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1. Introduction 

The additive and multiplicative noise exists forever in any wireless communication system. 
Quality and integrity of any wireless communication systems are defined and limited by 
statistical characteristics of the noise and interference, which are caused by an electromagne-
tic field of the environment. The main characteristics of any wireless communication syst-
em are deteriorated as a result of the effect of the additive and multiplicative noise. The ef-
fect of addition of noise and interference to the signal generates an appearance of false infor-
mation in the case of the additive noise. For this reason, the parameters of the received sig-
nal, which is an additive mixture of the signal, noise, and interference, differ from the para-
meters of the transmitted signal. Stochastic distortions of parameters in the transmitted sig-
nal, attributable to unforeseen changes in instantaneous values of the signal phase and amp-
litude as a function of time, can be considered as multiplicative noise. Under stimulus of the 
multiplicative noise, false information is a consequence of changed parameters of transmitt-
ed signals, for example, the parameters of transmitted signals are corrupted by the noise and 
interference. Thus, the impact of the additive noise and interference may be lowered by an 
increase in the signal-to-noise ratio (SNR). However, in the case of the multiplicative noise 
and interference, an increase in SNR does not produce any positive effects. 

The main functional characteristics of any wireless communication systems are defined by 

an application area and are often specific for distinctive types of these systems. In the majo-

rity of cases, the main performance of any wireless communication systems are defined by 

some initial characteristics describing a quality of signal processing in the presence of noise: 

the precision of signal parameter measurement, the definition of resolution intervals of the 

signal parameters, and the probability of error. 

The main idea is to use the generalized approach to signal processing (GASP) in noise in wi-
reless communication systems (Tuzlukov, 1998; Tuzlukov, 1998; Tuzlukov, 2001; Tuzlukov, 
2002; Tuzlukov, 2005; Tuzlukov, 2012). The GASP is based on a seemingly abstract idea: the 
introduction of an additional noise source that does not carry any information about the sig-
nal and signal parameters in order to improve the qualitative performance of wireless com-
munication systems. In other words, we compare statistical data defining the statistical para- 
meters of the probability distribution densities (pdfs) of the observed input stochastic samp-
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les from two independent frequency-time regions – a "yes" signal is possible in the first regi-
on and it is known a priori that a "no" signal is obtained in the second region. The proposed 
GASP allows us to formulate a decision-making rule based on the determination of the join-
tly sufficient statistics of the mean and variance of the likelihood function (or functional). 
Classical and modern signal processing theories allow us to define only the mean of the like-
lihood function (or functional). Additional information about the statistical characteristics of 
the likelihood function (or functional) leads us to better quality signal detection and definiti-
on of signal parameters in compared with the optimal signal processing algorithms of classi-
cal or modern theories. 

Thus, for any wireless communication systems, we have to consider two problems – analy-
sis and synthesis. The first problem (analysis) – the problem to study a stimulus of the addi-
tive and multiplicative noise on the main principles and performance under the use of 
GASP – is an analysis of impact of the additive and multiplicative noise on the main charac-
teristics of wireless communication systems, the receivers in which are constructed on the 
basis of GASP. This problem is very important in practice. This analysis allows us to define 
limitations on the use of wireless communication systems and to quantify the additive and 
multiplicative noise impact relative to other sources of interference present in these systems. 
If we are able to conclude that the presence of the additive and multiplicative noise is the 
main factor or one of the main factors limiting the performance of any wireless communica-
tion systems, then the second problem – the definition of structure and main parameters and 
characteristics of the generalized detector or receiver (GD or GR) under a dual stimulus of 
the additive and multiplicative noise – the problem of synthesis – arises. 

GASP allows us to extend the well-known boundaries of the potential noise immunity set by 
classical and modern signal processing theories. Employment of wireless communication 
systems, the receivers of which are constructed on the basis of GASP, allows us to obtain 
high detection of signals and high accuracy of signal parameter definition with noise com-
ponents present compared with that systems, the receivers of which are constructed on the 
basis of classical and modern signal processing theories. The optimal and asymptotic optim-
al signal processing algorithms of classical and modern theories, for signals with amplitude-
frequency-phase structure characteristics that can be known and unknown a priori, are con-
stituents of the signal processing algorithms that are designed on the basis of GASP. 

2. GASP: Brief description 

GASP is based on the assumption that the frequency-time region Z of the noise exists where 

a signal may be present; for example, there is an observed stochastic sample from this regi-

on, relative to which it is necessary to make the decision a “yes” signal (the hypothesis 1H ) 

or a “no” signal (the hypothesis 0H ). We now proceed to modify the initial premises of the 

classical and modern signal processing theories. Let us suppose there are two independent 

frequency-time regions Z and Z belonging to the space A . Noise from these regions obeys 

the same pdf with the same statistical parameters (for simplicity of considerations). General-

ly, these parameters are differed. A “yes” signal is possible in the noise region Z as before. It 

is known a priori that a “no” signal is obtained in the noise region Z . It is necessary to make the 

decision a “yes” signal (the hypothesis 1H ) or a “no” signal (the hypothesis 0H ) in the obse-

rved stochastic sample from the region Z , by comparing statistical parameters of pdf of this 
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sample with those of the sample from the reference region Z . Thus, there is a need to accu-

mulate and compare statistical data defining the statistical parameters of pdf of the observed 

input stochastic samples from two independent frequency-time regions Z and Z . If statisti-

cal parameters for two samples are equal or agree with each other within the limits of a giv-

en before accuracy, then the decision of a “no” signal in the observed input stochastic pro-

cess 1 , , NX X is made – the hypothesis 0H . If the statistical parameters of pdf of the observ-

ed input stochastic sample from the region Z differ from those of the reference sample from 

the region Z by a value that exceeds the prescribed error limit, then the decision of a “yes” 

signal in the region Z is made – the hypothesis 1H . 

 

Fig. 1. Definition of sufficient statistics under GASP. 

The simple model of GD in form of block diagram is represented in Fig.2. In this model, 

we use the following notations: MSG is the model signal generator (the local oscillator), 

the AF is the additional filter (the linear system) and the PF is the preliminary filter (the 

linear system) A detailed discussion of the AF and PF can be found in (Tuzlukov, 2001 

and Tuzlukov, 2002). 

 

Fig. 2. Principal flowchart of GD. 
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Consider briefly the main statements regarding the AF and PF. There are two linear systems 

at the GD front end that can be presented, for example, as bandpass filters, namely, the PF 

with the impulse response ( )PFh Ǖ  and the AF with the impulse response ( )AFh Ǖ . For simpli-

city of analysis, we think that these filters have the same amplitude-frequency responses 

and bandwidths. Moreover, a resonant frequency of the AF is detuned relative to a resonant 

frequency of PF on such a value that signal cannot pass through the AF (on a value that is 

higher the signal bandwidth). Thus, the signal and noise can be appeared at the PF output 

and the only noise is appeared at the AF output. It is well known, if a value of detuning bet-

ween the AF and PF resonant frequencies is more than 4 5 af  , where af is the signal ba-

ndwidth, the processes forming at the AF and PF outputs can be considered as independent 

and uncorrelated processes (in practice, the coefficient of correlation is not more than 0.05). 

In the case of signal absence in the input process, the statistical parameters at the AF and PF 

outputs will be the same, because the same noise is coming in at the AF and PF inputs, and 

we may think that the AF and PF do not change the statistical parameters of input process, 

since they are the linear GD front end systems. 

By this reason, the AF can be considered as a generator of reference sample with a priori in-

formation a “no” signal is obtained in the additional reference noise forming at the AF output. 

There is a need to make some comments regarding the noise forming at the PF and AF out-

puts. If the Gaussian noise ( )n t comes in at the AF and PF inputs (the GD linear system front 

end), the noise forming at the AF and PF outputs is Gaussian, too, because the AF and PF 

are the linear systems and, in a general case, take the following form: 

 ( ) ( ) ( )PF PFn t h Ǖ n t Ǖ dǕ




     and   ( ) ( ) ( )AF AFn t h Ǖ n t Ǖ dǕ




  . (1) 

If, for sake of simplicity, the additive white Gaussian noise (AWGN) with zero mean and 

two-sided power spectral density 02N is coming in at the AF and PF inputs (the GD linear 

system front end), then the noise forming at the AF and PF outputs is Gaussian with zero 

mean and variance given by
2

0 02 2

8 F
n

ωǔ  N
(Tuzlukov, 2002) where in the case if AF (or PF) is the 

RLC oscillatory circuit, the AF (or PF) bandwidth F and resonance frequency 0ω are de-

fined in the following manner ,F    0
1

2
, R

LLC
   .The main functioning condition of 

GD is an equality over the whole range of parameters between the model signal ( )u t at the 

GD MSG output and the transmitted signal ( )u t forming at the GD input liner system (the 

PF) output, i.e. ( ) ( )u t u t . How we can satisfy this condition in practice is discussed in 

detail in (Tuzlukov, 2002; Tuzlukov, 2012). More detailed discussion about a choice of PF 

and AF and their impulse responses is given in (Tuzlukov, 1998). 

