In general abrasion wear depends on 

several factors, such as the hardness of the materials in contact, the applied load and sliding 

distance and the geometry of the abrasive particles as well.  

Fatigue wear derives from surface fatigue phenomena, i.e. from the repeated stressing and 

un-stressing of the contacts, and can lead to fracture through the accumulation of 

irreversible changes, which determine the generation, growth and propagation of cracks. 

This kind of wear may also occur together with delamination wear, where shear deformations 

of the softer surface, caused by traction of the harder asperities, promote the nucleation and 

coalescence of subsurface cracks. As a consequence, the delamination (i.e. detachment) of 

fragments having larger size occurs.  

Fretting wear is caused by relative oscillatory motions of small amplitude taking place 

between two surfaces in contact. The produced wear fragments can either escape from 

between the surfaces, thus promoting a fit loss between the surfaces and a decrease of 

clamping pressure, which may lead to higher vibration effects, or remain within the sliding 

surfaces, so that pressure increases and seizure eventually occurs. 

Transfer wear belongs to interfacial wear processes and involves the formation of a transfer 

film (solid or liquid, depending on the interfacial temperature) in polymer-metal, polymer-

ceramic, polymer-polymer sliding contacts. Such film invariably transfers from polymer to 

metal or ceramic, whereas the direction of transfer is not obvious in the case of polymer-

polymer sliding contacts.  

Several parameters can influence the formation of the transfer film and its role on the 

subsequent wear processes: thickness and stability of the film, cohesion features between the 

transfer layers, adhesion forces between the film and the sliding counterpart, chemical 

reactivity and surface roughness of the counterface slider, polymer structure (crystallinity, 

flexibility, presence of pendant groups or side chains, …), adopted sliding conditions 

(temperature, normal load, velocity, atmosphere, …) and presence of fillers.  

Chemical wear involves a chemical reaction (oxidation, degradation, hydrolysis, …, which 

lead to polymer chain scission with the subsequent MW decrease) in between the sliding 

bodies or a material in itself or a material with the surrounding environment.  

A schematic representation of the basic tribological interactions leading to wear particle 

generation is depicted in Figure 2. 
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Fig. 2. Different wear processes leading to the formation of material particles (adapted from 
Czichos, 2001) 

It is worthy to note that the wear mechanisms in polymer systems described above for 

macro- and micro-levels are quite different from those encountered at nano-level.  

First of all, nano-level involves very low applied loads (from N to nN); in addition, the 

wear particle generation is negligible and the original surface topography is more likely to 

be preserved for an extended period because of the adopted low wear rate.  

Other differences concern the friction forces involved at the nano-level, since the ploughing 

factor and the inertial effect of the moving components are different, as well as the role 

exerted by surface forces (adhesion and electrostatic interactions), which become very 

important.  

In the following paragraphs, a review on the recent studies on the tribological behavior of  

thermoplastic nanocomposites is presented. The role of the structure of the nanofillers and 

of their morphology (aspect ratio, effectiveness of dispersion within the polymer, …) and 

the possible interactions with the environment are widely discussed. 

2. Tribology of thermoplastic nanocomposites 

2.1 PEEK-based nanocomposites  

Poly(ether ether ketone) (PEEK) is a high performance injection mouldable thermoplastic 

that can be widely used for many applications that require high mechanical strength and an 

outstanding thermo-mechanical stability.  
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This polymer has a high glass transition temperature (Tg≈143°C) and a high melting point 
(Tg≈343°C) and it is also regarded as one of the most promising polymer materials for 
tribological applications in aqueous environments.  

Nevertheless, it seems that neat PEEK exhibits relatively poor wear resistance with water 
lubrication in some cases, so that different types of fillers (and nanofillers) have been 
incorporated into this polymer, aiming to facilitate more applications by enhancing its anti-
wear features. In particular, short carbon fibers (SCFs) are currently used in PEEK-based 
composites for improving its wear resistance, even at elevated temperatures and under 
aqueous conditions (water lubrication).  

Very recently, Zhong investigated the tribological properties of PEEK/SCF/zirconia 
composites under aqueous conditions, using a three-pin-on-disc configuration (Zhong et al., 
2011). A synergistic effect of SCFs with zirconia nanoparticles was assessed: indeed, the 
composites showed excellent wear resistance under aqueous conditions; SCFs were found to 
carry the main load between the contact surfaces and to protect the polymer matrix from 
further severe abrasion of the counterpart. Nano-ZrO2 efficiently inhibited SCF failure either 
by reducing the stress concentration on the CF interface through reinforcement of the matrix 
or by lowering the shear stress between the sliding surfaces via a positive rolling effect of 
the nanoparticles between the material pairs. 

