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1. Introduction

Based on recent statistics from the International Agency for Research on Cancer (Ferlay et al.,
2010), breast cancer account for 10.9% of all cancers diagnosed and ranks as the fifth cause of
cancer death in the world. Although incidence rates are increasing, mortality rates are stable,
representing an improved survival rate. This improvement can be attributed to effective
means for the early detection as well as to significant improvement in treatment options,
exposure, etc. Mammography is, at present, the only viable method for detecting most of
tumors early enough for effective treatment, without unnecessary biopsies, or other invasive
procedures. Therefore, screening mammography in women aged 40 to 70 years is currently
the effective strategy to reduce breast cancer mortality. Early detection of invasive breast
cancers is associated with better prognosis than waiting for women to become symptomatic.
However, detecting the early signs of breast cancer is challenging because the cancerous
structures have many features in common with normal breast tissue. Moreover, the accuracy
of interpretation of screening mammograms is affected by several factors, such as image
quality, the radiologist’s level of expertise, and the high volume of cases. Recent statistics
show that in current breast cancer screenings 10% − 25% of the tumors are missed by the
radiologists (Burrell et al., 2001; Cheng, 2003; Nishikawa, 2007). Missed cancers are due
to many reasons: low disease prevalence, breast structure complexity, finding subtleties,
and radiologist fatigue. To accomplish with these difficulties, different methods have been
analyzed: first of all, double reading, which provides either double perception or double
interpretation of lesions. It has been demonstrated that a single radiologist is more accurate
when reading mammograms methodically than quickly and that two observers achieve an
improvement in detection rate of 5% − 15% (Mazzarella & Bazzocchi, 2007). Obviously, this
procedure is too expensive, complex, and time consuming especially in screening programs
where a huge number of mammographic images have to be read. The development of
computerized systems as second readers represents an alternative. Researchers have been
developing algorithms to detect mammographic abnormalities for more than 30 years with
the aim of either automating mammographic interpretation or providing a tool that could
enhance human film-reading accuracy. Computer-aided detection (CADe) and diagnosis
(CADx) systems are widely used in mammography, where signs of breast cancer are often
very subtle. Both systems involve the use of computer algorithms to detect patterns in
images associated with signs of disease and to assign them a malignancy index. This result
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should attract the clinicians’ attention to potentially abnormal regions in mammograms. In
the recent years, the authors have developed a CADe-CADx system (CAD in the following),
called Assisted Breast Cancer Diagnosis Environment (ABCDE) (Salmeri et al., 2009), to
assist radiologists in the early detection of breast cancer. Beside the development of specific
algorithms for the enhancement of abnormalities and the identification of pathological
structures, the performance evaluation of each block of the whole CAD system has been also
performed. In order to understand the actual complexity of the complete validation of a CAD
system in mammography, consider the left-hand part of the flowchart reported in Fig. 1 where
all the steps involved in the early breast cancer detection and diagnosis are considered.
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Fig. 1. Flowchart of the whole CAD ABCDE system. The right part shows the issues related
to the uncertainty contributions handling and propagation through the blocks.

2. Motivations and objectives

This work stems from considerations of Wirth (Wirth, 2006) and Nishikawa (Nishikawa, 2007)
regarding the performance evaluation of a CADe system. One of the major limitations in the
design of novel computerized algorithms for breast cancer detection is related to the inherent
difficulty of proving their effectiveness and improvement with respect to existing methods. In
the context of performance evaluation a sequence of unresolved issues can be identified.
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Metrological Assessment of a CAD System for the Early Diagnosis of Breast Cancer in Digital Mammography 3

- The assessment of the whole CAD system does not coincide with the testing of individual
components of the CAD system. The latter requires specific indicators according to each
block and its functionalities, while the former coincides with testing classification ability of
the system. In CADe systems, it means to test the capability of the system of discriminating
between normal and pathological tissue, while in CADx systems, it is related to the ability
of discriminating between malignant and benign abnormalities.

- In the literature, there are well-accepted characteristics needed to evaluate the performance
of each algorithm in the CAD system: sensitivity, robustness, adaptability, accuracy
and precision, reliability (or reproducibility), and efficiency. Each of them is defined in
compliance with the definitions contained in reference documents such as (International
vocabulary of metrology. Basic and general concepts and associated terms (VIM), 2008).
Unfortunately, exact limits beyond which the performance of the system is acceptable lack
and are often verbally reported.

- Receiver Operating Characteristic (ROC) and Free-Response ROC (FROC) analysis are
used to assess the classification performance of the whole CAD system. They plot
sensitivity versus specificity or false positives per image/case. Optimal operating points
can be derived based on the Youden-index, the distance from the ideal ROC curve, the
optimal clinically acceptable false-detection rate. Unfortunately, often this is a subjective
choice and depends on who is making the evaluation.

- Problems in the ROC analysis occur when more than two classes are used in the
classification process, as for example in the classification of the lesion margins and shapes,
or in algorithms used to automatically assess the breast tissue density.

- Standard ROC analysis does not implement the so called failure assessment, that is the
analysis of the circumstances under which an algorithm fails and the correction of the
failure causes. In some works, the authors verbally describe the specific cases where
the algorithm fails, as for example in (Ferrari et al., 2004), examining in details the False
Negatives produced by the algorithms and the possible causes.

- Datasets available is another important problem. Public databases such as MiniMIAS
and DDSM are quite old and do not contain all the informations needed to evaluate
the performance of a innovative CAD. In fact, modern issues in breast cancer detection
involves important aspects such as bilateral asymmetry, architectural distortion, prior
mammograms, interval cancers. The cited databases do not contain this kind of
abnormalities, except for those reported in case there is also a lesion. Moreover, a few
images are present with this kind of abnormalities and this limitation does not inspire full
confidence in the final results produced by the CAD.

- The comparison of the various existing methods and possibly the introduction of
improvements to one of them is extremely difficult if not impossible for two main reasons:
the first one is that the algorithms are not completely described or documented so that it
is not possible for authors to make a comparative analysis; secondly, the algorithms are
often black-boxes so that testing involves only inputs and outputs, but not the internal
decision-making process.

Many of the above mentioned problems can be partially solved or at least addressed
considering a further important aspect in the CAD performance evaluation and algorithms
testing, that is uncertainty sources modeling and propagation. In fact, considering all
the uncertainty sources that can be present in the considered context of mammography,
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performing a detailed modelization of each of them, constructing a dedicated propagation
procedure through each block of the CAD, according to the uncertainty nature, will allow us
to address the following topics:

- An analysis of sensitivity could be performed in order to extract the influence of each
uncertainty source on each algorithm parameter and on the final output value. In this
way, both the design and the testing steps will be improved and completed, allowing to
introduce corrective factors or change the algorithm, test the robustness of more systems.

- Extended ROC and FROC analysis could be performed, providing, for each decision point
(corresponding to a pair of values for the sensitivity and the specificity in the ROC curve for
example), a confidence interval given a certain coverage probability. In this way, a direct
failure analysis can be guided by this kind of analysis as will be shown in the following
sections.