3. Diversity problems in wireless communication systems with fading 

In the design of wireless communication systems, two main disturbance factors are to be 

properly accounted for, i.e. fading and additive noise. As to the former, it is usually taken 

into account by modeling the propagation channel as a linear-time-varying filter with rand-

om impulse response (Bello, 1963 & Proakis, 2007). Indeed, such a model is general enough 

to encompass the most relevant instances of fading usually encountered in practice, i.e. 

www.intechopen.com



Generalized Approach to Signal Processing in  
Wireless Communications: The Main Aspects and some Examples 

 

309 

frequency- and/or time-selective fading, and flat-flat fading. As to the additive noise, such a 

disturbance has been classically modeled as a possibly correlated Gaussian random process.  

However, the number of studies in the past few decades has shown, through both theoretic-

al considerations and experimental results, that Gaussian random processes, even though 

they represent a faithful model for the thermal noise, are largely inadequate to model the ef-

fect of real-life noise processes, such as atmospheric and man-made noise (Kassam, 1988 & 

Webster, 1993) arising, for example, in outdoor mobile communication systems. It has also 

been shown that non-Gaussian disturbances are commonly encountered in indoor environ-

ments, for example, offices, hospitals, and factories (Blankenship & Rappaport, 1993), as 

well as in underwater communications applications (Middleton, 1999). These disturbances 

have an impulsive nature, i.e. they are characterized by a significant probability of observ-

ing large interference levels. 

Since conventional receivers exhibit dramatic performance degradations in the presence of 

non-Gaussian impulsive noise, a great attention has been directed toward the development 

of non-Gaussian noise models and the design of optimized detection structures that are able 

to operate in such hostile environments. Among the most popular non-Gaussian noise mo-

dels considered thus far, we cite the alpha-stable model (Tsihrintzis & Nikias, 1995), the Mi-

ddleton Class-A and Class-B noise (Middleton, 1999), the Gaussian-mixture model (Garth & 

Poor, 1992) which, in turn, is a truncated version, at the first order, of the Middleton Class-A 

noise, and the compound Gaussian model (Conte et al., 1995). In particular, in the recent 

past, the latter model, subsuming, as special cases, many marginal probability density func-

tions (pdfs) that have been found appropriate for modeling the impulsive noise, like, for in-

stance, the Middleton Class-A noise, the Gaussian-mixture noise (Conte, 1995), and the sym-

metric alpha-stable noise (Kuruoglu, E. et al., 1998). They can be deemed as the product of a 

Gaussian, possibly complex random process times a real non-negative one. 

Physically, the former component, which is usually referred to as speckle, accounts for the 

conditional validity of the central limit theorem, whereas the latter, the so-called texture pro-

cess, rules the gross characteristics of the noise source. A very interesting property of comp-

ound-Gaussian processes is that, when observed on time intervals whose duration is signifi-

cantly shorter than the average decorrelation time of the texture component, they reduce to 

spherically invariant random processes (SIRPs) (Yao, 1973), which have been widely adopt-

ed to model the impulsive noise in wireless communications (Gini, F et al., 1998), multiple 

access interference in direct-sequence spread spectrum cellular networks (Sousa, 1990), and 

clutter echoes in radar applications (Sangston & Gerlach, 1994). 

We consider the problem of detecting one of M signals transmitted upon a zero-mean fading 

dispersive channel and embedded in SIRP noise by GD based on the GASP in noise. The si-

milar problem has been previously addressed. In (Conte, 1995), the optimum receiver for 

flat-flat Rayleigh fading channels has been derived, whereas in (Buzzi et al., 1999), the case 

of Rayleigh-distributed, dispersive fading has been considered. It has been shown therein 

that the receiver structure consists of an estimator of the short-term conditional, i.e. given 

the texture component, noise power and of a bank of M estimators-correlators keyed to the 

estimated value of the noise power. Since such a structure is not realizable, a suboptimum 

detection structure has been introduced and analyzed in (Buzzi et al., 1997). 
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We design the GD extending conditions of (Buzzi et al., 1997) and (Buzzi et al., 1999) to the 

case that a diversity technique is employed. It is well known that the adoption of diversity 

techniques is effective in mitigating the negative effects of the fading, and since conventio-

nal diversity techniques can incur heavy performance loss in the presence of impulsive dis-

turbance (Kassam & Poor, 1985), it is of interest to envisage the GD for optimized diversity 

reception in non-Gaussian noise. We show that the optimum GD is independent of the joint 

pdf of the texture components on each diversity branch. We also derive a suboptimum GD, 

which is amenable to a practice. We focus on the relevant case of binary frequency-shift-key-

ing (BFSK) signaling and provide the error probability of both the optimum GD and the su-

boptimum GD. We assess the channel diversity order impact and noise spikiness on the per-

formance. 

3.1 Problem statement 

The problem is to derive the GD aimed at detecting one out of M signals propagating thro-

ugh single-input multiple-output channel affected by dispersive fading and introducing the 

additive non-Gaussian noise. In other words, we have to deal with the following M-ary hy-

pothesis test: 

 

1 1, 1

,

 ( ) ( ) ( )

 ...............................          1, ,     [0, ]

 ( ) ( ) ( )

i

i

P P i P

x t s t n t

i M t T

x t s t n t

 
  
  

H , (2) 

where P is the channel diversity order and [0, ]T is the observation interval; the waveforms 

1( ){ }P
p px t  are the complex envelopes of the P distinct channel outputs; , 1( ) , 1,{ }P

p i ps t i    

, M  represent the baseband equivalents of the useful signal received on the P diversity bra-

nches under the ith hypothesis. Since the channel is affected by dispersive fading, we may 

assume (Proakis, 2007) that these waveforms are related to the corresponding transmitted si-

gnals ( )iu t  

  , ( ) ( , ) ( )   ,       [0, ]p i p is t h t u t d t T  




    (3) 

where ( , ), 1, ,ph t p P   is the random impulse response of the channel pth diversity branch 

and is modeled as a Gaussian random process with respect to the variable t. In keeping with 

the uncorrelated-scattering model, we assume that the random processes ( , ), 1, ,ph t p P    

are all statistically independent; as a consequence, the waveforms , 1( ){ }P
p i ps t  are themselves 

independent complex Gaussian random processes that we assume to be zero-mean and with 

the covariance function 

 , ,( , ) ( ) ( )   ,       1, ,     , [0, ][ ]p i p iCov t E s t s i M t T      (4) 

independent of p (the channel correlation properties are identical of each branch) and upper 

bounded by a finite positive constant. This last assumption poses constraint on the average 

receive energy in the i-th hypothesis
0

 

 
( , )

T

i iCov t t dt  E . We also assume in keeping with 
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the model (Van Trees, 2001) that , ,[ ( ) ( )] 0p i p iE s t s   . This is not a true limitation in most 

practical instances, and it is necessarily satisfied if the channel is wide sense stationary. 

Finally, as to the additive non-Gaussian disturbances 1( ){ }P
p ptn  , we resort to the widely ad-

opted compound model, i.e. we deem the waveform ( )pn t as the product of two independ-

ent processes: 

 ( ) ( ) ( )  ,       1, ,p p pn t v t g t p P    (5) 

where ( )pv t is a real non-negative random process with marginal pdf ( )
p

f  and ( )pg t is a zero-

mean complex Gaussian process. If the average decorrelation time of ( )pv t is much larger than 

the observation interval [0, ]T , then the disturbance process degenerates into SIPR (Yao, 1973) 

 ( ) ( )  ,       1, ,p p pn t g t p P   . (6) 

From now on, we assume that such a condition is fulfilled, and we refer to (Conte, 1995) for 

further details on the noise model, as well as for a list of all of the marginal pdfs that are co-

mpatible with (5). Additionally, we assume 2 1[ ]pE   and that the correlation function of the 

random process ( )pg t is either known or has been perfectly estimated based on (5). While 

previous papers had assumed that the noise realization 1( ), , ( )Pn t n t were statistically inde-

pendent, in this paper, this hypothesis is relaxed. To be more definite, we assume that the 

Gaussian components 1( ), , ( )Pg t g t are uncorrelated (independent), whereas the random 

variables 1 , , P  are arbitrary correlated. We thus denote by
1 , , 1( , , )

P Pf     their joint 

pdf. It is worth pointing out that the above model subsumes the special case that the rand-

om variables 1 , , P  are either statistically independent or fully correlated, i.e. 1 P   . 