Werner et al. investigated the influence of vapour-grown carbon nanofibres (CNFs) on the 
wear behaviour of PEEK (Werner et al., 2004). To this aim, unidirectional sliding tests 
against two different counterpart materials (100Cr6 martensitic bearing steel and X5CrNi18-
10 austenitic stainless steel) were performed on injection moulded PEEK-CNF 
nanocomposites. CNFs were found to reduce the wear rate of PEEK very significantly, as 
compared to a variety of commercial PEEK grades. This behaviour was attributed to CNFs, 
which act as solid lubricants; in addition, the roughening effect on the counterpart exerted 
by CNFs, because of their small size, was minimised with respect to conventional fibre 
fillers (carbon fibres, PAN-based carbon fibres, glass fibres). 

McCook and coworkers investigated the role of different micro and nanofillers on the 
tribological properties of PEEK in dry sliding tests against 440C stainless steel counterfaces 
(McCook et al., 2007). To this aim, microcrystalline graphite, carbon nano-onions, single-
walled carbon nanotubes, C60 carbon fullerenes, microcrystalline WS2, WS2 fullerenes, 
alumina nanoparticles and PTFE nanoparticles were jet-milled with PEEK and the friction 
coefficients and wear rates of the obtained composites were measured in open laboratory air 
(45% R.H.) and in a dry nitrogen environment (less than 0.5% R.H.).  

Both wear rate and friction coefficient were reduced in the dry nitrogen environment: in 
particular, the more wear resistant coatings also had lower friction coefficients. On the 
contrary, in open air environments the more wear resistant coating exhibited the higher 
friction coefficients. Furthermore, the polymeric nanocomposites investigated showed 
similar environmental responses, regardless of the type of micro or nanofillers used. 

Hou and coworkers performed tribological ball-on-flat sliding wear tests on PEEK-based 
nanocomposites incorporating inorganic fullerene-like tungsten disulfide nanoparticles 
(Hou et al., 2008). The friction coefficient was found to decrease about 3 times in the 
presence of 2.5 wt.% nanoparticles, with respect to the neat PEEK: this behaviour was 
attributed to the lubricating capability of the nanofillers. 
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Zhang et al. investigated the effect of nano-silica particles on the tribological behaviour of 
PEEK: silica nanoparticles were compounded with the polymer by means of a ball milling 
technique (Zhang et al., 2008). The wear resistance of PEEK was significantly improved after 
incorporating nano-SiO2 and at a rather low filler loading (1 vol.%), the composites showed 
the optimum wear resistance, which was ascribed to the reduced perpendicular deformation 
of PEEK matrix and to the decreased tangential plastic flow of the surface layer involved in 
friction processes. Furthermore, the nanocomposites evidenced much smoother surfaces 
with respect to neat PEEK.   

Pursuing this research, the role of the same nano-silica particles on the tribological 

behaviour of SCF-reinforced PEEK was also investigated (Zhang et al., 2009). To this aim, 1 

vol.% (1.51 wt.%) nano-SiO2 particles were compounded with SCF/PTFE/graphite filled 

PEEK in a Brabender mixer; the obtained composite materials were tested using a block-on-

ring apparatus at room temperature (counterpart: 100Cr6 steel ring), in extremely wide 

pressure and sliding velocity ranges. Under all the conditions investigated, nano-SiO2 

particles remarkably reduced the friction coefficients; above 2 MPa pressures, the 

nanoparticles were found to reduce the wear rate: this behaviour was attributed to a 

protection effect of SCF/PEEK interface exerted by the nanoparticles, which are able to 

reduce the stress concentration on SCFs taking place in the surface layer involved into 

friction.     

Zhang also investigated the effect of different amounts of nano-silica particles on the 

tribological behavior of SCF-reinforced PEEK composites. The nanoparticle loading was 

varied from 1 to 4 vol.% (Zhang et al., 2009).  