- According to the context, screening programs or diagnostic mammography, requested
coverage probabilities can be different. Moreover, it can be interesting to assign a
confidence interval to each output of the CAD and of each block, for any coverage
probability, from an high sensitive choice (95%) to a more specific or operating case (80%).
The application of a Monte Carlo analysis, as that described in (JCGM, 2008), allows us
to simulate every kind of sensitivity analysis, starting from very few assumptions on
the nature of the uncertainty sources able to affect the CAD output. Specific estimation
procedures should be implemented to preliminary provide accurate modeling of the
uncertainty sources.

- Novel inference mechanisms, such as those based on fuzzy logic theory, would allow
us to transform a black-box system into a white-box system, where interaction with the
physician and with the developers is simple and constructive.

In light of this, we have already partially addressed some of the above cited issues:
breast masses automatic segmentation (Mencattini et al., 2011d; Rabottino et al., 2008)
and the uncertainty propagation through the algorithm (Mencattini et al., 2010b),
microcalcifications classification (Ferrero et al., 2010), performance evaluation of an automatic
tumoral masses identification algorithm (Mencattini et al., 2010a), uncertainty propagation
through the classification of breast masses (considering also the features extraction
and the feature selection procedures), the uncertainty propagation by Random Fuzzy
Variables (RFVs) through a denoising and enhancement procedure for the detection of
microcalcifications (Mencattini et al., 2009b), and the noise variance estimation results under
the assumption of signal-dependent noise (.Mencattini et al., 2007; Salmeri et al., 2008).

3. Materials

The digital mammographic image can be obtained using Full-Field Digital Mammography
(FFDM) or it can be obtained by digitizing a Screen Film Mammogram (SFM). The two kinds
of images exhibit very different properties in linearity (relationship between pixel intensity
and exposure to X-ray detector), contrast (contrast in SFM at low and high exposures is
reduced with respect to FFDM), spatial resolution (40 − 50 µm in SFM, 100 µm in FFDM),
and noise: in linear FFDM noise is proportional to the square root of the X-ray exposure,
while at low exposures electronic noise is dominant; conversely, for logarithmic FFDM noise
is proportional to the inverse of the square root of the X-ray exposure to the detector. The same
holds for SFM, but changed according to the characteristic curve. Owing to these differences,
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robust validation and testing procedures should consider images either from SFM and from
FFDM. In order to map gray-levels to optical density the calibration curve of each acquisition
system is used. Each acquisition system In particular, in this work we will consider three
databases: the Digital Database for Screening Mammography (DDSM) (Heath et al., 1998),
the Mammographic Image Database (MIAS) (Suckling et al., 1994), and a FFDM database
from the San Paolo Hospital in Bari (Mencattini et al., 2011d). In the following, we briefly
describe the characteristics of the three databases.

3.1 MiniMIAS database

The Mammographic Image Analysis Society (MIAS) is an organization of UK research groups
interested in the understanding of mammograms and has generated a public database of
digital mammograms available via the Pilot European Image Processing Archive (PEIPA)
of the University of Essex, at: http://peipa.essex.ac.uk/info/mias.html. Films taken from the
UK National Breast screening Programme have been digitized to 50 µm pixel edge with a
Joice-Loebl scanning microdensitometer, a device linear in the optical density range [0 − 3.2]
and representing each pixel with an 8-bit word. The original database has been reduced to
a 200 µm pixel edge and padded/clipped so that all the images are 1024 × 1024 and the
mammogram is centered in the matrix. Fig. 2 reports four examples of images taken from
MiniMIAS database.

Fig. 2. Examples of mammographic images from the MiniMIAS database. (Figures-left)
Normal case, right (mdb053) and left (mdb054) mammograms. (Figures-right) bilateral
asymmetry case, right (mdb081) and left (mdb082) mammograms.

3.2 DDSM database

The Digital Database for Screening Mammography (DDSM) (Heath et al., 1998) was
completed in 1999 and contains a total of 2620 cases. Primary support for this project
was a grant from the Breast Cancer Research Program of the U.S. Army Medical Research
and Materiel Command. The DDSM project is a collaborative effort involving co-p.i.s
at the Massachusetts General Hospital (D. Kopans, R. Moore), the University of South
Florida (K. Bowyer), and Sandia National Laboratories (P. Kegelmeyer). Additional cases
from Washington University School of Medicine were provided by Peter E. Shile, MD,
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Assistant Professor of Radiology and Internal Medicine. Additional collaborating institutions
include Wake Forest University School of Medicine (Departments of Medical Engineering
and Radiology), Sacred Heart Hospital and ISMD, Incorporated. Each study includes two
images of each breast, along with some associated patient information (age at time of study,
ACR breast density rating, subtlety rating for abnormalities, ACR keyword description of
abnormalities) and image information (scanner, spatial resolution, bpp). Images containing
suspicious areas have associated pixel-level “ground truth” information about the locations
and types of suspicious regions. Unfortunately, lesion boundary drawn by radiologists are not
always reliable and often include also pixels from normal tissue. The images are digitized by
four different scanners (HOWTEK-A/D, LUMISYS, and DBA) using spatial resolution equal
to [43.5, 50, 42] µm and a pixel resolution equal to 12 bpp for scanners (HOWTEK-A/D and
LUMISYS) and equal to 16 bpp for scanner DBA. Each study contains four screening views,
left and right mediolateral oblique (MLO) and cranio-caudal views (CC). Figure 3 reports
three pairs of mammograms from DDSM, one for each scanner.

Fig. 3. Three pairs of DDSM images from three different scanners (a) DBA, (b) HOWTEK-A,
(c) LUMISYS.

Images from scanner HOWTEK-D presents the same characteristics of scanner HOWTEK-A
and are omitted.

3.3 FFDM database

Thanks to a collaboration with the San Paolo Hospital in Bari and with the Dept. of
Mathematics at the University of Bari, we have access to Full Field Digital Mammographic
(FFDM) images acquired using the Senograph 2000D ADS 17.3, GE Medical Systems, at a
spatial resolution of 94 µm and a pixel resolution of 12 bpp. Each study contains two relevant
series: a series including the four standard views (CC and MLO) for presentation state and
a series including, if present, a screen save image reporting the lesion boundary manually
drawn by radiologists. Currently, these images are used for the development and testing
of an algorithm for the automatic extraction of the lesions boundary in order to assign a
malignancy degree to each lesion detected by a radiologist. At the moment, the dataset
includes 196 mammograms containing one or more benign or malignant massive lesions. The
malignancy assessment is a part of the CADx section in ABCDE and is currently based on
fractal analysis (Giuliato & Rangayyan, 2011; Mencattini et al., 2011d; Raguso et al., 2010).
Figure 4 reports four FFDM images from San Paolo Hospital.
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Fig. 4. Four FFDM images containing a massive lesion whose boundary has been drawn by a
radiologist.

