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1. Introduction  

Microstrip antennas are one of the most widely used types of antennas in the microwave 
frequency range, and they are often used in the millimeter-wave frequency range. Actually 
as the demand for high data rates grows and microwave frequency bands become 
congested, the millimeter-wave spectrum is becoming increasingly attractive for emerging 
wireless applications. The abundance of bandwidth and large propagation losses at 
millimeter-wave frequencies makes these bands best-suited for short-range or localized 
systems that provide broad bandwidth. Automotive radar systems including cruise control, 
collision avoidance and radiolocation with operation up to 10 GHz have a large market 
potential in the near future of millimetre wave applications.  

One advantage of the microstrip antenna is easy matching, fabrication simplicity and low 
profile, in the sense that the substrate is fairly thin. If the substrate is thin enough, the 
antenna actually becomes conformal, meaning that the substrate can be bent to conform to a 
curved surface. Disadvantages of the microstrip antenna include the fact that it is usually 
narrowband, with bandwidths of a few percent being typical. Also, the radiation efficiency 
of the microstrip antenna tends to be lower than some other types of antennas, with 
efficiencies between 70% and 90% being typical. A microstrip antenna operating in a 
travelling wave configuration could provide the bandwidth and the efficiencies needed.  

Travelling-wave antennas are a class of antennas that use a travelling wave on a guiding 

structure as the main radiating mechanism. It is well known that antennas with open-ended 

wires where the current must go to zero (dipoles, monopoles, etc.) can be characterized as 

standing wave antennas or resonant antennas. The current on these antennas can be written 

as a sum of waves traveling in opposite directions (waves which travel toward the end of 

the wire and are reflected in the opposite direction). For example, the current on a dipole of 

length l is given by:  

 

 

(1) 
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Traveling wave antennas are characterized by matched terminations (not open circuits) so 

that the current is defined in terms of waves traveling in only one direction (a complex 

exponential as opposed to a sine or cosine). A traveling wave antenna can be formed by a 

single wire transmission line (single wire over ground) which is terminated with a matched 

load (no reflection). Typically, the length of the transmission line is several wavelengths. 

 

Fig. 1. Beverage or wave antenna. 

The antenna shown in Fig. 1 above is commonly called a Beverage or wave antenna. This 

antenna can be analyzed as a rectangular loop, according to image theory. However, the 

effects of an imperfect ground may be significant and can be included using the reflection 

coefficient approach. The contribution to the far fields due to the vertical conductors is 

typically neglected since it is small if l >> h. Note that the antenna does not radiate 

efficiently if the height h is small relative to wavelength. In an alternative technique of 

analyzing this antenna, the far field produced by a long isolated wire of length l can be 

determined and the overall far field found using the 2 element array factor. Traveling wave 

antennas are commonly formed using wire segments with different geometries. Therefore, 

the antenna far field can be obtained by superposition using the far fields of the individual 

segments. Thus, the radiation characteristics of a long straight segment of wire carrying a 

traveling wave type of current are necessary to analyze the typical traveling wave antenna. 

Traveling-wave antennas are distinguished from other antennas by the presence of a 

traveling wave along the structure and by the propagation of power in a single direction. 

Linear wire antennas are the dominant type of traveling-wave antennas.  

There are in general two types of traveling-wave antennas [1-2]. The first one is the surface-
wave antenna, which is a slow-wave structure, where the phase velocity of the wave is 
smaller than the velocity of light in free space and the radiation occurs from discontinuities 
in the structure (typically the feed and the termination regions). The propagation 
wavenumber of the traveling wave is therefore a real number (ignoring conductors or other 
losses). Because the wave radiates only at the discontinuities, the radiation pattern 
physically arises from two equivalent sources, one at the beginning and one at the end of the 
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structure. This makes it difficult to obtain highly-directive singlebeam radiation patterns. 
However, moderately directly patterns having a main beam near endfire can be achieved, 
although with a significant sidelobe level. For these antennas there is an optimum length 
depending on the desired location of the main beam. Examples include wires in free space 
or over a ground plane, helixes, dielectric slabs or rods, corrugated conductors, ‘‘beverage’’ 
antenna, or the V antenna. An independent control of the beam angle and the beam width is 
not possible. 