The variation of nanoparticle content from 1 to 4 vol.% did not significantly affect the 

friction coefficients of the nanocomposites; in addition, operating with low pressure-sliding 

velocity (pv) factors, the nanoparticles turned out to worsen the wear rate of the composites, 

because of the abrasion on SCFs exerted by nanoparticle agglomerates. On the contrary, 

with a high pv factor, such agglomerates were crushed into tiny ones, so that nano-silica 

particles were capable to protect SCFs reducing their failures. Similar wear rates were found 

for the nanocomposites tested at very high pv factors. 

2.2 Polyolefin-based nanocomposites 

Thermoplastic polyolefins like poly(ethylene)s (PEs) and poly(propylene) (PP) are well-
established polymers available at the market, each having a different structure and very 
different behaviour, performances and applications (Feldman & Barbalata, 1996). Several 
papers deal with their tribological properties, in the presence of different types of 
nanofillers. 

High density poly(ethylene) (HDPE) was used as matrix for preparing nanosilica coatings, 
the wear resistance of which was measured using a rotative drum abrader (Barus et al., 
2009). It was found that this parameter, despite a significant increase in the mechanical 
properties of the nanocomposites (stiffness, yield strength and fracture toughness), 
exhibited lower values with respect to the neat polymer. 

Johnson and coworkers manufactured and tested the wear behaviour of HDPE/multi-
walled-carbon-nanotubes composites (Johnson et al., 2009). Different weight percentages of 
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nanotubes (1, 3 and 5%) were used for preparing the samples, which were tested on a block-
on-ring apparatus. Wear resistance and frictional properties of HDPE were found to 
improve in the presence of the nanofillers; furthermore, the addition of multi-walled-
carbon-nanotubes to HDPE turned out to bring wear rates down to the level seen in ultra-
high molecular weight poly(ethylene) (UHMWPE). 

The effect of the presence of Alumina nanoparticles (5 wt.%) was exploited for investigating 

the abrasion resistance of low-density poly(ethylene) (LDPE)-based nanocomposites 

(Malucelli et al., 2010). The abrasion resistance of the nanocomposites increased in the 

presence of the nanofillers, as indicated by the decrease of the Taber Wear Index with 

respect to the neat polymer.  

Very recently, Xiong and coworkers investigated the effect of the presence of nano-

hydroxyapatite (nano-HAP) on the tribological properties of non-irradiated and irradiated 

UHMWPE composites, prepared by using a vacuum hot-pressing method (Xiong et al., 

2011). The friction coefficients and wear rates were measured by using a reciprocating 

tribometer (counterface: CoCr alloy plates). The presence of 7 wt.% nano-HAP in the 

polymer matrix resulted in lowering both the friction coefficients and wear rate, irrespective 

of using irradiated or non-irradiated samples, whereas filling 1 wt.% nano-HAP reduced 

friction coefficients and wear rate of the non-irradiated UHMWPE only. 

Misra and coworkers investigated the tribological behaviour of polyhedral oligomeric 

silsesquioxanes (POSS)/poly(propylene) nanocomposites (Misra et al., 2007). The relative 

friction coefficient of the samples turned out to strongly decrease from 0.17 for neat PP to 

0.07 for the nanocomposite containing 10 wt.% POSS: this behaviour was ascribed to the 

increase of the surface hardness and of the modulus, due to the presence of the nanofiller. 

2.3 Fluorinated-based nanocomposites 

Fluorinated polymers usually exhibit many desirable tribological features, including low 

friction, high melting temperature and chemical inertness. However, their anti-wear 

applications have been somewhat limited by their poor wear resistance, which has led to the 

failure of anti-wear components and films.  

Therefore, many researchers have tried to reinforce fluorinated polymers using different 

fillers, such as glass fibres, carbon fibres, ceramic powders, non-ferrous metallic powders: 

unfortunately, these fillers induced a large frictional coefficient and abrasion. Quite recently, 

nanometer size inorganic powders have been chosen as fillers capable to enhance the wear 

behaviour of fluorinated polymers. 

Poly(tetrafluoroethylene), PTFE, is the most common fluorinated polymer used for 

tribological purposes.  

Lee and coworkers added carbon-based nanoparticles, synthesized by heat treatment of 

nanodiamonds, to PTFE, in order to prepare fluorinated nanocomposites (Lee et al., 2007). 

The wear resistance, measured through ball-on-plate wear tests, was found to depend on the 

heat treatment, which nanodiamonds were subjected to: in particular, wear resistance 

turned out to increase when nanodiamonds were heated at 1000°C. Beyond this 

temperature, carbon nanoparticles became aggregated and therefore the wear coefficient  of 
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the obtained nanocomposites increased: this failure in the wear behaviour was ascribed to  

the formation of carbon onions that promoted the aggregation of carbon nanoparticles.   