4. A Monte Carlo approach for CAD performance assessment

Recent reference documents (JCGM, 2008) revised almost totally the formal and practical
definitions concerning measurement uncertainty, its modelization and propagation, as a part
in the measurand estimation. There are two types of measurement error quantity that can
occur during a measurement process: systematic and random. A systematic error (an estimate
of which is known as a measurement bias) is associated with the fact that a measured quantity
value contains an offset (that can be unpredictable and uncontrollable). A random error relies
on the fact that when a measurement is repeated it will generally provide a measured quantity
value that is different from the previous value. It is random in that the next measured quantity
value cannot be predicted exactly from previous such values. The GUM (JCGM, 2008)
provided a different way of thinking about measurement and in how to express the perceived
quality of the result of a measurement. Rather than express the result of a measurement
by providing a best estimate of the measurand, along with information about systematic
and random error values (in the form of an “error analysis”), the GUM approach aims at
expressing the result of a measurement as a best estimate of the measurand, along with an
associated measurement uncertainty.

Let us denote with Xi any input quantities (measurands) and with Y the output quantity
about which information is required. The output Y should be related to the inputs X1, . . . , XN

by a measurement models that can be explicitly formulated Y = f (X1, . . . , XN) or implicitly
defined h(X1, . . . , XN , Y) = 0. Functions f (·) and h(·) should be estimated. The main stages
of uncertainty evaluation are formulation, propagation, and summarizing.

- The formulation stage consists on defining the output quantity Y, identifying the input
quantities on which Y depends (Xi), developing a measurement model relating Y to
the input quantities (functions f (·) and h(·)), and on the basis of available knowledge,
assigning probability distributions to the input quantities (or a joint probability
distribution to those input quantities that are not independent).

- The propagation stage consists of propagating the probability distributions for the input
quantities through the measurement model to obtain the probability distribution for the
output quantity Y. The propagation of distributions can be implemented in several
ways: analytical methods, i.e. methods that provide a mathematical representation of the
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probability density function (pdf) for Y; uncertainty propagation based on replacing the
model by a first-order Taylor series approximation (also called the the law of propagation
of uncertainty); numerical methods that implement the propagation of distributions,
specifically using Monte Carlo method, that will be described in the following.

- The summarizing step is them performed to extract from the Y probability distribution
the expectation of Y (the best estimation of Y), the standard deviation of Y (a measure of
dispersion of Y), a confidence interval containing Y with a specified coverage probability.

Monte Carlo method provides a general approach to obtain an approximate numerical
representation of the distribution function FY for Y. The heart of the approach is repeated
sampling from the pdfs for the Xi. The implementation of the method is summarized below:

a) select the number M of Monte Carlo trials to be made;

b) generate M vectors, by sampling from the assigned pdfs, as realizations of the (set of N)
input quantities Xi;

c) for each such vector, form the corresponding model value of Y, yielding M model values;

d) sort these M model values into strictly increasing order, using the sorted model values to
provide the estimation G of FY;

e) use G to form an estimate y of Y and the standard uncertainty u(y) associated with y.

f) use G to form an appropriate confidence interval for Y, for a stipulated coverage
probability p.

Step f) is crucial because it can be formulated as a constrained minimization problem. In fact,
given a coverage probability p, the associated confidence interval [y1, y2]p is obtained as the

minimum interval [a, b] such that G−1(b) − G−1(a) = p. When the pdf of Y is symmetric
the solution is trivial an equal to G−1((1 + p)/2) − G−1((1 − p)/2). Some relevant features
of Monte Carlo method are: a reduction in the analysis effort required for complicated or
non-linear models, especially since the partial derivatives of first- or higher-order of the model
are not needed; generally improved estimate of Y for non-linear models; improved standard
uncertainty associated with the estimate of Y for non-linear models, especially when the Xi

are assigned non-Gaussian (e.g. asymmetric) pdfs, without the need to provide derivatives
of higher order1; provision of a confidence interval corresponding to a stipulated coverage
probability when the pdf for Y cannot adequately be approximated by a Gaussian distribution
or a scaled and shifted t-distribution, i.e. when the central limit theorem does not apply.

Being the measurement uncertainty modeling a central part in the assessment of the CAD
performance, in the following section, we will describe the major sources of uncertainty that
can be identified in a CAD for mammography.

5. Uncertainty modeling in a CAD

Numerous sources of uncertainty have to be taken into account in a medical image processing
system for breast cancer detection and diagnosis, both in the system development step and in
the operating conditions. Keeping in mind the two different situations, here below, we recall
the most relevant sources of uncertainty subdividing them into five groups: instrumental

1 This point is crucial when an evident asymmetric pdf should be assigned to the input quantity such as
for photon noise.
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uncertainty, uncertainty sources related to the patient, model uncertainty related to the CAD
parameters selection, uncertainty sources related to the input provided by the radiologist
during the system development and validation steps (reference values etc.), the uncertainty
sources related to the possible interaction among the CAD and the physician who is manually
setting the algorithm parameters during the system operation.

• GROUP 1: image acquisition and digitalization process (i.e., spatial resolution, geometric
distortion, noise, pixel quantization, film degradation, artifacts introduction, etc.);

• GROUP 2: biological and patient variability (related to both pathological or normal cases);
intrinsic and unpredictable data variability (e.g., patient movement);

• GROUP 3: model uncertainty due to the unperfect or incomplete knowledge about
algorithm parameters values and their influence on the final results. Major concern should
be paid to algorithm with a random initialization, where some parameters are initially set
to a value randomly selected in a certain interval.

• GROUP 4: human observer subjective interpretation of the image according to his/her
experience, in providing reference boundary, malignancy degree, reference region of
investigation, useful for the CAD validation.

• GROUP 5: interaction between the human observer and the image data, in manually
enhancing the image contrast, selecting Region Of Interest, manually sectioning the breast
region for inspection etc., during the operation of the system.

Some of these sources of uncertainty (GROUPS 1 and 3) can be reasonably modelled and
considered in the uncertainty estimation process (Mazzarella & Bazzocchi, 2007), while some
other (GROUPS 2, 4, and 5) have unknown nature and are difficult to be embedded, even
if noteworthy. As a consequence of the large subjectivity in using the CAD system in this
context, a metrological validation of medical image processing approaches is required to
highlight the intrinsic characteristics and behavior of a method, to evaluate its performance
and limitations, and to compare the method with different existing approaches.

In the following sections, we will describe with more details a possible modelization of
the uncertainty contributions summarized above, providing examples taken from ABCDE’s
functionalities.