Additionally, it permits modeling a much wider class of situations that may occur in prac-

tice. For instance, if one assumes that the P diversity observations are due to a temporal di-

versity, it is apparent that if the temporal distance between consecutive observations is co-

mparable with the average decorrelation time of the process ( )t , then the random variables 

1 , , P  can be assumed to be neither independent nor fully correlated. Such a model also 

turns out to be useful in clutter modeling in that if the diversity observations are due to the 

returns from neighboring cells, the corresponding texture components may be correlated 

(Barnard & Weiner, 1996). For sake of simplicity, consider the white noise case, i.e. ( )pn t pos-

sesses an impulsive covariance p  

 2
0 0( , ) 2 ( ) 2 ( )[ ]n pCov t E t t        N N , (7) 

where 02N is the power spectral density (PSD) of the Gaussian component of the noise pro-

cesses 1( ), , ( )Pg t g t . Notice that this last assumption does not imply any loss of generality 

should the noise possess a non-impulsive correlation Then, due to the closure of SIRP with 

respect to linear transformations, the classification problem could be reduced to the above 

form by simply preprocessing the observables through a linear whitening filter. In such a si-

tuation, the , ( )p is t represent the useful signals at the output of the cascade of the channel and 

of the whitening filter. Due to the linearity of such systems, they are still Gaussian pro-

cesses with known covariance functions. Finally, we highlight here that the assumption that 
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the useful signals and noise covariance functions (3) and (6) are independent of the index p 

has been made to simplify notation. 

3.2 Synthesis and design 

3.2.1 Optimum GD structure design 

Given the M-ary hypothesis test (1), the synthesis of the optimum GD structure in the sense 

of attaining the minimum probability of error EP requires evaluating the likelihood functio-

nals under any hypothesis and adopting a maximum likelihood decision-making rule. For-
mally, we have 

 ˆ ( ); max ( );[ ] [ ]k
k i

i it t


    x xH H H H  (8) 

with 1( ) ( ), , ( )[ ]T
Pt x t x tx  . The above functionals are usually evaluated through a limiting 

procedure. We evaluate the likelihood | ( )
Q i Qfx xH of the Q-dimensional random vector x  

1[ , , ]TQx x whose entries are the projections of the received signal along the first Q 

elements of suitable basis iB . Therefore, the likelihood functional corresponding to iH is 

 
| ( )

( ); lim
( )

[ ] i

AF

Q

QQ

Q

i
Q

AF

f
t

f
 

x

n

x
x

n

H
H , (9) 

where ( )
AF QQ

AFfn n is the likelihood corresponding to the reference sample with a priori infor-

mation a “no” signal is obtained in the additional reference noise forming at the AF output, 
i.e. no useful signal is observed at the P channel outputs. In order to evaluate the limit (9), 
we resort to a different basis for each hypothesis. We choose for the i-th hypothesis the Kar-

hunen-Loeve basis iB determined by the covariance function of the useful received signal 

under the hypothesis iH . Projecting the waveform received on the p-th diversity branch 

along the first N axes of the i-th basis yields the following N-dimensional vector: 

 , , ,   ,       1, ,i i i
N p N p p N p p P  x s g   (10) 

where ,
i
N ps and ,

i
N pg are the corresponding projections of the waveforms , ( )p is t and ( )pg t . Si-

nce iB is the Karhunen-Loeve basis for the random processes 1, ,( ), , ( )Pi is t s t , the entries of 

,
i
N ps are a sequence of uncorrelated complex Gaussian random variables with the variances 

, ,1

2 2, ,( )
i iNs s   which are the first N eigenvalues of the covariance function ( , )iCov t u , where-

as the entries of ,N pg are a sequence of uncorrelated Gaussian variables with variance 02N . 

Here we adopt the common approach of assuming that any complete orthonormal system is 

an orthonormal basis for white processes (Conte, 1995 and Poor, 1988). Upon defining the 

following NP-dimensional vector 

 ,1 ,2 ,, , ,[ ]iT iT iT
N N N N P
i Tx x x x  (11) 

the likelihood functional taking into consideration subsection 3.1 and (Tuzlukov, 2001) can 
be written in the following form 
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, ,

0 ,

2
,

2 4 2 2 4 2
1 1|

2
|

4 2 4 2
1

1
exp ( )

4 4
[ ; ]

1
exp ( )

4 4

| |

( )

( ) | |

( )

i
i ii

i

j jN

N j p
N

N

N

AF AF
AF

iP N
j p

i
p j s n p s n p

i
i i i

P

N
p n p n p

x
f d

y yf

f
f d

y y

   

 

 



 
 
     
 
 
 
 





ǎ
x

n

ǎ

y y
x

x

y y
n n

H

H

H , (12) 

where ,
i
j px is the j-th entry of the vector ,

i
N px , the integrals in (12) are over the set [0, ) ,P ǎ  

1 1[ , , ], [ , , ]P Py y  y  , and
1

P
ii

d dy


y . The convergence in measure of (12) for 

increasing N to the likelihood functional [ ( ); ]it x H is ensured by the Grenander theorem 

(Poor, 1988). In order to evaluate the above functional, we introduce the substitution 

 
,

4
  ,       1,2, ,

4
 

x


N
i

p

p

n p

y p P
z

 (13) 

where denotes the Euclidean norm. Applying the same limiting procedure as in (Buzzi, 

1999), we come up with the following asymptotical expression: 

 
4

2

,

,
1

[ ( ); ] lim , ;
4 

 
     
  


x

x x
N

N N

iP
pp i

i g p i
N

p n

t
N

H H , (14) 

where 

 
, ,

,

2 2 2
,2

, 4 2 2 4 2 4 2
1

, ; exp ln 1
4 ( 4 ) 4

| |
( ) i i

i

j j

j

N N

i
N s j p sp i

g p p i
j n p s n p n p

x
y

y y y

 

   

                
x H  (15) 

represents the ratio between the conditional likelihoods for iH and 0H based on the observati-

on of the signal received on the p-th channel output only. Equation (14) also requires evalua-
ting 

 

2

,
lim



xN

i
p

p
N

Z
N

, (16) 

that, following in (Buzzi, 1999), can be shown to converge in the mean square sense to the 

random variable 4 24 n p  for any of the Karhunen-Loeve basis , 1, ,i i M B . Due to the fact 

that the considered noise is white, this result also holds for the large signal-to-noise ratios 
even though, in this case, a large number of summands is to be considered in order to achie-

ve a given target estimation accuracy. Notice also that 4 24 n p  can be interpreted as a short-

term noise power spectral density (PSD), namely, the PSD that would be measured on suffi-
ciently short time intervals on the p-th channel output. Thus, the classification problem un-
der study admits the sufficient statistics 
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, ,

,

2 2 2
,

2
1 1

ln [ ( ); ] ln 1
| |

( )
i i

i

j j

j

i
P s j p s

i
pp j p s p

x
t

ZZ Z

 





 

  
     
     

x H . (17) 

The above equations demonstrate that the optimum GD structure for the problem given in 

(1) is completely canonical in that for any
1 , , 1( , , )

P Pf     and, for any noise model in the 

class of compound-Gaussian processes and for any correlation of the random variables 1 ,  

, P , the likelihood functional is one and the same. Equation (17) can be interpreted as a 

bank of P estimator-GDs (Van Trees, 2003) plus a bias term depending on the eigenvalues of 

the signal correlation under the hypothesis iH . The optimum test based on GASP can be wri-

tten in the following form: 

 2
, ,

1 0 0

1ˆ ˆ[2 ( ) ( ) ( ) ( )] ( )
p

T TP

i p p i p p AF p i
pp

x t s t x t x t dt n t dt b
Z





        
  

  H H   

 2
, ,

1 0 0

1
ˆ[2 ( ) ( ) ( ) ( )] ( )   ,        

p

T TP

p p k p p AF p k
pp

x t s t x t x t dt n t dt b  k i
Z





         
  

    
(18)

 

where ,
ˆ ( )p is t is the linear minimum mean square estimator of , ( )p is t embedded in white noi-

se with PSD pZ , namely, 

 , ,

0

ˆ ( ) ( , ) ( )
T

p i p i ps t h t u x u du  , (19) 

where , ( , )p ih t u is the solution to the Wiener-Hopf equation 

 , ,

0

( , ) ( , ) ( , ) ( , )
T

i p i p p i iCov t z h z dz Z h t Cov t    . (20)  

As to the bias terms ,p ib , they are given by 

 
,

2

,
1

ln 1       1, ,    and   1, ,
ijs

p i
pj

b i M p P
Z





 
    
 
 

   . (21) 

The block diagram of the corresponding GD is outlined in Fig.3. The received signals 1( ),x t  

, ( )Px t are fed to P estimators of the noise short-term PSD, which are subsequently used 

for synthesizing the bank of MP minimum mean square error filters , ( , ), 1, , ,p ih p P i       

1, , M to implement the test (18). The newly proposed GD structure is a generalization, 

to the case of multiple observations, of that proposed in (Buzzi, 1999), to which it reduces 

to 1P  . 
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Fig. 3. Flowchart of optimum GD in compound Gaussian noise. 