Single-walled carbon nanotubes have been exploited for lowering the wear rates of PTFE 
(Vail et al., 2009). A linear reciprocating tribometer was exploited for performing the tests 
(counterface: 304 stainless steel) on nanocomposite samples containing up to 15 wt.% 
nanotubes. The obtained results clearly indicated that, in the presence of low nanofiller 
loadings (5 wt.%), PTFE wear resistance is improved by more than 2000% and friction 
coefficient increased by ≈50%. 

Shi and coworkers have studied the effect of various filler loadings (from 0.1 to 3 wt.%) on 
the tribological properties of carbon-nanofiber (CNF)-filled PTFE composites (Shi et al., 
2007). The friction and wear tests were conducted on a ring-on-ring friction and wear tester. 
The counterface materials was steel 45.  

The obtained results showed that the friction coefficients of the PTFE composites decreased 
initially up to a 0.5 wt.% filler concentration (during sliding, the released CNFs transfer from 
the composite to the interface between the mating surfaces, acting as spacers and thus 
preventing direct contact between the two surfaces and lowering the friction coefficient) and 
then increased, whereas the anti-wear properties of the materials increased by 1-2 orders of 
magnitude in comparison with those of PTFE. Finally, the composite having 2 wt.% of CNFs 
exhibited the best anti-wear properties under all the experimental friction conditions. 

The tribological investigation on fluorinated polymers has been also extended to PTFE-
based blends, as described by Wang and coworkers (Wang et al., 2006). In particular, Xylan 
1810/D1864, a commercially available PTFE blend for dry lubricant and corrosion resistant 
coatings, has been blended with alumina nanoparticles at different loadings (from 5 to 20 
wt.%). The wear resistance was measured using a Taber Abrasion Tester and was found to 
decrease with increasing the content of the embedded alumina nanoparticles in the polymer 
matrix. The minimum wear rate was achieved when the nanoparticle loading was 20 wt.%. 

Another paper from Burris and Sawyer reports on the role of irregular shaped alumina 
nanoparticles on the wear resistance of Al2O3/PTFE nanocomposites (Burris & Sawyer, 
2006). A reciprocating pin-on-disc tribometer was used for testing the wear and friction of 
the samples (counterface: AISI 304 stainless steel plates). It was found that the inclusion of 
irregular shaped alumina particles is more effective in reducing PTFE wear than spherical 
shaped particles (the wear resistance of PTFE was increased 3000x in the presence of 1 wt.% 
former nanofiller), but also determines an increased friction coefficient. 

Another fluorinated polymer, namely poly(vinylidene fluoride), was used as matrix for 
preparing nanocomposites containing a phyllosilicate (organoclay) by Peng and coworkers 
(Peng et al., 2009). The friction and wear tests were conducted on different loaded 
nanocomposites (clay content: 1 - 5 wt.%), using a block-on-ring wear tester (mated ring 
specimen: carbon steel 45, GB 699-88). The nanoclay at 1-2 wt.% turned out to be effective 
for improving the tribological properties of neat PVDF, since such filler may act as a 
reinforcement to bore load and thus decrease the plastic deformation.  

Tribological studies were also performed on PTFE-based fabric composites (Sun et al., 2008; 
Zhang et al., 2009). In particular, Sun and coworkers prepared polyester fabric composites, 
in order to study the influence of alumina nanoparticles and PTFE micro-powders 
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embedded in an epoxy matrix on the tribological properties of the fabric composites. The 
excellent tribological performance of the fillers significantly turned out to enhance the wear 
resistance of the fabric polyester composites. 

Zhang et coworkers were able to improve the wear resistance of PTFE/phenolic/cotton 
fabric composites, by dispersing functionalized multi-walled carbon nanotubes in the 
phenolic resin (Zhang et al., 2009). Sliding tests were performed on a pin-on-disc tribometer 
(flat-ended AISI-1045 pin). The high homogeneity of dispersion of the nanofiller allowed to 
achieve an improved wear resistance in the fabric composites; furthermore, the tribological 
properties of the obtained systems were found to strongly depend on the carbon nanotubes 
content: 1 wt.% nanofiller was the optimum loading for maximizing the wear resistance of 
the fabric composites. 