5.1 GROUP 1: Noise contribution in mammographic images

Each step that contributes to the final digital mammographic image influences the global
uncertainty in a different way: the formation process, based on X-ray exposure, introduces
a noise contribution that is intensity dependent (e.g., photon noise), the microscopic structure
of the impressed film introduces the so-called film grain noise, finally the digitalization process
when performed through scanner devices, introduces an uncertainty contribution that is
related to the number of bit per pixel (bpp) used in the conversion, or an uncertainty term that
presents systematic periodic patterns (Mencattini et al., 2009b) superimposed to the image.
Photon noise is the dominant random contribution in this context, since the bpp is usually
12 − 16, but other relevant noise contributions can be present at low and high exposures.
Consequently, as suggested in (Jain, 1989), we consider an heteroscedastic noise model for the
random contribution assuming that the noise variance depends on the intensity of each pixel,
and it is not constant within the image. The noise model can be represented as follows:

Ĩ(n, m) = I(n, m) + η1(n, m), (1)
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where Ĩ(n, m) is the noisy image, I(n, m) is the noise-free image, η1(n, m) is a zero mean non
stationary random process given by η1(n, m) = η · σ(n, m) with η ∼ N (0, 1) a normal random
process with zero mean and unitary variance, and σ2(n, m) the spatial-dependent variance of
the process η1(n, m).

The assumption of a normal random process with non constant variance is fully justified (Jain,
1989) for luminance values in the subrange [0.2 − 0.8] that corresponds to what we are
interested in; actually, dark or very bright pixels are corrupted by a saturated gaussian noise
with cut tails. This problem could occasionally produce an underestimation of the noise
variance we perform, but involving regions far from the regions of interest.

It is well known that the noise variance σ2(n, m) depends on the intensity I(n, m). In
particular, we get that σ2(n, m) = αI(n, m)β for scanner devices and σ2(n, m) = γ ·
log10(I(n, m))− d0 for photographic films. Consequently, an estimation procedure is needed

in order to estimate the unknown dependence of the noise variance σ2(n, m) on the intensity
I(n, m). To do this, we implement the noise estimation introduced in (Gravel et al., 2004),
later extended and improved in (.Mencattini et al., 2007; Salmeri et al., 2008). The strength
of the estimation algorithm is that it can be applied to very different kind of medical
images (MRI, ultrasound images, etc.) where noise is signal dependent following different
probability distribution (Rician noise, Rayleigh, etc). In case of homoscedastic noise (where
noise variance is constant through the image) the estimation algorithm still provides an
accurate estimation of the noise variance, needed in many algorithms for image denoising
and enhancement (Mencattini et al., 2010b; 2008). Here below, we only report a sketch of the
whole estimation algorithm.

a) Extract low-frequency components from the image containing homogeneous regions. This
step is performed by applying a low pass gaussian filter to the original noisy image
obtaining a smoothed orignal image.

b) Evaluate the high frequency components of the image by the subtraction of the smoothed
image to the original one. Obviously this image contains both small details, boundaries,
and noise.

c) Eliminate edges by applying a robust edge detector to the original image. This further step
is needed in order to eliminate edges from the estimation procedure, that would decrease
noise variance estimation accuracy. Then, by thresholding we obtain a binary mask of
principal edges.

d) Build an histogram of relating each bin to the intensity of image considering pixels at the
same position in the smoothed image and in the noise image.

e) Evaluate the standard deviation of each bin by a Median Absolute Deviation (MAD)
estimator.

f) Perform a robust regression analysis by Cubic Smoothing Spline in order to fit the data
extracted at step (e).

A block diagram of the whole algorithm is reported in Fig. 5.

Unfortunately, uncertainty contribution do not embed only random effects, related to noise.
In fact, in medical diagnosis, it is often crucial to take into account also non random
contributions that can occur during the exposure, the acquisition and the digitalization
of the image. We refer for example to physiological movements of the patient (a few
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Fig. 5. The noise variance estimation algorithm.

seconds are needed in order to form a single mammographic image), to artifacts that can
be present in the final image, due to dust, fingerprints, scratch, and to the non random
contribution introduced by the scanner itself, such as the spatial non uniformity introduced
in the luminance. For example, the images database we consider, e.g., the Digital Database
for Screening Mammography (DDSM) (Heath et al., 1998) uses the three scanners DBA,
HOWTEK, and LUMISYS to digitalize more than 4000 mammographic images. We can notice
that the final images are corrupted by a periodic pattern contribution that we assumed to be
systematic. An example is shown in Fig. 6(a)-(b) where two regions are extracted from the
same mammographic image. Region A is dark and it is evident that there is an overlying
periodic pattern that here is also emphasized by an histogram stretching. On the contrary,
region B is corrupted by noise but the periodic pattern is much more subtle. In Fig. 6(c) the
two-dimensional Fourier Transforms of the two regions are also shown proving that there is a
unidirectional periodic pattern overlying region A and that the same does not hold for region
B with the same evidence.

It is well known that systematic effects have to be corrected before performing a reliable
uncertainty propagation of random effects (Santo et al., 2004). Unfortunately, as a consequence
of the previous considerations, this kind of contributions is both luminance and spatial
dependent so that it is very difficult to evaluate and correct it. Moreover, from both medical
and visual viewpoints, it could be dangerous to preliminarily correct the images from non
random contribution thus altering the final aspects of the images and falsifying the correct
diagnosis of microcalcifications. In this regard, the new version of International Vocabulary
of Metrology (VIM) (see (International vocabulary of metrology. Basic and general concepts and
associated terms (VIM), 2008) paragraph 2.26) states that Sometimes, estimated systematic effects
are not corrected for but, instead, associated measurement uncertainty components are incorporated.
Finally, scanner devices used in medical laboratories are not completely characterized from
a metrological point of view thus making the exact evaluation of these effects for correction
impossible. As a possible solution, we assume to treat non random contributions as systematic
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Fig. 6. (a) A mammographic image with a dark region (A) exhibiting a periodic pattern and a
bright region (B) in which the same effect is much more subtle. (b) A zoom of the two regions
A and B. (c) The 2D-FFT of the regions A and B respectively.

effects and to embed them in a unified uncertainty model, implementing an uncertainty
propagation through a suitable method.

A viable solution is to use information extracted by the estimation procedure performed for
the noise variance modeling. In this way, by merging different images coming from the same
scanner or digitalization device, we are able to provide more accurate limits for the systematic
contribution. In the following, we will provide an example for the whole noise estimation
procedure considering the three different databases: MiniMIAS, DDSM, and San Paolo FFDM
images.