3.2.2 Suboptimal GD: Low energy coherence approach 

Practical implementation of the decision rule (18) requires an estimation of the short-term 

noise PSDs on each diversity branch and evaluation of the test statistic. This problem requi-

res a real-time design of MP estimator-GDs that are keyed to the estimated values of the 

short-term PSDs. This would require a formidable computational effort, which seems to pre-

vent any practical implementation of the new receiving structure. Accordingly, we develop 

an alternative suboptimal GD structure with lower complexity. Assume that the signals 

, ( ) : 1, , , 1, ,{ }p is t p P i M     possess a low degree of coherence, namely, that their ener-

gy content is spread over a large number of orthogonal directions. Since 

 
,

2

1
iji s

j





E , (22) 

The low degree of coherence assumption implies that the covariance functions ( , )iCov t  have 

a large number of nonzero eigenvalues and do not have any dominant eigenvalue. Under 

these circumstances, it is plausible to assume that the following low energy coherence condi-

tion is met: 

 
,

2
02         1, ,         1,2,

ijs i M j    N . (23) 

If this is the case, we can approximate the log-likelihood functional (17) with its first-order 

McLaurin series expansion with starting point
,

2 / 0
j is pZ  . Following the same steps as in 

(Buzzi, 1997), we obtain the following suboptimal within the limits GASP decision-making 

rule: 

 2
2

1 0 0 0

1ˆ ( ) ( ) ( , ) ( )
p

T T TP
i

i p p i AF
pp p

x t x Cov t dtd n t dt
ZZ
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1
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T T TP
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p p k AF
pp p

x t x Cov t dtd n t dt k i
ZZ

  



       
  

  
E

. 
(24)
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The new GD again requires estimating the short-term noise PSDs 1 , , PZ Z . Unlike the opti-

mum GD (18), in the suboptimum GD (24), the MP minimum mean square error filters 

, ( , ), 1, , , 1, ,p ih p P i M       whose impulse responses depend on 1 , , PZ Z through (20) 

are now replaced with M filters whose impulse response ( , )iCov t  is independent of the 

short-term noise PSDs realizations, which now affect the decision-making rule as mere pro-

portionality factors. The only difficulty for practical implementation of such a GD scheme is 

the short-term noise PSD estimation through (16). However, as already mentioned, such a 

drawback can be easily circumvented by retaining only a limited number of summands. 

3.3 Special cases 

3.3.1 Channels with flat-flat Rayleigh fading 

Let us consider the situation where the fading is slow and non-selective so that the signal 

observed on the p-th channel output under the hypothesis iH takes the form 

 ( ) exp{ } ( )p,i p p is t A j u t , (25) 

where exp{ }p pA j is a complex zero-mean Gaussian random variable. The signal covariance 

function takes a form: 

 ( , ) ( ) ( )i i i iCov t u t u  E , (26) 

where the assumption has been made that ( )iu t possesses unity norm. Notice that this equa-

tion represents the Mercer expansion of the covariance in a basis whose first unit vector is 

parallel to ( )iu t . It should be noted that since the Mercer expansion of the useful signal cova-

riance functions contains just one term, the low energy coherence condition is, in this case, 

equivalent to a low SNR condition. It thus follows that the low energy coherence GD can be 

now interpreted as a locally optimum GD, thus implying that for large SNRs, its performance 

is expectedly much poorer than that of the optimum GD. The corresponding eigenvalues are 

 
, ,1

2 2  ,      0  ,      1
i iks i s k    E . (27) 

Accordingly, the minimum mean square error filters to be substituted in (18) have the follo-

wing impulse responses: 

 , ( , ) ( ) ( )i
p i i i

i p

h t u t u
Z

 

E

E
, (28) 

where the bias term is simply , ln 1{ }i

p
p i Z

b   E
.We explicitly notice here that such a bias term 

turns out to depend on the estimated PSD pZ . Substituting into (18), we find the optimum 

test 

 

2

2
,

1 0 0

ˆ [2 ( ) ( ) ( ) ( )] ( )
( ) p

T TP
i

i p i p p AF p i
p i pp

x t u t x t x t dt n t dt b
Z Z




     

  
E

H H
E
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2

2
,

1 0 0

max [2 ( ) ( ) ( ) ( )] ( )
( ) p

T TP
k

p k p p AF p k
k i p k pp

x t u t x t x t dt n t dt b
Z Z



 
    

  
E

E
, (29) 

whereas its low energy coherence suboptimal approximation can be written in the following 

form: 

 

2

2
2

1 0 0

1ˆ [2 ( ) ( ) ( ) ( )] ( )
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T TP
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i p i p p AF
pp p

x t u t x t x t dt n t dt
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       
E
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2

2
2

1 0 0

1
max [2 ( ) ( ) ( ) ( )] ( )

p

T TP
i

p i p p AF
k i pp p

x t u t x t x t dt n t dt
ZZ



 

      
E

. 

(30)

 

It is worth pointing out that both GDs are akin to the “square-law combiner” (Tuzlukov, 

2001) GD that is well known to be the optimum GD in GASP (Tuzlukov, 2005 and Tuzlukov, 

2012) viewpoint for array signal detection in Rayleigh flat-flat fading channels and Gaussian 

noise. The relevant difference is due to the presence of short-term noise 

PSDs 1 , , PZ Z which weigh the contribution from each diversity branch. In the special case 

of equienergy signals, the bias terms in the above decision-making rules end up irrelevant, 

and the optimum GD test (29) reduces to a generalization of the usual incoherent GD, with 

the exception that the decision statistic depends on the short-term noise PSD realizations. 

3.3.2 Channels with slow frequency-selective Rayleigh fading 

Now, assume that the channel random impulse response can be written in the following 

form: 

 
1

1
, ,

0

( , ) ( ) exp{ } ( )
L

p p p k p k
k

t A j kW      





   , (31) 

where , ,exp{ }p k p kA j is a set of zero-mean, independent complex Gaussian random variabl-

es, and L is the number of paths. Equation (31) represents the well known taped delay line 

channel model, which is widely encountered in wireless mobile communications. It is readi-

ly shown that in such a case, the received useful signal, upon transmission of ( )iu t , has the 

following covariance function: 

 
1

2 1 1

0

( , )   ,       1, ,( ) ( )
L

i k i i
k

Cov t A u t kW u kW i M 


  


      (32) 

where 2
kA is the statistical expectation (assumed independent of p) of the random variables 

2
,p kA . These correlations admit L nonzero eigenvalues, and a procedure for evaluating 

their eigenvalues and eigenfunctions can be found in (Matthews, 1992). In the special case 

that the L paths are resolvable, i.e. 1T W  , the optimum GD (18) assumes the following 

simplified form: 
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(33)

 

where iE is the energy of the signal ( )iu t . The low energy coherence suboptimal GD (24) is 

instead written as 
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(34)

 

Optimality of (33) obviously holds for one-short detection, namely, neglecting the intersym-

bol interference induced by the channel band limitedness. 

3.4 Performance assessment 

In this section, we focus on the performance of the proposed GD structures. A general for-

mula to evaluate the probability of error EP of any receiver in the presence of spherically in-

variant disturbance takes the following form: 

 ( | ) ( )E EP P e f d  ǎǎ ǎ ǎ , (35) 

where ( | )EP e ǎ is the receiver probability of error in the presence of Gaussian noise with PSD 

on the p-th diversity branch 2
02 pvN . The problem to evaluate EP reduces to that of first analy-

zing the Gaussian case and then carrying out the integration (35). In order to give an insight 

into the GD performance, we consider a BFSK signaling scheme, i.e. the baseband equiva-

lents of the two transmitted waveforms are related as 

 2 1( ) ( )exp{ 2 }u t u t j ft  , (36) 

where 1f T  denotes the frequency shift. Even for this simple case study, working out an 

analytical expression for the probability of error of both the optimum GD and of its low ene-

rgy coherence approximation is usually unwieldy even for the case of Gaussian noise. With 
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regard to the optimum GD structure, upper and lower bounds for the performance may be 

established via Chernoff-bounding techniques. Generalizing to the case of multiple observa-

tions, the procedure in (Van Trees, 2003), the conditional probability of error given 1 , , P   

can be bounded as 

 
exp 2 (0.5| ) exp 2 (0.5| )

( | )
2 1 0.25 (0.5| ) 2 1 0.25 (0.5| )

{ } { }

( ) ( )EP e
 

 
 

 

ǎ ǎǎ
ǎ ǎ 

, (37) 

where ( | )  ǎ is the following conditional semi-invariant moment generating the function 
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(38)

 

with 2
1{ }

js j 
 being the set of common eigenvalues. Substituting this relationship into (37) 

and averaging with respect to 1 , , P  yields the unconditional bounds on the probability 

of error for the optimum GD (18). 