2.4 Poly(amide)-based nanocomposites 

Poly(amide) 6 and 66 (Nylon 6 and Nylon 66) have been widely used as engineering plastics 

in different applications, such as bearings, gears or packaging materials. They possess an 

outstanding combination of properties such as high toughness, tensile strength and abrasion 

resistance, low density and friction coefficient and quite easy processing. Indeed, their 

abrasion resistance is a key factor for their widespread applications. 

Aiming to further improve their mechanical properties and tribological behaviour, nylons 

were reinforced with some micro-particles or fibres, such as CuS, CuF2, CuO, PbS, CaO, CaS 

and carbon fibres: they were effective in reducing the wear rate of polyamides (Bahadur et 

al., 1996).  

In quite recent years, as for other thermoplastic matrices, several nano-materials were 

served as suitable fillers of poly(amides) for improving their integrated properties, 

particularly referring to their tribological behavior.  

Garcia and coworkers found that nano-SiO2 could reduce effectively the coefficient of 

friction and wear rate of nylon 6: in particular, the addition of 2 wt.% nano-SiO2 determined 

the lowering of the friction coefficient from 0.5 to 0.18 (Garcia et al., 2004). This was possible 

since the surface of nylon 6 nanocomposites was well protected by the transfer film on the 

surface of the metal counterface. At the same time, the low silica loading led to a reduction  

in wear rate by a factor of 140, whereas the effect of higher silica loadings was less 

pronounced.  

Dasari and coworkers reported on the role of nanoclays on the wear characteristics of nylon 

6 nanocomposites processed via different routes (Dasari et al., 2005). They demonstrated 

that aggregated nanoclay particles result in the worst wear resistance of the 

nanocomposites, whereas the systems, which exhibit a good interfacial adhesion of clay to 

polymer matrix, together with an homogeneous clay dispersion, determine substantial 

improvements of wear resistance.     

Zhou and coworkers investigated the tribological behaviour of Nylon 6/Montmorillonite 

clay nanocomposites: the poor abrasion resistance exhibited by the nanocomposites was 

attributed to the presence of defects at the clay/polymer interface, resulting in lower wear 

resistance of the polymer matrix as the nanofiller content increased (Zhou et al., 2009).  
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Sirong and coworkers studied the tribological behaviour of Nylon 66/organoclay 
nanocomposites, in the presence of styrene-ethylene/butylene-styrene triblock copolymer 
grafted with maleic anhydride (SEBS-g-MA) as a toughening agent (Sirong et al., 2007). A 
pin-on-disc friction and wear testing apparatus was used in sliding experiments 
(counterface: 65 HRC steel disc). It was demonstrated that the use of SEBS-g-MA allows to 
obtain significant improvements as far as the wear resistance of the nanocomposite is 
concerned: this behaviour was ascribed to the toughening effect of SEBS-g-MA, which 
favours the transfer of a uniform, continuous and smooth thin film to the steel counterface, 
thus avoiding the direct contact of this latter with the nanocomposite.  

Poly(amide) 66 was also chosen as matrix for preparing nanoparticle-filled composites 
(Chang et al., 2006). Different fillers, such as TiO2 nanoparticles (5 vol.%), short carbon fibres 
(15 vol.%) and graphite flakes (5 vol.%), were added to the polymer and the obtained 
composites tested on a pin-on-disc apparatus (counterface: polished steel disc). It was found 
that nano-TiO2 could effectively reduce the frictional coefficient and wear rate, especially 
under higher pv conditions. In order to further understand the wear mechanisms, the worn 
surfaces were examined by scanning electron microscopy and atomic force microscopy; a 
positive rolling effect of the nanoparticles between the material pairs was proposed, which 
contributes to the remarkable improvement of the load carrying capacity of polymer 
nanocomposites. 

Quite recently, Ravi Kumar and coworkers studied the synergistic effect of nanoclay and 
short carbon fibers on the abrasive wear behavior of nylon 66/poly(propylene) 
nanocomposites (Ravi Kumar et al., 2009). A modified dry sand rubber wheel abrasion tester 
was employed for performing the three-body abrasive wear experiments. The obtained 
results clearly indicated that the addition of nanoclay/short carbon fiber in PA66/PP 
significantly influences wear under varied abrading distance/loads. Furthermore, it was 
found that nanoclay filled PA66/PP composites exhibited lower wear rates with respect to 
short carbon fiber filled PA66/PP composites. 