Fig. 7 reports the noise variance modeling considering DDSM images for the three different
scanners HOWTEK-A, LUMISYS, and DBA at different spatial and pixel resolution. Note
that for low luminance values electronic noise in HOWTEK-A and in DBA is the dominant
noise contribution, while photon noise due to X-ray exposure has a small variance at high
and low exposure. Noise variance related to photon noise has a maximum value in the
range [0.4 − 0.6] for scanners LUMISYS, HOWTEK-A, and DBA. Fig. 8(a) shows the noise
variance estimation for images from MiniMIAS database. Photon noise is low at high and
low exposure and the noise variance has a maximum value in the same range as above.
Both LUMISYS, HOWTEK-A, and MIAS scanning device have a linear characteristic curve.
Conversely, scanner DBA has a logarithmic response. Finally, Fig. 8(b) reports the noise
variance estimation performed on the FFDM images from the San Paolo Hospital. Also in
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Fig. 7. Noise variance modeling for scanners HOWTEK-A and LUMISYS (left) and DBA
(right). A Cubic Smoothing Spline regression is applied with a smoothing parameter equal to
0.9999 for scanners HOWTEK-A and LUMISYS and to 0.999 to scanner DBA. The systematic
noise variation is marked by the arrows.

this case, photon noise is the dominant contribution. The digital mammography device has a
logarithmic characteristic curve.
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Fig. 8. Noise variance modeling for Joice-Loebl scanning microdensitometer (a) and for GE
Senograph 2000D ADS 17.3 (b). A Cubic Smoothing Spline regression is applied with a
smoothing parameter equal to 0.999. The systematic noise variation is marked by the arrows.

It can be noted that the noise dependence from the pixel intensity strongly varies across
different digitalization devices, according to pixel quantization, spatial resolution, scanner
calibration curve, etc. Also, the systematic noise variation is different across the devices.

5.2 GROUP 2: biological and patient variability

Uncertainty sources due to biological and patient variability are probably the most difficult
kind of uncertainty to consider because it groups together unpredictable variations in patient
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physiological status and position. Fortunately, the protocol that regulates mammography
provides a set of rules that allow you to control many of these sources of uncertainty: the
breast is compressed and locked during exposure to X-rays, reducing the possible involuntary
movements also due to the simple respiratory motion; the hormonal changes that may
occur during the patient’s mammography are also controlled as much as possible through
detailed recommendations about the optimal time to perform the examination in relation to
the menstrual cycle. In any case, a complete and accurate CAD system should also provide
the possibility to receive and process information relating to the phase of the woman’s life: at
puberty, lactation, or menopause, in order to adapt algorithm parameters such as for example
those related to fibro-glandular disk extraction in bilateral asymmetry detection.

5.3 GROUP 3: model uncertainty

A CAD for mammography consists of several blocks, as already shown in the introduction.
The correct functioning and adaptation of each block involve the use of inline tuned
parameters that are initialized to a certain value (randomly or not) and can be changed during
the system functioning, according to the image characteristics (adaptation) or according to
pre-specified rules. The CAD developers identify these rules during the system development
and validation steps, using large datasets of mammographic images, but a complete
knowledge of the behavior of the selected parameters is not realistic. In light of this, a formal
way to deal with this incomplete knowledge is to perform an analysis of sensitivity, that,
considering a parameter at a time, introduces small perturbation of it and evaluate the final
effect on the block output. By an iterative procedure, the developer can assign an interval of
values to each block output with a dual effect: quantifying the most critical parameters that
most influence the output and modify the block in order to improve the robustness of the
whole system to unpredictable parameters variations.

The CAD elaboration units can be divided into three categories:

- direct computational blocks involving constant multiplicative coefficients and/or
nonlinear operators;

- iterative blocks involving adaptive thresholds and signal-dependent parameters that
change during the block functioning;

- conditional statements involving the comparison of input variables with thresholds (fixed
or changing during the functioning).

According to the typology, different kind of uncertainty modelling should be performed. Here
below, we provide some examples already investigated by the authors in previous works. In
Section 6 will be described in more detail a recent study in the context of the identification of
bilateral asymmetry.

5.3.1 Direct elaboration units

Context Handling and propagation of random and systematic uncertainty contributions
due to image noise through a wavelet-based enhancement and denoising procedure for
microcalcification detection (Mencattini et al., 2009b).
Materials DDSM Images containing malignant and benign calcifications.
Method Random Fuzzy Variables able to simultaneously represent and propagate through
dedicated mathematical operators random and systematic terms. The method has been
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developed by Ferrero and Salicone (Ferrero & Salicone, 2009; Salicone, 2007) and it is still
under investigation the possible application of the method to iterative and more complex
elaboration units.

5.3.2 Iterative elaboration units

Context Handling and propagation of random uncertainty contributions due to image noise
through the automatic segmentation and classification of massive lesions in mammographic
images (Mencattini et al., 2009a; 2010a; Rabottino et al., 2011).

Algorithm Segmentation is performed by an iris detection algorithm, an iterative
region-growing procedure is applied to extract the mass boundary, geometric and textural
(Haralick) features are computed for each segmented lesion, and finally a Bayes linear
classifier is applied to assign a malignancy degree to each lesion (Mencattini et al., 2009a).

Materials DDSM Images containing malignant and benign massive lesions.

Method Monte Carlo simulations using 50 trials on ROIs 1000 × 1000. The AUC-based
performance assessment has been performed. Fig. 9 reports the cumulative distribution
function and the histogram of the AUC obtained after the trials. Note that the AUC parameter

Fig. 9. AUC cumulative distribution function and histogram.

has a clear non-Gaussian probability distribution, such that the confidence interval for p = 0.9
is very different than the interval obtained under the assumption of normality.

Context and Algorithm An analogous study has been developed in collaboration with the San
Paolo Hospital and the Dept. of Mathematics University of Bari, using the active contour
algorithm developed by Chan and Vese (Chan & Vese, 2001) for the segmentation step, the
fractal analysis and support vector machines for the malignancy assessment. Preliminary
results can be found in (Mencattini et al., 2011d).

Materials San paolo FFDM Images and DDSM images containing malignant and benign
massive lesions histologically proven.

Method Monte Carlo simulations using 100 trials.

5.3.3 Conditional elaboration units

Context Conditional statements in a fuzzy logic inference system for pattern
classification (Ferrero et al., 2010; Mencattini & Salmeri, 2011a). The pattern classification
step is an important section of a CAD because it is use in many functionalities: in the
automatic identification of lesions a classifier is used to reduce false positive lesion candidates
discriminating them from true lesions; in the malignancy assessment a classification step
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is used to assign the malignancy degree to each considered suspicious lesion; lastly, in the
identification of bilateral asymmetry the classifier assigns the asymmetry degree to each pair
of mammograms under test. Many different classifiers exist in the literature and have been
used in developing a CAD for mammography: Bayesian classifier, decision trees, artificial
neural networks, logistic regression, support vector machine, fuzzy logic inference systems
are the most popular approaches. Each of them has its own peculiarity. For example, SVM is
excellent for small training dataset, while artificial neural network has great flexibility to very
large datasets. However, most of them can be considered as completely black boxes able to
learn from examples and to produce a final class membership. None of them, excluding fuzzy
inference systems and decision trees, produces simple classification rules that can be easily
understood by physicians. Finally, only fuzzy inference systems can be directly modified
by physicians who can add classification rules, according to his/her experience. Algorithm
Since the method uses a non-standard fuzzy logic system, in the following we will provide
a brief introduction of the method. A Fuzzy Inference System (FIS) for medical diagnosis is
a nonstandard FIS firstly proposed by Andersson in (Andersson, 2007). The core of such a
system is a simple structure composed of three agents: the patient (the mammogram in our
context), the symptoms (in our context the features extracted to characterize the object to
be classified), and finally the diagnosis (in our context the class, normal or abnormal tissue,
benign or malignant lesions, normal or asymmetric breast, etc.). The architecture of such a FIS
involves three kind or relations: two input relationships (the relation Mammogram-Features
and the relation Features-Diagnosis) and a third relation (the Mammogram-Diagnosis
relation) that is derived by the first two relations using a specific inference process. The first
relation is built by physicians in the patient-history or anamnesis process, while is learnt by
the CAD during the features extraction and training steps. The second relation is derived
by the physician according to his/her experience, retrospective study and clinical trials in
which a symptom has been confirmed to be significant for a certain diagnosis (e.g., spiculated
margins of a mass represent the infiltrating properties of the lesion and a sign of possible
malignancy). Finally, the third relation assigns a final class membership to a mammogram or
simply to a region of interest (P in the following), according to the features extracted on it and
on their significance for a certain class. Such a system has been already applied in different
situations: the malignancy assessment of calcifications clusters (Ferrero et al., 2010), the false
positive reduction in the automatic mass identification (Mencattini & Salmeri, 2011b), the
development of a novel scoring system to measure the severity of illness of patients admitted
in Intensive Care Units (Mencattini et al., 2011e). In this section, we will consider in details
the malignancy assessment of calcifications.