3.5 Simulation results 

To proceed further in the GD performance there is a need to assign both the marginal pdf, as 
well as the channel spectral characteristics. We assume hereafter the generalized Laplace no-
ise, i.e. the marginal pdf of the p-th noise texture component takes the following form: 

 2 1 22
( ) exp   ,        0

( )
{ }

p
f x x x x





 


  


 (39) 

where is a shape parameter, ruling the distribution behavior. In particular, the limiting ca-

se  implies ( ) ( 1)
p

f x x   and, eventually, Gaussian noise, where increasingly lower 

values of account for increasingly spikier noise distribution. Regarding the channel, we co-

nsider the case of the frequency-selective, slowly fading channel, i.e. the channel random 

impulse response is expressed by (31), implying that the useful signal correlation is that giv-

en in (32). For simplicity, we also assume that the paths are resolvable. In the following plots 

the EP is evaluated a) through a semianalytic procedure, i.e. by numerically averaging the 

Chernoff bound (37) with respect to the realizations of the 1 , , P  , and b) by resorting to a 

Monte Carlo counting procedure. In this later case, the noise samples have been generated 

by multiplying standard, i.e. with zero-mean and unit-variance, complex Gaussian random 

variates times the random realizations of 1 , , P  . 

The Chernoff bound for the optimum GD versus the averaged received radio-frequency ene-

rgy contrast that is defined as 2 4 0.5
0 1

4( )
j

L
s nj

P   


  at 2P  and for two values of the noise 

shape parameter is shown in Fig.4. The noise texture components have been assumed to be 

independent. Inspecting the curves, we see that the Chernoff bound provides a very reliable 
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estimate of the actual EP , as the upper and lower bound very tightly follow each other. As 

expected, the results demonstrate that in the low EP region, the spikier the noise, i.e. the low-

er , the worse the GD performance. Conversely, the opposite behavior is observed for 

small values of 0 . This fact might appear, at a first look, surprising. It may be analytically 

justified in light of the local validity of Jensen’s inequality (Van Trees, 2003) and is basically 

the same phenomenon that makes digital modulation schemes operating in Gaussian noise 

to achieve, for low values of 0 , superior performance in Rayleigh flat-flat fading channels 

than in no-fading channels. Notice, this phenomenon is in accordance with that observed in 

(Conte 1995). In order to validate the Chernoff bound, we also show, on the same plots, so-

me points obtained by Monte Carlo simulations. These points obviously lie between the cor-

responding upper and lower probability of error bounds. Additionally, we compare the GD 

Chernoff bound with that for the conventional optimum receiver (Buzzi et al., 2001). A sup-

eriority of GD structure is evident. 

 
 
 

 
 
 

 
 

Fig. 4. Chernoff bounds for EP of the optimum GD. 

λ = 5 

λ = 0.1 
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In Fig. 5, the effect of the channel diversity order is investigated. Indeed, the optimum GD 

performance versus 0 is represented for several values of P and with 1  . The 1 , , PZ Z  

have been assumed exponentially correlated with correlation coefficient 0.2  . A proce-

dure for generating these exponentially correlated random variables for integer and semi-

integer values of is reported in (Lombardo et al., 1999). As expected, as P increases, the GD 

performance ameliorates, thus confirming that diversity represents a suitable means to 

restore performance in severely hostile scenarios. Also, we compare the GD performance 

with that for the conventional optimum receiver (Buzzi et al., 2001) and we see that the GD 

keeps superiority in this case, too. 

 
 
 
 
 
 

 
 

 
 

Fig. 5. EP at several values of P. 
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The optimum GD performance versus 0  for the generalized Laplace noise at 1, 4P   and 

for several values of the correlation coefficient  is demonstrated in Fig. 6. It is seen that the 

probability of error improves for vanishingly small  . For small  , the GD takes much ad-

vantage of the diversity observations. For high values of  , the realizations 1 , , PZ Z are ve-

ry similar and much less advantage can be gained through the adoption of a diversity stra-

tegy. Such GD performance improvement is akin to that observed in signal diversity detecti-

on in the presence of flat-flat fading and Gaussian noise. We see that the GD outperforms 

the conventional optimum receiver (Buzzi et al., 2001) by the probability of error.  

In Fig. 7, we compare the optimum GD performance versus that of the low energy coheren-

ce GD. We assumed 0.2  and 4P  . It is seen that the performance loss incurred by the 

low energy coherence GD with respect to the optimum GD is kept within a fraction of 1 dB 

at 410 .EP  Simulation results that are not presented in the paper show that the crucial fact-

or ruling the GD performance is the noise shape parameter, whereas the particular noise dis-

tribution has a rather limited effect on the probability of error. 

 
 

 
 

Fig. 6. EP at several values of the correlation coefficient. 
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Fig. 7. EP for the optimum and low energy coherence GDs. 

3.6 Discussion 

We have considered the problem of diversity detection of one out of M signals 

transmitted over a fading dispersive channel in the presence of non-Gaussian noise. We 
have modeled the additive noise on each channel diversity branch through a spherically 
invariant random process, and the optimum GD has been shown to be independent of the 

actual joint pdf of the noise texture components present on the channel diversity outputs. 
The optimum GD is similar to the optimum GD for Gaussian noise, where the only 

difference is that the noise PSD 02N is substituted with a perfect estimate of the short-term 

PSD realizations of the impulsive additive noise. We also derived a suboptimum GD 
matched with GASP based on the low energy coherence hypothesis. At the performance 
analysis stage, we focused on frequency-selective slowly fading channels and on a BFSK 
signaling scheme and evaluated the GD performance through both a semianalytic 

bounding technique and computer simulations. Numerical results have shown that the 
GD performance is affected by the average received energy contrast, by the channel 
diversity order, and by the noise shape parameter, whereas it is only marginally affected 

by the actual noise distribution. Additionally, it is seen that in impulsive environments, 
diversity represents a suitable strategy to improve GD performance. 
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4. MIMO radar systems applied to wireless communications based on GASP 

Multiple-input multiple-output (MIMO) wireless communication systems have received a 
great attention owing to the following viewpoints: a) MIMO wireless communication sys-
tems have been deemed as efficient spatial multiplexers and b) MIMO wireless communica-
tion systems have been deemed as a suitable strategy to ensure high-rate communications 
on wireless channels (Foschini, 1996). Space-time coding has been largely investigated as a 
viable means to achieve spatial diversity, and thus to contrast the effect of fading (Tarokh, 
et al., 1998 and Hochwald, et al., 2000). We apply GASP to the design and implementation 
of MIMO wireless communication systems used space-time coding technique. Theoretical 
principles of MIMO wireless communication systems were discussed and the potential 
advantages of MIMO wireless communication systems are thoroughly considered in 
(Fishler, et al., 2006). 

MIMO architecture is able to provide independent diversity paths, thus yielding remarkable 

performance improvements over conventional wireless communication systems in the med-

ium-high range of detection probability. As was shown in (Fishler, et al., 2006), the MIMO 

mode can be conceived as a means of bootstrapping to obtain greater coherent gain. Some 

practical issues concerning implementation (equipment specifications, dynamic range, pha-

se noise, system stability, isolation and spurs) of MIMO wireless communication systems 

are discussed in (Skolnik, 2008). 

MIMO wireless communication systems can be represented by m transmit antennas, spaced 

several wavelengths apart, and n receive antennas, not necessarily collocated, and possibly 

forwarding, through a wired link, the received echoes to a fusion center, whose task is to 

make the final decision about the signal in the input waveform. If the spacing between the 

transmit antennas is large enough and so is the spacing between the receive antennas, a rich 

scattering environment is generated, and each receive antenna processes l statistically indep-

endent copies of incoming signal. The concept of rich scattering environment is borrowed 

from communication theory, and models a situation where the MIMO architecture yields 

interchannel interference, eventually resulting into a number of independent random chan-

nels. Unlike a conventional wireless communication array system, which attempts to maxi-

mize the coherent processing, MIMO wireless communication system resorts to the fading 

diversity in order to improve the detection performance. Indeed, it is well known that, in co-

nventional wireless communication array system, multiple access interference (MAI) of the 

order of 10 dB may arise. This effect leads to severe degradations of the detection performa-

nce, due to the high signal correlation at the array elements. This drawback might be partial-

ly circumvented under the use of MIMO wireless communication system, which exploits the 

channel diversity and fading. Otherwise, uncorrelated signals at the array elements are avai-

lable. Based on mentioned above statements, it was shown in (Fishler, et al., 2006) that in the 

case of additive white Gaussian noise (AWGN), transmitting orthogonal waveforms result 

into increasingly constrained fluctuation of interference. 

Our approach is based on implementation of GASP and employment of some key results 

from communication theory, and in particular, the well-known concept that, upon suitably 

space-time encoding the transmitted waveforms, a maximum diversity order given by m n  

can be achieved. Importing these results in a wireless communication system scenario poses 
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a number of problems, which forms the object of the present study, and in particular: a) the 

issue of waveform design, which exploits the available knowledge as to space-time codes; b) 

the issue of designing a suitable detection structure based on GASP, also in the light of the 

fact that the disturbance can no longer be considered as AWGN, due to the presence of inte-

rferences; and c) at the performance assessment level, the issue of evaluating the maximum 

diversity order that can be achieved and the space-time coding ensuring it under different 

types of interferences. The first and third tasks are merged in the unified problem of determ-

ining the space-time coding achieving maximum diversity order in signal detection, for con-

strained BER, and for given interference covariance. As to the second task, the decision-ma-

king criterion exploiting by GASP is employed. 