2.5 Poly(oxymethylene)-based nanocomposites 

Poly(oxymethylene) (POM) is an engineering polymer that has been widely used as self-
lubricating material for many applications, such as automobile, electronic appliance and 
engineering. This polymer exhibits good fatigue resistance, creep resistance and high impact 
strength. Its low friction coefficient derives from the flexibility of the linear macromolecular 
chains; in addition, its high crystallinity and high bond energy result in good wear resistant 
properties. Some papers report on the preparation of polymeric nanocomposites based on 
POM. 

Various fillers or fibers, such as graphite, MoS2, Al2O3, PTFE, glass and carbon fibers, have 
been incorporated into POM matrices as internal lubricants or reinforcements to further 
enhance the tribological properties of such a polymer.  

Kurokawa et al. investigated the tribological properties of POM composites containing very 
small amounts of silicon carbide (SiC) and/or calcium salt of octacosanoic acid (Ca-OCA), as 
well as PTFE (Kurokawa et al., 2000). It was found that the incorporation of Ca-OCA into 
POM/SiC composites drastically lowered their friction coefficient; furthermore, the wear 
rate was also lowered because of the nucleating effect of SiC and Ca-OCA.  
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Wang and coworkers prepared POM/MoS2 nanocomposites by in situ intercalation 
polymerization: the intercalated composites showed a significant decrease of friction 
coefficient, together with an improved wear resistance, especially under high load, while the 
heat resistance of the composites decreased slightly (Wang et al., 2008).  

The same research group also prepared POM/ZrO2 nanocomposites, which evidenced 
better wear resistance with respect to neat POM, whereas the change in friction coefficient of 
the nanocomposites was very limited. (Wang et al., 2007) 

Sun and coworkers studied the tribological properties of POM/Al2O3 nanocomposites (Sun 

et al., 2008). The friction and wear measurements were conducted on a friction and wear 

tester, using a block-on-ring arrangement (counterface: HRC50-55 plain carbon steel ring). It 

was found that alumina nanoparticles were more effective in enhancing the tribological 

properties of Poly(oxymethylene) nanocomposites in oil lubricated condition rather than in 

dry sliding experiments. Indeed, the former environment allows to form a uniform and 

compact transfer film on the surface of the counterpart steel ring, whereas the transfer film 

under dry sliding condition is destroyed by the agglomerated abrasives residing between 

the friction surfaces. The optimal nanoparticles content in POM nanocomposites was 9% 

under oil lubricated condition, below which alumina nanoparticles between the friction 

surfaces were still under saturation.  

Sun and coworkers have also investigated the tribological behaviour of Poly(oxymethylene) 

(POM) composites compounded with nanoparticles, PTFE and MoS2 in a twin-screw 

extruder (Sun et al., 2008). The tribological tests were performed on a friction and wear 

tester using a block-on-ring arrangement under dry sliding and oil lubricated conditions, 

respectively. The better stiffness and tribological properties exhibited by POM 

nanocomposites with respect to POM composites were attributed to the high surface energy 

of the nanoparticles; the only exception was represented by the decreased dry-sliding 

tribological properties of POM/3%Al2O3 nanocomposite, ascribed to Al2O3 agglomeration. 

Furthermore, the friction coefficient and wear volume of POM nanocomposites under oil 

lubricated condition decreased significantly.  

2.6 Poly(methylmethacrylate)-based nanocomposites 

Poly(methylmethacrylate), PMMA, is an important engineering polymer, which finds 
application in many sectors such as aircraft glazing, signs, lighting, architecture, and 
transportation. In addition, since PMMA is non-toxic, it could be also useful in dentures, 
medicine dispensers, food handling equipment, throat lamps, and lenses.  

Unfortunately, this polymer shows poor abrasion resistance with respect to glass, thus 
limiting its potential use in other fields. Despite several efforts, attempts to improve the 
PMMA scratch and abrasion resistance have induced other drawbacks, such as a decrease of 
the impact strength, so that researchers focused on the preparation of PMMA 
nanocomposites. 