A FIS rule has an IF-THEN structure, an example of two distinct rules is reported below.

IF number of calcifications in a cluster is HIGH in mammogram P AND number of calcifications is
HIGHLY significant for diagnosis MALIGNANT THEN mammogram P contains a MALIGNANT

cluster of calcifications

IF mean entropy of calcifications is HIGH in mammogram P AND mean entropy of calcifications is
HIGHLY significant for diagnosis BENIGN THEN mammogram P contains a BENIGN cluster of

calcifications

Each rule is preliminarily evaluated computing the two antecedents according to specific
mathematical fuzzy operators and then the rules are aggregated through a weighted average
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operator (Ferrero et al., 2010). The evaluation of the two antecedents, number of calcifications
in a cluster is HIGH and number of calcifications in a cluster is HIGHLY significant for diagnosis
MALIGNANT involves the definition of the fuzzy variable number of calcifications, and
consequently of the fuzzy sets HIGH number of calcifications and LOW number of calcifications.
This definition consists in the construction of two trapezoidal Membership Functions (MFs) as
those reported in Fig. 10 for the two symptoms number of calcifications (Sj) and mean entropy of
calcifications (Sk). The two MFs are superimposed on the corresponding histograms. Note that,
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Fig. 10. Examples of MF construction for symptom Sj (number of calcifications) and Sk (mean
entropy of calcifications). The magenta bars identify the class M while the blue bars
represent the class B.

for a certain value S̄J of the first symptom, the system assigns two degrees of membership

µM
S̄j

and µB
S̄j

to the class MALIGNANT (M) and BENIGN (B) respectively. As long as the

value of Sj increases from x1 to x2 then µM
S̄j

increases toward the unity and µB
S̄j

decreases

toward zero. The opposite happens when Sj decreases from x2 to x1. It is evident that
each of the two MFs depends on the two parameters x1 and x2 which are extracted from
the distribution of the feature for the different classes. In particular, x1 is the maximum value
of Sj for benign cases such that all the Sj for malignant cases are greater than x1. Conversely,
x2 is the minimum value of Sj for malignant cases such that all the Sj values for benign cases
are smaller than x2. The evaluation of x1 and x2 is performed after outliers elimination on
each feature Sj. Parameters x1 and x2 influences the final class membership function and an
analysis of sensitivity should be implemented for them.

The second antecedent number of calcifications is HIGHLY significant for diagnosis MALIGNANT

involves the computation of what we called Incidence Level ILDi

Sj
of a symptom Sj for a

diagnosis Di, where in the considered example Di is M or B. It represents the degree of
influence that a symptom Sj can have on a certain diagnosis Di and a degree of correlation
among them. This correlation is evaluated according to physician’s experience or again from
the distribution of the symptom’s values for each class. Two examples of this calculation are
reported in Fig. 11 for the number of calcifications in a cluster and for the mean entropy of
calcifications for the two classes Malignant and Benign. In particular, we get for symptom Sj
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Fig. 11. Examples of evaluation of the incidence level IL for symptom Sj (number of
calcifications) and Sk (mean entropy of calcifications). The gray bars identify those cases that
do not contribute to the calculation of the incidence levels.
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From equations (2) it is fully justified that the incidence level has a strong influence on the
final class membership and again a dedicated analysis of sensitivity should be performed. In
the considered context, seven features are used to assess the malignancy of the calcifications:
number of microcalcifications (S1), minimum area of the microcalcifications (S2), area of the
convex hull containing microcalcifications (S3), entropy of the cluster of microcalcifications
(S4), mean contrast of the microcalcifications (S5), mean entropy of the microcalcifications
(S6), Haralick parameter H8 (Sum Entropy) (S7).
Materials DDSM images, 119 benign and 122 malignant calcifications clusters.
Methods Recently, an innovative approach to propagate random and systematic uncertainty
contributions through a FIS has been implemented (Ferrero et al., 2010). In light of this, within
a collaboration with the Dept. of Electrical Engineering Politecnico of Milan, the method has
been applied to our context. Basically, the method assigns a Random Fuzzy Variable (RFV) to
each variable in order to model simultaneously random and systematic uncertainty terms.
From Fig. 12 (figure top-left) it can be noted that an RFV is an extended Fuzzy Variable,
whose Membership Function is composed of an inner and an outer standard MF. The inner
MF represents the systematic uncertainty contribution, usually it is a rectangular MF, as in
standard interval analysis; the outer part represents the random contribution and a direct
approach can be implemented to derive it from the pdf of the variable (Dubois et al., 2004).
Fig. 12 (figures right) reports the Random Fuzzy Variables (RFVs) for each feature used for
calcifications malignancy assessment considering one of the images taken from DDSM. In
this context, we assumed only systematic uncertainty contribution for discrete symptoms
S1, S2, S3 and only random contributions for symptom S4, . . . , S7

2. The corresponding

2 The random contributions in symptoms S1, . . . , S3 are considered to be small and totally embedded
in the systematic terms. On the contrary, we assumed that the systematic contribution in symptoms
S4, . . . , S7 was negligible with respect to random variations.
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histograms for features S4, . . . , S7 are reported on the left. Figure top-left reports the two RFVs
representing the benign and the malignancy degrees associated to the considered cluster. The
inner part results from the propagation of the systematic effects, while the outer part results
from the propagation of the random effects through the FIS.
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Fig. 12. Figure Top-left: RFVs of the malignancy and the benign degrees for one test image.
Figure bottom-left: histogram of features S4 − S7. Figure right: RFVs of the features
extracted. Red plot: inner MFs of the RFVs; blue plot: outer MFs of the RFVs.