Unlike (Fishler, et al., 2006), no assumption is made on either the signal model or the distur-

bance covariance. Thus, a family of detection structures is derived, depending upon the nu-

mber of transmitting and receiving antennas and the disturbance covariance. A side result, 

which paves the way to further investigations on the feasibility of fully adaptive MIMO wi-

reless communication systems is that the decision statistic, under the null hypothesis of no 

signal, is an ancillary statistic, in the sense that it depends on the actual interference covari-

ance matrix, but its probability density function (pdf) is functionally independent of such a 

matrix. Therefore, threshold setting is feasible with no prior knowledge as to the interferen-

ce power spectrum. As to the detection performance, a general integral form of the probabi-

lity of detection DP  is provided, holding independent of the signal fluctuation model. The 

formula is not analytically manageable, nor does it appear to admit general approximate ex-

pressions, that allow us to give an insightful look in the wireless communication system be-

havior. We thus restrict our atention to the case of Rayleigh-distributed attenuation, and use 

discussed in (De Maio & Lops, 2007) an information-theoretic approach to code constructi-

on, which, surprisingly enough, leads to the same solution found through the optimization 

of the Chernoff bound. 

4.1 System model 

We consider MIMO radar system composed of m fixed transmitters and n fixed receivers 

and assume that the antennas as the two ends of the wireless communication system are suf-

ficiently spaced such that a possible incoming message and/or interference provides uncorr-

elated reflection coefficients between each transmit/receive pair of sensors. Denote by ( )is t  

the baseband equivalent of the coherent pulse train transmitted by the i-th antenna, for exa-

mple, 

 ,
1

( ) [ ( 1) ],        1, ,
N

i i j p
j

s t a p t j T i m


      (40) 

where ( )p t is the signature of each transmitted pulse, which we assume, without loss of ge-

nerality, with unit energy and duration pǕ ; pT is the pulse repetition time; 

 ,1 ,[ , , ]Ti i i Na aa   (41) 
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is an N-dimensional column vector whose entries are complex numbers which modulate 

both in amplitude and in phase the N pulses of the train, where ( )T denotes transpose. In the 

sequel, we refer to ia as the code word of the i-th antenna. The baseband equivalent of the si-

gnal received by the i-th sensor, from a target with two-way time delay Ǖ , can be presented 

in the following form 

 , ,
1 1

( ) [ ( 1) ] ( )  ,        1, ,
m N

i i l l j p i
l j

x t α a p t Ǖ j T n t i n
 

        , (42) 

where , ,   1, ,i lα i n  and  1, ,l m  , are complex numbers accounting for both the target 

backscattering and the channel propagation effects between the l-th transmitter and the i-th 

receiver; ( ) ,  1, ,in t i n  , are zero-mean, spatially uncorrelated, complex Gaussian random 

processes accounting for both the external and the internal disturbance. For simplicity, we 

assume a zero-Doppler target, but all the derivations can be easily extended to account for a 

possible known Doppler shift. We explicitly point out that the validity of the above model 

requires the narrowband assumption 

 max max 1m nd d

c B


  (43) 

where B is the bandwidth of the transmitted pulse, max
md and max

nd denote the maximum spa-

cing between two sensors at the transmitter and the receiver end, respectively. The signal 

( )ix t , at each of the receive elements, is matched filtered to the pulse ( )p t by preliminary fil-

ter of the GD and the filter output is sampled at the time instants ( 1) pǕ k T  , 1, ,k N  . 

Thus, denote by ( )ix k the k-th sample, i.e., 

 , ,
1

( ) ( )
m

i i l l k i
l

x k α a n k


  , (44) 

where ( )in k is the filtered noise sample. Define the N-dimensional column vectors 

 (1), , ( )[ ]T
i i ix x Nx   (45) 

and rewrite them as 

  ,     1
ii i PF i , ,n  x Aα Ǐ   (46) 

where 

 (1), , ( )[ ]
i i i

T
PF PF PFξ ξ NǏ  , (47) 

 ,1 ,, ,[ ]T
i i i mα αα  , (48) 

and the ( )N m -dimensional matrix A, defined in the following form 
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 1 , ,[ ]mA a a  (49) 

has the code words as columns. This last matrix is referred to as the code matrix. We assume 

that A is full rank matrix. It is worth underlining that the model given by (46) applies also to 

the case that space-time coding is performed according to (De Maio & Lops, 2007), namely, 

by dividing a single pulse in N sub-pulses. The code matrix A thus defines m different code 

words of length N, which can be received by a single receive antenna, thus defining the mul-

tiple-input single-output (MISO) structure, as well as by a set of n receive antennas, as in the 

present study. 

4.2 GD design for MIMO radar systems applied to wireless communications  

The problem of detecting a target return signal with a MIMO radar system can be formulat-

ed in terms of the following binary hypothesis test 

 
0

1

    ,                  1, ,

      ,       1, ,
i

i

i PF

i i PF

i n

i n

  
    

x Ǐ
x Aα Ǐ




H

H
 (50) 

where ,   1, ,
iPF i nǏ  , are statistically independent and identically distributed (i.i.d.) zero-

mean complex Gaussian vectors with covariance matrix 

 [ ] [ ]
i ii iPF AFPF AFE E  Ǐ Ǐ Ǐ Ǐ M . (51) 

Here [ ]E  denotes the statistical expectation and ( ) denotes conjugate transpose. The covari-

ance matrix (51) is assumed positive definite and known. According to the Neyman-Pearson 

criterion, the optimum solution to the hypotheses testing problem (50) must be the likeliho-

od ratio test. However, for the case at hand, it cannot be implemented since total ignorance 

of the parameters iα is assumed. One possible way to circumvent this drawback is to resort 

to the generalized likelihood ratio test (GLRT) (Van Trees, 2003), which is tantamount to re-

placing the unknown parameters with their maximum likelihood (ML) estimates under each 

hypothesis. Applying GASP to the GLRT, we obtain the following decision rule 

 1

1

1

0

1 1 1
, ,

0

max , , | , , , ,

, , | ,

( )

( )
n

n

n n

g
AFAF

f

K
f




α α
x M α α

Ǐ Ǐ M

x


 


H

H

H

H
, (52) 

where 1 11( , , | , , , , )n nf x M α αx  H is the probability density function (pdf) of the data 

under the hypothesis 1H and 
1 0( , , | , )

nAFAFf Ǐ Ǐ M H  is pdf of the data under the 

hypothesis 0H , respectively, gK is a suitable modification of the original threshold. Previous 

assumptions imply that the aforementioned pdfs can be written in the following form: 

 
1

1
0

1

1
, , | , exp

det ( )
( )

n ii

n

AF AFNn n
i

AF AFf
π

 



 
  

 
Ǐ Ǐ M Ǐ M Ǐ

M
 H  (53) 

at the hypothesis 0H and 
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 1
1 1

1
1

1
( , , | , , , , ) exp ( ) ( )

det ( )

n

n n i i i iNn n
i

f
π

 



 
    

 
x x M α α x Aα M x Aα

M
 H  (54) 

under the hypothesis 1H , where det( ) denotes the determinant of a square matrix. Substitut-

ing (16) and (17) in (15), we can recast the GLRT based on GASP, after some mathematical 

transformations, in the following form 

 1

0

1 1

1 1

min( ) ( )
ii

i

n n

AF i i i i g
i i

AF K   

 
   

  α
Ǐ M Ǐ x Aα M x Aα H

H

. (55) 

In order to solve the n minimization problems in (55) we have to distinguish between two 

different cases. 