Avella and coworkers studied the tribological features of PMMA-based nanocomposites 
filled with calcium carbonate (CaCO3) nanoparticles, exploiting in situ polymerization 
(Avella et al., 2007). In order to improve inorganic nanofillers/polymer compatibility, 
poly(butylacrylate) chains have been grafted onto CaCO3 nanoparticle surface.  
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CaCO3 nanoparticles, regardless of the presence of the grafting agent, turned out to 
significantly improve the abrasion resistance of PMMA also modifying its wear mechanism: 
indeed, the nanoparticles induced only micro-cutting and/or micro-ploughing phenomena, 
thus generating a plastic deformation and consequently increasing the abrasion resistance of 
the polymer matrix. 

The same research group also investigated the tribology of PMMA-based nanocomposites 

containing modified silica nanoparticles, obtained through in situ polymerization approach 

(Avolio et al., 2010). The high compatibility between silica nanoparticles and the polymer 

allowed to significantly improve the abrasion resistance of PMMA, because nanoparticles 

were able to support part of the applied load, thus reducing the penetration of grains of the 

rough abrasive wheel into PMMA surface and contributing to the wear resistance of the 

material. 

Dong and coworkers prepared Poly(methyl methacrylate)/styrene/multi-walled carbon 

nanotubes (PMMA/PS/MWNTs) copolymer nanocomposites by means of in situ 

polymerization method (Dong et al., 2008). The tribological behavior of the copolymer 

nanocomposites was investigated using a friction and wear tester under dry conditions: 

with respect to pure PMMA/PS copolymer, the copolymer nanocomposites showed not 

only better wear resistance but also smaller friction coefficient. MWNTs were found to 

strongly improve the wear resistance property of the copolymer nanocomposites, because of 

their self-lubricating features, their homogeneous and uniform distribution within the 

copolymer matrix and their help in forming thin running MWNTs films that slide against 

the transfer film (developed on the surface of the stainless steel counterface).  

Very recently, Carrion and coworkers exploited single-walled carbon nanotubes modified 

with an imidazolium ionic liquid for preparing PMMA nanocomposites and studying their 

dry tribological performances as compared to neat PMMA or to the nanocomposites 

containing pristine carbon nanotubes without ionic liquid (Carrion et al., 2010). The 

tribological behavior of the obtained nanocomposites, studied against AISI 316L stainless 

steel pins, resulted in a significant wear rate decrease with respect to PMMA/carbon 

nanotubes (-58%) and neat PMMA (-63%).   

2.7 Other thermoplastic-based nanocomposites 

Some other thermoplastic engineering and specialty polymers have been considered as far 
as tribological issues are concerned. In the following, we will summarize the recent progress 
in understanding wear and friction in nanocomposite systems based on these polymers. 

Bhimaraj and coworkers studied the friction and wear properties of poly(ethylene) 
terephthalate (PET) filled with alumina nanoparticles (up to 10 wt.% nanofiller), using a 
reciprocating tribometer (Bhimaraj et al., 2005). The obtained results showed that the 
addition of alumina nanoparticles can increase the wear resistance by nearly 2x over the 
unfilled polymer. Furthermore, the average friction coefficient also decreased in many cases. 
This behavior was attributed to the formation a more adherent transfer film that protects the 
sample from the steel counterface, although the presence of an optimum filler content could 
be ascribed to the development of abrasive agglomerates within the transfer films in the 
higher wt.% samples.  
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Another paper from the same research group reports on the effect of particle size, loading 

and crystallinity on PET/Al2O3 nanocomposites (Bhimaraj et al., 2008). The nanocomposite 

samples were tested in dry sliding against a steel counterface. The tribological properties 

were found to depend on crystallinity, filler size and loading; in addition, wear rate and 

friction coefficient were very low at optimal loadings that ranged from 0.1 to 10 wt.%, 

depending on the crystallinity and particle size.  

Wear rate were found to lower monotonically with decreasing particle size and crystallinity 

at any loading in the range tested. 

Poly(etherimide)s (PEIs) are high-performance thermoplastics with high modulus and 

strength, superior high temperature stability, as well as electrical (insulating) and dielectric 

properties (very low dielectric constant). These polymers perform successfully in aerospace, 

electronics, and other applications under extreme conditions. Nevertheless, pure PEIs show 

such disadvantages as brittleness and high wear rate, which limit their applications. 

Therefore, appropriate modifications of PEIs with nanofillers have been proposed, in order 

to widen their industrial applications. 