5.4 GROUP 4: radiologist-dependent CAD inputs

During the development step and the CAD validation procedure, one or more radiologists
should provide the ground truth needed as a reference to set the algorithm parameters.

i) During the validation of the breast region segmentation, radiologists provide the actual
breast skin line, the nipple position, the pectoral muscle profile. In particular, in case
of minoris, very obscure nipple, very dark uncompressed tissue, this reference strongly
depends on radiologist experience and more than one radiologist should be interpelled
using a voting procedure to select a final robust reference.

ii) During the validation of the automatic lesions identification, the radiologist is called to
identify the possible lesion, whose position is then confirmed by biopsy.

iii) Also, the boundary of the lesion can be drawn by the radiologist, or, more rarely, a core
and an external boundary are drawn, as in DDSM database. The core identifies the internal
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portion of the lesion, while the boundary includes also the spicules and the structures that
radiate from the core.

iv) In some situations, the radiologist draws the boundary of a region representing a bilateral
asymmetry or locate the center of an architectural distortion. This situation is much more
radiologist’s dependent, because there is not any histological test that can confirm this
reference.

v) Finally, less frequently, the radiologist is called to provide additional information about the
breast tissue such as ACR tissue density or ACR subtlety rating. Both these parameters are
fundamental for the correct functioning of some algorithms such as bilateral asymmetry
identification (Casti, 2011). A recent preliminary study proved the effectiveness of a
procedure for the extraction of the fibro-glandular disk and of the oriented patterns in
the breast, tuned according to the ACR tissue density.

All of the information provided by the radiologist influence both the CAD learning capability
and the effectiveness of its operation. Each of them should be perturbated in order to evaluate
the actual influence on the final results produced by the CAD. In particular, in Section 6 we
will describe recent simulation results, obtained assuming a systematic perturbation of the
ACR density rating assessed by a single radiologist. Using a leave one out cross-validation
procedure, considering a pair of mammograms at a time, we assumed that the radiologist
assessed a density rating higher than the actual density. Such a bias, is then propagated
through the whole algorithm for the identification of bilateral asymmetry on a dataset
including 23 pairs of normal mammograms and 23 pairs if asymmetric mammograms taken
from MiniMIAS database. The same procedure has been implemented assuming that the
radiologist assigns to the pair of mammograms under test a density rating smaller than
the actual one. Doing so, the whole algorithm produces for each pair of mammograms an
asymmetry degree in absence of perturbation and two asymmetry degrees in presence of a
positive and a negative perturbation respectively. Further details will be provided later.

5.5 GROUP 5: CAD-radiologist interaction

A recent study by Nishikawa (Nishikawa, 2007) reports important considerations on the
evaluation of a CADe system. He recalls that a CADe system does not need to detect cancers,
but it needs to assist radiologist in doing this. This means that the real help is in detecting
tumors missed by the radiologist increasing the overall sensitivity of the radiologist-CADe
system. It is possible to have a CADe scheme with a sensitivity lower than 50% and still
be a useful aid. So, one of the crucial point is the interaction CADe-radiologist. If cancers
missed by the computer is too high then the radiologist will lose confidence in the ability
of the computer to detect cancers. On the other hand, false detections reduce radiologist’s
productivity because the radiologists must spend time reviewing all computer detections.

Conversely, a CAD could over-learn from available samples produced by the same apparatus
and reported by the same radiologist. Nishikawa observes that a positive bias can occur even
if training and test set are the same or if the dataset used for features selection and the training
set are the same. To reduce this bias and to reduce over-learning, more than one radiologist
should report the images used for development, validation, training, and test, using a voting
procedure to select one report for each case. Moreover, a separate dataset for each of the above
phase should be used, preferably extracted from different databases.
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6. A numerical example of uncertainty propagation through ABCDE: bilateral

asymmetry identification

For almost thirty years, methods have been developed to try to use computers as second
readers to make up for this potential loss of reliability. Almost all fields of image processing
and analysis have been explored but little attention has been paid to the identification of
bilateral asymmetry on mammograms. Asymmetric breast tissue is usually benign, but
an asymmetric area may indicate a developing mass or an underlying cancer. Thus, the
American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS),
which has developed a standardized method for breast imaging reporting, describes bilateral
asymmetry as one of the four signs of breast cancer that radiologists have to detect. Some
commercial CAD systems have obtained the Food and Drug Administration (FDA) approval
and are beginning to be applied widely for the detection of masses and microcalcification on
mammograms, but none of them has been developed for bilateral asymmetry identification.
The paucity of works related to this topic may be due to the fact that bilateral asymmetries are
difficult to be identified for the following reasons:

1. it needs a comparison between the left and right views which is a difficult task owing to
the natural asymmetry of the breasts, and to the absence of good corresponding points to
perform matching;

2. distortion inherent to the manual position of the breast during X-ray exposure;

3. the wide range of appearance associated with differences between women in the amount
and distribution of fibroglandular tissue, which is also influenced by age and hormonal
status and whose asymmetry could also represents simply a physiological sign.

The authors are currently working on the development of an automatic bilateral asymmetry
identification procedure, one of the most innovative part of ABCDE (Casti, 2011; Mencattini
et al., 2011c). The aim is to improve the early diagnosis of breast cancer, especially in
screening test, providing clues about the presence of early signs of tumors like parenchymal
distortion, small asymmetric bright spots and contrast, that are not detected by other methods.
Asymmetric breasts could be reliable indicators of future breast disease in women and this
factor should be considered in a woman’s risk profile. The Breast Imaging Reporting and
Data System (BIRADS) defines bilateral asymmetry as an area of fibroglandular tissue that
is more extensive in one breast as compared to the contralateral one. Thus an asymmetric
finding can be represented by a difference in shape and distribution of the fibroglandular
tissues of the two breasts but also by a difference in the oriented pattern of the two disks.
The oriented features detectors used in this work is a set of real Gabor filters oriented at
different angles (spaced at angles of 18 degrees) (Rangayyan et al., 2008). Real Gabor filters,
in fact, yield good performances in terms of capability to detect the presence of oriented
features as well as in terms of accuracy in the estimation of the angle of the directional
components and are fundamental tools in image understanding where the information of
interest is displayed in the form of oriented features. The foregoing considerations guided
the choice to segment the fibroglandular tissue from the rest of the breast parenchyma using
Gaussian mixture modelling (Ferrari et al., 2004). Differences between the left and right
breasts in terms of directional and morphological features are then extracted and used to
assess the asymmetry degree of the patient. The idea is that the integration of measures
of shape and distribution of the fibroglandular tissue with measures of the oriented pattern
through a Gabor filtering analysis, can provide a better and accurate characterization of the
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tissue, allowing the detection of the asymmetric abnormalities eventually present on the
mammographic images. Once a numerical representation of the pairs of mammographic
images has been obtained, bilateral asymmetry identification has been performed by pattern
classification, based on a Support Vector Machine (SVM) classifier. Fig. 13 shows the flowchart
of the whole procedure. The highlighted block denotes the most innovative part of the
algorithm. It involves the tuning of the parameters of the algorithm according to the ACR
breast tissue density. In particular, the thickness parameter in the Gabor filters and the
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Fig. 13. A flowchart of the whole algorithm for the identification of bilateral asymmetry.

clustering procedure inside the gaussian mixture model estimation depend on the tissue
density. This approach leads inevitably to a strong dependence on the density assigned to
the final result, i.e. the degree of asymmetry. Fig. 14 reports two examples taken from DDSM
images for an asymmetric and a normal pair of mammograms. The fibroglandular disks are
also included along with the oriented pattern derived using Gabor filters. Finally, the rose
diagram of the angular distribution of the left and right breast is reported. The considered
asymmetric case has a density equal to 4 (at least 90% of the breast is composed of dense
tissue), while the normal case has an assigned density equal to 3 (a portion in the range of
49% − 90% of the whole breast region is occupied by heterogeneously dense tissue).