Case 1: N m . In this case, the quadratic forms in (55) achieve the minimum at 

 1 1 1ˆ ( )  ,     1, ,i i i n     α A M A A M x   (56) 

and, as a consequence, the GLRT based on GASP at the main condition of GD functioning, 

i.e., equality in whole range of parameters between the transmitted information signal and 

refe-rence signal (signal model) in the receiver part, becomes 

 1

0

1 1 1 1 1 1 1 1

1 1 1

2 ( )
ii

n n n

i i i i AF g
i i i

AF K             

  
  

  x M A A M A A M x x M AA M x Ǐ M M Ǐ H

H

. (57) 

Case 2: N m . In this case, the minimum of the quadratic forms in (55) is zero, since each li-

near system 

 ˆ  ,     1, ,i i i n Aα x   (58) 

is determined. As a consequence the GLRT based on GASP at the main condition of GD 

functioning, i.e., equality in whole range of parameters between the transmitted inform-

ation signal and reference signal (signal model) in the receiver part, becomes 

 1

0

1 1 1 1

1 1
ii

n n

AF i i g
i i

AF K      

 
 

 Ǐ M M Ǐ x M AA M x H

H

. (59) 

4.3 Performance analysis 

In order to define possible design criteria for the space-time coding, it is useful to establish a 

direct relationship between the probability of detection DP  and the transmitted waveform, 

which is thus the main goal of the present section. Under the hypothesis 0H , the left hand si-

de of the GLRT based on GASP can be written in the following form 

 1 1

1 1
i iii

n n

AF PF
i i

PFAF
   

 
 Ǐ M Ǐ Ǐ M Ǐ  (60) 

www.intechopen.com



Generalized Approach to Signal Processing in  
Wireless Communications: The Main Aspects and some Examples 

 

329 

and, represents the GD background noise. It follows from (Tuzlukov 2005) that the decision 
statistic is defined by the modified second-order Bessel function of an imaginary argument 
or, as it is also called, McDonald’s function with m n degrees of freedom. Thus, the decisi-

on statistic is independent of dimensionality N of the column vector given by (41) whose en-
tries are complex numbers, which modulate both in amplitude and in phase the N pulses of 

the train. Consequently, the probability of false alarm FAP can be evaluated in the following 

form  

 
0

( )
exp( )

!

kn
g

FA g
k

K
P K

k
   . (61) 

This last expression allows us to note the following observations: a) the decision statistic is 
ancillary, in the sense that it depends on the actual interference covariance matrix, but its 
pdf is functionally independent of such a matrix; and b) the threshold setting is feasible with 
no prior knowledge as to the interference power spectrum, namely, the GLRT based on 
GASP ensures the constant false alarm (CFAR) property. 

Under the hypothesis 1H , given iα ,the vectors  , 1, ,i i nx  , are statistically independent co-

mplex Gaussian vectors with the mean value 1
i

M Aα and identity covariance matrix. It foll-

ows that, given iα , the GLRT based on GASP is no the central distributed modified second-

order Bessel function of an imaginary argument, with the no centrality parameter 

1

1

n

i i
i

  


α A M Aα and degrees of freedom m n . Consequently, the conditional probability of 

detection DP based on statements in (Van Trees, 2003) and discussion in (Tuzlukov, 2005) can 

be represented in the following form 

  2 , 2D m n gP q KQ , (62) 

where 

 1

1

n

i i
i

q   


α A M Aα  (63) 

and ( , )k  Q denotes the generalized Marcum Q function of order k. An alternative expression 

for the conditional probability of detection DP , in terms of an infinite series, can be also writ-

ten in the following form: 

 
0

exp( )
1 ( , )

!

k

D inc g
k

q q
P K k m n

k





        , (64) 

where 

 1

0

1
( , ) exp( )

( )

w
r

inc p r z z dz
r

  
   (65) 
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is the incomplete Gamma function. Finally, the unconditional probability of detection DP can 

be obtained averaging the last expression over the pdf of iα , 1, ,i n  . 

4.4 Code design by information-theoretic approach 

In principle, the basic criterion for code design should be the maximization of the probabili-

ty of detection DP given by (62) over the set of admissible code matrices, i.e., 

   1

1

arg  max 2 , 2 arg  max 2 , 2
n

m n g m n i i g
i

E q K E K  
 



  
           


A A

α A M AαQ Q , (66) 

where arg  max ( )A denotes the value of A, which maximizes the argument and the 

statistical average is over iα , 1, ,i n  . Unfortunately, the above maximization problem 

does not appear to admit a closed-form solution, valid independent of the fading law, 

whereby we prefer here to resort to the information-theoretic criterion supposed in (De 

Maio & Lops, 2007). Another way is based on the optimization of the Chernoff bound over 

the code matrix A. As was shown in (De Maio & Lops, 2007), these ways lead to the same 

solution, which subsumes some well-known space-time coding, such as Alamouti code and, 

more generally, the class of space-time coding from orthogonal design (Alamouti, 1998) and 

(Tarokh et al., 1999), which have been shown to be optimum in the framework of 

communication theory. In subsequent derivations, we assume that iα , 1, ,i n  , are 

independent and identically distributed (i.i.d.) zero-mean complex Gaussian vectors with 

scalar covariance matrix, i.e., 

 2[ ]i i aE ǔ α α I , (67) 

where 2
aǔ is a real factor accounting for the backscattered useful power, and I denotes the id-

entity matrix. 

Roughly speaking, the GLRT strategy overcomes the prior uncertainty as to the target fluc-

tuations by ML estimating the complex target amplitude, and plugging the estimated value 

into the conditional likelihood in place of the true value. Also, it is well known that, under 

general consistency conditions, the GLRT converges towards the said conditional likelihood, 

thus achieving a performance closer and closer to the perfect measurement bound, i.e., the 

performance of an optimum test operating in the presence of known target parameters. Di-

versity, on the other hand, can be interpreted as a means to transform an amplitude fluctua-

tion in an increasingly constrained one. It is well known, for example that, upon suitable re-

ceiver design, exponentially distributed square target amplitude may be transformed into a 

central chi-square fluctuation with d degrees of freedom through a diversity of order d in 

any domain. More generally, a central chi-square random variable with 2m degrees of free-

dom may be transformed into a central chi-square with 2m d degrees of freedom. In this 

framework, a reasonable design criterion for the space-time coding is the maximization of 

the mutual information between the signals received from the various diversity branches 

and the fading amplitudes experienced thereupon. Thus, denoting by ( , )I α X the mutual 

information (Cover & Thomas, 1991) between the random matrices 
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 1[ , , ]nα α α  (68) 

and 

 1[ , , ]k  X x x Aα Ξ  (69) 

the quantity to be maximized is 

 ( , ) ( ) ( | )I H H α X X X α , (70) 

where 

 1[ , , ]nΞ Ǐ Ǐ , (71) 

( )H X denotes the entropy of the random matrixΞ , and ( | )H X α is the conditional entropy of 

X given α (Cover & Thomas, 1991). Exploiting the statistical independence betweenα and X, 

we can write (70) in the following form 

 ( , ) ( ) ( | ) ( ) ( )I H H H H   α X X X α X Ξ , (72) 

where ( )H Ξ is the entropy of the random matrixΞ . Assuming that the columns of α are 

i.i.d. zero-mean complex Gaussian vectors with covariance matrix 2
aǔ I , we can 

write ( )H X and ( )H Ξ , respectively, in the following form: 

 2( ) lg ( ) det( )[ ]N
aH x πe ǔ  X M AA  (73) 

and 

 ( ) lg ( ) det( )[ ]NH x πeΞ M . (74) 

As design criterion we adopt the maximization of the minimum probability of detection DP , 

which can be determined as the lower Chernoff bound, under an equality constraint for the 

average signal-to-clutter power ratio (SCR) given by 

 
2 2

1 1

1 1

1
tr( )

n m
a a

i i j
i j

ǔ ǔ
SCR E ǌ

Nmn Nm Nm
    

 

 
   

 
 α A M Aα A M A , (75) 

where tr( ) denotes the trace of a square matrix and jǌ are the elements or corresponding or-

dered (in decreasing order) eigenvalues of the diagonal matrixΛ defined by the eigenvalue 

decomposition V ΛV of the matrix 1 1   AA MM , where V is an N N unitary matrix. The 

considered design criterion relies on the maximization of the mutual information (70) under 
equality constraint (75) for SCR. This is tantamount to solving the following constrained mi-

nimization problem since ( )H Ξ does not exhibit any functional dependence on A. 

 
, ,1

2

2
11

1
min      and     

1 ( 1)m

n
m m

a
jǌ ǌ

jj j a

ǔ ǌ Ǎ
Nmγ ǌ ǔ 

 
  

   



 (76) 
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which, taking the logarithm, is equivalent 

 
, ,1

2
2

1 1

max lg 1 ( 1)       and       [ ]
m

m m

a j jǌ ǌ
j j a

ǍmNγ ǔ ǌ ǌ
ǔ 

   


, (77) 

where γ  is the variable defining the upper Chernoff bound (Benedetto & Biglieri, 1999).  

Since 2lg[1 ( 1)]aγ ǔ y  is a concave function of y, we can apply Jensen’s inequality (Cover & 

Thomas, 1991) to obtain 

 2 2

1 1

1
lg 1 ( 1)  lg 1 1[ ]

m m

a j j a
j j

γ ǔ ǌ m γ ǌ ǔ
m 

  
      

    
  . (78) 

Moreover, forcing in the right hand side of (78), the constraint of (77), we obtain 

 2

1

lg 1 ( 1) lg 1 ( 1)[ ] [ ]
m

a j
j

γ ǔ ǌ m γ ǍN


     . (79) 

The equality in (79) is achieved if 

 
2

  ,      1, ,k
a

ǍNǌ k m
ǔ

    (80) 

implying that an optimum code must comply with the condition 

 

1 1
2

1 1

2

 2 ( )       Case 1

                                                   Case 2 .