Chang and coworkers reinforced PEI with titania nanoparticles, in the presence of short 

carbon fibres (SCFs) and graphite flakes as well (Chang et al., 2005). Wear tests were 

performed on a pin-on-disc apparatus, using composite pins against polished steel 

counterparts, under dry sliding conditions, different contact pressures and various sliding 

velocities. SCFs and graphite flakes turned out to remarkably improve both the wear 

resistance and the load-carrying capacity. Nevertheless, the addition of nano-TiO2 further 

reduced the frictional coefficient and the contact temperature of the composites, especially 

under high pv conditions. 

The same research group investigated the role of the presence of nano- or micro-sized 

inorganic particles (5 vol.% nano TiO2 or micro-CaSiO3) on the tribological behavior of PEI 

matrix composites, additionally filled with SCFs and graphite flakes (Xian et al., 2006). The 

influence of these inorganic particles on the sliding behavior was assessed with a pin-on-

disc tester at room temperature and 150°C.  

The obtained results showed that both micro and nano particles could reduce the wear rate 

and the friction coefficient of the PEI composites under the experimental adopted 

conditions, but in a different temperature range: indeed, the microparticles filled composites 

showed improved tribological features at room temperature, whereas the nano-titania-filled 

composites possessed the lowest wear rate and friction coefficient at elevated temperature. 

The tribological improvements evidenced by the nano-particles were attributed to the 

formation of transfer layers on both sliding surfaces together with the reinforcing effect. 

Very recently, Li and coworkers dispersed carbon nanofibers (from 0.5 to 3 wt.%) in a PEI 

matrix through a melt mixing method and tested the tribological properties of the obtained 

nanocomposites (Lee et al., 2010). The composites containing 1 wt.% CNFs showed very 

high wear rates comparable with that of pure PEI; nevertheless, higher CNF loadings 

promoted a significant reduction in wear rate at steady state wear. 

Like PMMA, also poly(carbonate) (PC), an amorphous engineering thermoplastic, which 
combines thermal stability, good optical properties, outstanding impact resistance and easy 
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processability, shows poor scratch and abrasion resistance with respect to glass, thus 
limiting its potential use in fields other than medical, optics, automotive, …. 

Carrion and coworkers prepared a new polycarbonate nanocomposite containing 3 wt.% 

organically modified nanoclay by extrusion and injection moulding, and its tribological 

properties were measured under a pin-on-disc configuration against stainless steel (Carrion 

et al., 2008). The obtained nanocomposites showed 88% of reduction in friction coefficient 

and up to 2 orders of magnitude reduction in wear rate with respect to the neat polymer. 

Such good tribological performances were attributed to the uniform microstructure 

achieved and to the nanoclay intercalation. 

3. Conclusion 

The significant spreading of research activities concerning the tribology of thermoplastics 

and thermoplastic-based nanocomposites demonstrates that this topic is very up-to-date. 

Indeed, several low-loading, low-wear polymer nanocomposites are being prepared and 

evaluated in tribology laboratories.  

In many cases, nanocomposite systems result in outperforming traditional macro- and 

micro-composites by orders of magnitude with substantially lower filler loadings (often less 

than 5 wt.%), provided that the tribological features strongly depend on the homogeneity of 

dispersion and distribution of the nanofillers within the polymer matrix.  

Past macro and micro models, which have been always exploited for estimating the 

mechanical behavior of composite materials seem to be quite inadequate to describe the 

phenomena occurring at a nanoscale level, particularly referring to wear and friction.  

The standard tools applied for characterizing nanomaterials need to be implemented more 

in tribology studies to help clarify the obtained experimental results. This means that 

tribology should always be considered as an important issue of the materials science. 

In particular,  regardless of the effectiveness of the nanofiller dispersion within the polymer 

matrix, some issues become very crucial and should be consequently deeply investigated. 

First of all, the chemistry and chemical reactions, which may occur in between the mating 

surfaces, have to be considered, and the influence of the by-products resulting from such 

reactions or during wear as well.  

Indeed, the effect and dynamics of the development of the transfer film during low wear 

sliding, together with the evolution of its physico-chemical and mechanical properties 

should be thoroughly investigated. Consequently, the mechanisms, through which removal 

of abraded materials occurs, should be deeply investigated, so that proper mechanics 

models for the design of high wear resistant nanocomposites can be developed.   

Finally, synergies between materials science and tribology have to be developed, aiming to 

better understand the complex tribological phenomena taking place in polymeric 

nanocomposites. 

This approach will surely contribute to design more efficient nanomaterials for tribological 

applications. 
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