The recent work has been devoted to the identification of the most relevant sources of
uncertainty in the described algorithm. Two uncertainty contributions, respectively random
and systematic, have been investigated:

1) the image power noise, estimated as described in previous sections;

2) subjective radiologist’s bias in assessing the ACR density category, simulated by the
assignment of a density value higher or lower than that assigned by the first radiologist.

The two different sources of uncertainty have to be separately considered and simulated, in
order to avoid the interactions of them, possible compensation effects, in order to perform an
individual failure analysis.
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Fig. 14. Figure left: a pair of mammograms from DDSM with an assigned bilateral
asymmetry (B − 3056 CC views). Figure right: a pair of normal symmetric mammograms
from DDSM (A − 0048 MLO views).

6.1 Random uncertainty contribution: image noise

The Monte Carlo Method (MCM) has been implemented to evaluate and propagate the
uncertainty contribution due to noise on the mammographic images. The implemented
procedure is described as follows:

i) represent the luminance of each pixel by a pdf of a normal random variable with mean
value taken from a smoothed version of the given image and standard deviation given by
the noise variance estimation;

ii) select the number M of Monte Carlo trials;

iii) generate M different noisy images, by sampling from the assigned pdf using the model in
(1), thus producing M realizations of the input mammographic image;

iv) apply the CADe algorithm to each of M image realizations and form the corresponding M
different asymmetry degrees for each image;

v) sort these M values into strictly increasing order and construct a discrete representation G
of the cumulative distribution function for the asymmetry degree;

vi) use G to derive an appropriate confidence interval for the asymmetry degree, for a given
coverage probability p.

vii)Repeat steps i)-vi) for any image in the test set, considering a smoothed version of the
remaining N − 1 original images for training, in a leave one out cross-validation testing
procedure, thus producing N × M different asymmetry degrees.

viii)Using the values in vii) compute two vectors of M sensitivities and M specificities, thus
producing extended ROC curves for each coverage probability.

Fig. 15 reports the asymmetry degrees for the asymmetric and normal cases taken from
MiniMIAS database. The confidence interval associated is for a coverage probability equal
to p = 0.90. The green circles identify the most critical pair of mammograms in terms of
noise influence among the asymmetric and the normal cases. Fig. 16(a) reports the extended
ROC curve accounting for the confidence intervals around the sensitivity and the specificity
computed by steps: i)-viii).
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Fig. 15. Asymmetry degree for each case in the data set and the relative confidence interval,
due to the noise uncertainty contribution, with 90% coverage probability. (a) Asymmetric
cases. (b) Normal cases.
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Fig. 16. ROC curve of the classifier (mean value in blue) with the uncertainty contribution
due to (a) image noise and (b) ACR density assessment bias propagated to the False Positive
Rate and to the True Positive Rate.

6.2 Systematic uncertainty contribution: density category assessment

As seen before, the assessment of the density ACR category plays an important role in the
whole algorithm. As a consequence, a different value assessed to the test image by the
radiolgist could lead to changes in the system performance, which instead was calibrated
using tree expert radiologists criterions and their experience. This kind of uncertainty
contribution however is not random but systematic. In fact, a radiologist can introduce a
subjective bias in assessing the ACR category to the mammographic image, which depends on
his/her personal experience or on the particular mammographic equipment he/she is using.
Therefore the CADe system has been tested using to different kind of bias:

1) a negative bias modeled as 3: ACRbiased = ACRunbiased − 1;

3 Obviously, in this case density rating equal to 1 remains unchanged.
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2) a positive bias modeled as 4: ACRbiased = ACRunbiased + 1.

The following procedure has been implemented to perform the uncertainty propagation of
the two kinds of bias:

i) for each image of the dataset add a negative bias;

ii) test the CADe algorithm on each image obtained in i) and form the corresponding model
value of the output, yielding N output values (where N is again the number of images of
the dataset);

iii) for each image of the dataset add a positive bias;

iv) test the CADe algorithm on each image obtained in iii) and form the corresponding model
value of the output, yielding other N output values;

v) sort these 2N values into strictly increasing order, using the sorted values to provide a
discrete representation G of the distribution function for the asymmetry degree;

vi) use G to form an appropriate confidence interval for the asymmetry degree, for a given
coverage probability p.

Fig. 17 reports the asymmetry degrees for the asymmetric and normal cases taken from
MiniMIAS database. The confidence interval associated is for a coverage probability equal to
p = 0.90. The green circles identify the most critical pair of mammograms in terms of density
bias influence among the asymmetric and the normal cases. Fig. 16(b) shows the extended
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Fig. 17. Asymmetry degree for each case in the data set and the relative confidence interval,
due to the noise uncertainty contribution, with 90% coverage probability. (a) Asymmetric
cases. (b) Normal cases.

ROC curve accounting for the propagation of the ACR density assessment bias through the
whole identification algorithm. A failure analysis could be guided from this kind of validation
procedure.

7. Conclusions

This chapter has addressed the problem of metrological validation of a CAD system (both
CADe-CADx) in mammography. Guided by the work of Wirth and that of Nishikawa, we

4 Obviously, in this case density rating equal to 4 remains unchanged.
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realized that there are still several open issues concerning the validation of CAD in this
context. Based on the experience gained in the context of modeling and propagation of
measurement uncertainty in the medical field, we have prepared this review providing some
guidelines to expand and improve the validation and performance evaluation of CAD. Several
examples have been inserted drawing inspiration from the CAD ABCDE that our research
team is developing, especially showing those points that are distinctive compared to other
commercial CAD already on the market. These points relate mainly to the metrological
assessment, to the adaptability to different databases (either analog and digital), to the
presence of new functional blocks relating to the identification of bilateral asymmetry, and
last but not least to the ability to interact with the radiologist who can add rules in the CAD
decision making process. This last functionality is allowed by the use of Fuzzy Inference
Systems. Finally, taking a cue from the considerations of Wirth, we have also provided some
hints on how to implement a failure assessment of the resulting False Negatives/Positives
produced by a CAD.
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