[ ]
a

a

ǍN

ǔ
ǍN

ǔ

    

  

 
 



A A M A A AA

M AA M

I

 (81) 

In particular, if the additive disturbance is white, i.e., 2
nǔM I , the above equation reduces to 

 

4
1 1

2

4

2

4
 ( )            Case 1

 
4

                                Case 2 .

n

a

n

a

ǔ ǍN

ǔ

ǔ ǍN

ǔ

  





 




A M A

AA

I

 (82) 

The last equation subsumes, as a relevant case, the set of orthogonal space-time codes. Inde-

ed, assuming N n m  , the condition (82) yields, for the optimum code matrix, 

 
4

2

4
 n

a

ǔ ǍN

ǔ
 AA I , (83) 

i.e., the code matrix A should be proportional to any unitary N N matrix. Thus, any ortho-

normal basis of N
F can be exploited to construct an optimum code under the Case 2 and 
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white Gaussian noise. If, instead, we restrict our attention to code matrices built upon Galois 
Fields (GF), there might be limitations to the existing number of optimal codes. Deffering to 
(Tarokh, 1999) and to the Urwitz-Radon condition exploited therein, we just remind here 
that, under the constraint of binary codes, unitary matrices exist only for limited values of N: 

for 2 2 coding, we find the normalized Alamouti code (Alamouti, 1998), which is an ortho-

normal basis, with elements in GF (2), for 2
F . 

Make some comments. First notice, that under the white Gaussian noise, both performance 

measures considered above are invariant under unitary transformations of the code matrix, 

while at the correlated clutter they are invariant with respect to right multiplication of A by 

a unitary matrix. Probably, these degrees of freedom might be exploited for further optimi-

zation in different radar functions. Moreover, (70) represents the optimum solution for the 

case that no constraint is forced upon the code alphabet; indeed, the code matrices turn out 

in general to be built upon the completely complex field. If, instead, the code alphabet is co-

nstrained to be finite, then the optimum solution (70) may be no longer achievable for arbit-

rary clutter covariance. In fact, while for the special case of white clutter and binary alphabet 

the results of (Tarokh, 1999) may be directly applied for given values of m and n, for arbitra-

ry clutter covariance and (or) transmit/receive antennas number, a code matrix constructed 

on GF (q) and fulfilling the conditions (70) is no longer ensured to exist. In these situations, 

which however form the object of current investigations, a brute-force approach could con-

sist of selecting the optimum code through an exhaustive search aimed at solving (66), 

which would obviously entail a computational burden ( )mNO q  floating point operations. 

Herein we use the usual Landau notation. ( )O n .; hence, an algorithm is )(nO if its implemen-

tation requires a number of floating point operations proportional to n (Golub & Van Loan, 

1996). Fortunately, the exhaustive search has to be performed off line. The drawback is that 

the code matrix would inevitably depend on the target fluctuation law; moreover, if one wo-

uld account for possible nonstationarities of the received clutter, a computationally accept-

able code updating procedure should be envisaged so, as to optimally track the channel and 

clutter variations. 

4.5 Simulation  

The present section is aimed at illustrating the validity of the proposed encoding and detec-
tion schemes under diverse scenarios. In particular, we first assume uncorrelated disturban-
ce, whereby orthogonal space-time codes are optimal. In this scenario, simulations have be-
en run, and the results have been compared to the Chernoff bounds of the conventional 
GLRT receiver discussed in (De Maio & Lops, 2007) and to the GD performance achievable 
through a single-input single-output (SISO) radar system. Next, the effect of the disturbance 
correlation is considered, and the impact of an optimal code choice is studied under differ-
ent values of transmit/receiver antenna numbers. In all cases, the behavior of the mutual in-
formation between the observations and the target replicas can be also represented, showing 
that such a measure is itself a useful tool for system design and assessment, but this analysis 
is outside of a scope of the present chapter. 

Figure 8 represents the white Gaussian disturbance and assesses the performance of the 

GLRT GD. To elicit the advantage of waveform optimization, we consider both the optimum 
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coded wireless communication system and the uncoded one, corresponding to pulses with 

equal amplitudes and phases. The probability of detection
D
P is plotted versus SCR assum-

ing 410
FA
P and 2 nmN . This simulation setup implies that the Alamouti code is op-

timum in the sense specified by (82). For comparison purposes, we also plot the performan-

ce of the uncoded SISO GD. We presented the performance of the conventional GLRT to un-

derline a superiority of GD employment. 

 

Fig. 8. 
D
P versus SCR; white Gaussian disturbance and disturbance with exponentially sha-

ped covariance matrix ( 95.0ρ ); 2;10 4  
nmNP

FA
. 

The curves highlight that the optimum coded wireless communication system employing 

the GD and exploiting the Alamouti code, achieves a significant performance gain with res-

pect to both the uncoded and the SISO radar systems. Precisely, for 9.0
D
P , the performan-

ce gain that can be read as the horizontal displacement of the curves corresponding to the 

analyzed wireless communication systems, is about 1 dB with reference to the uncoded 

GLRT GD wireless communication system and 5 dB with respect to the SISO GD. Superiori-

ty of employment GD with respect to the conventional GLRT wireless communication syst-

ems achieves 6 dB for the optimum coded wireless communication system, 8 dB for the un-

coded wireless communication systems, and 12 dB for SISO wireless communication syst-

ems. It is worth pointing out that the uncoded wireless communication system performs sli-

ghtly better the coded one for low detection probabilities. This is a general trend in detection 

theory, which predicts that less and less constrained fluctuations are detrimental in the high 

SCR region, while being beneficial in the low SCR region. On the other hand, the code opti-

mization results in a more constrained fluctuation, which, for low SCRs, leads to slight per-

formance degradation as compared with uncoded systems. The effect of disturbance correla-

tion is elicited in Fig.8 too, where the analysis is produced assuming an overall disturbance 

with exponentially shaped covariance matrix, whose one-lag correlation coefficient ρ is set 

to 0.95. In this case, the Alamouti code is no longer optimum. The plots show that the perfo-

rmance gain of the optimum coded GLRT GD wireless communication system over both the 

uncoded and the SISO GD detector is almost equal to that resulting when the disturbance is 
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white. On the other hand, setting 2 nmN  in (81), shows that, under correlated distur-

bance, the optimum code matrix is proportional to M: namely, an optimal code tends to res-

tore the “white disturbance condition.” This also explains why the conventional Alamouti 

code follows rather closely the performance of the uncoded GLRT GD wireless communica-

tion system. 

The effect of number n of receive antennas on the performance is analyzed in Fig.9, where 

D
P is plotted versus SCR for 8 mN , exponentially shaped clutter covariance matrix with 

95.0ρ , and several values of n. The curves highlight that the higher n, namely the higher 

the diversity order, the better the performance. Specifically, the performance gap between 

the case 8n and the case of a MISO GLRT GD radar system (i.e., 1n ) is about 2.5 dB, 

while, in the case of the conventional GLRT radar systems, is about 7 dB for 9.0
D
P . A gre-

at superiority between the radar systems employing GLRT GD and conventional GLRT is 

evident and estimated at the level of 6 dB at 8n and 10 dB in the case of a MISO (i.e., 1n ) 

for 9.0
D
P . Notice that this performance trend is also in accordance with the expression of 

the mutual information that exhibits a linear, monotonically increasing, dependence on n. 

The same qualitative, but not quantitative, performance can be presented under study of the 

number m of available transmit antennas on the GLRT GD wireless communication system 

performance. 
 

 

Fig. 9. 
D
P of optimum coded system versus SCR; disturbance with exponentially shaped 

covariance matrix ( 95.0ρ ); and several values of m; 8;10 4  
mNP

FA
. 

4.6 Discussion  

We have addressed the synthesis and the analysis of MIMO radar systems employing the 

GD and exploiting space-time coding. To this end, after a short description of the MIMO ra-

dar signal model applied to wireless communications, we have devised the GLRT GD under 

the assumption of the additive white Gaussian disturbance. Remarkably, the decision statis-

tic is ancillary and, consequently, CFAR property is ensured, namely, the detection thresh-
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old can be set independent of the disturbance spectral properties. We have also assessed the 

performance of the GLRT GD providing closed-form expressions for both
D
P and

FA
P . Lack-

ing a manageable expression for
D
P under arbitrary target fluctuation models, we restricted 

our attention to the case of Rayleigh distributed amplitude fluctuation. The performance as-

sessment that has been undertaken under several instances of number of receive and trans-

mit antennas, and of clutter covariance, has confirmed that MIMO GD radar systems with a 

suitable space-time coding achieve significant performance gains over SIMO, MISO, SISO, 

or conventional SISO radar systems employing the conventional GLRT detector. Also, these 

MIMO GD radar systems outperform the listed above systems employing the conventional 

GD. Future research might concern the extension of the proposed framework to the case of 

an unknown clutter covariance matrix, in order to come up with a fully adaptive detection 

system. Moreover, another degree of freedom, represented by the shapes of the transmitted 

pulses could be exploited to further optimize the performance. More generally, the impact 

of space-time coding in MIMO CD radar systems to estimate the target parameters is undo-

ubtedly a topic of primary concern. Finally, the design of GD and space-time coding strateg-

ies might be of interest under the very common situation of non-Gaussian radar clutter. 
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