The second type of the travelling wave antennas are a fast-wave structure as leaky-wave 
antenna (LWA) where the phase velocity of the wave is greater than the velocity of light in 
free space. The structure radiates all its power with the fields decaying in the direction of 
wave travel.  

A popular and practical traveling-wave antenna is the Yagi–Uda antenna It uses an 

arrangement of parasitic elements around the feed element to act as reflectors and directors 

to produce an endfire beam. The elements are linear dipoles with a folded dipole used as the 

feed. The mutual coupling between the standing-wave current elements in the antenna is 

used to produce a traveling-wave unidirectional pattern. Recently has been developed a 

new simple analytical and technical design of meanderline antenna, taped leaky wave 

antenna (LWA) and taped composite right/left-handed transmission-line (CRLHTL) LWA. 

The meanderline antenna is a traveling-wave structure, which enables reduction of the 

antenna length. It has a periodical array structure of alternative square patterns. With this 

pattern, the extended wire can be made much longer than the initial antenna (dipole) length, 

so that the selfresonance can be attained. The resonance frequency is then lower and 

radiation resistance is higher than that of a dipole of the same length. This in turn implies 

that the antenna is effectively made small. 

2. Leaky wave antennas 

In detail this type of wave radiates continuously along its length, and hence the propagation 

wavenumber kz is complex, consisting of both a phase and an attenuation constant. Highly-

directive beams at an arbitrary specified angle can be achieved with this type of antenna, 

with a low sidelobe level. The phase constant  of the wave controls the beam angle (and 

this can be varied changing the frequency), while the attenuation constant  controls the 

beamwidth. The aperture distribution can also be easily tapered to control the sidelobe level 

or beam shape. 

All kinds of open planar transmission lines are predisposed to excite leaky waves. There are 

two kinds of leaky waves. Surface leaky waves radiate power into the substrate. These 

waves are in most cases undesirable as they increase losses, cause distortion of the 

transmitted signal and cross-talk to other parts of the circuit. Space leaky waves radiate 

power into a space and mostly also into the substrate. These waves can be utilized in leaky 

wave antennas. Leaky-wave antennas can be divided into two important categories, 

uniform and periodic, depending on the type of guiding structure. A uniform structure has 

a cross section that is uniform (constant) along the length of the structure, usually in the 

form of a waveguide that has been partially opened to allow radiation to occur. The guided 

wave on the uniform structure is a fast wave, and thus radiates as it propagates. 
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As said previously leaky-wave antennas form part of the general class of travelling-wave 
antennas which are a class of antennas that use a travelling wave on a guiding structure as 
the main radiating mechanism [3], as defined by standard IEEE 145-1993: “An antenna that 
couples power in small increments per unit length, either continuously or discretely, from a 
travelling wave structure to free space”.  

 

Fig. 2. Rectangular metal waveguide with a slit, aperture of the leaky wave antenna. 

Leaky-wave antennas are a fast-wave travelling-wave antennas in wich the guided wave is a 
fast wave, meaning a wave that propagates with a phase velocity that is more than the 
speed of light in free space. 

The slow wave travelling antenna does not fundamentally radiate by its nature, and 
radiation occurs only at discontinuities (typically the feed and the termination regions). The 
propagation wavenumber of the travelling wave is therefore a real number (ignoring 
conductors or other losses). Because the wave radiates only at the discontinuities, the 
radiation pattern physically arises from two equivalent sources, one at the beginning and 
one at the end of the structure. This makes it difficult to obtain highly-directive singlebeam 
radiation patterns. However, moderately directly patterns having a main beam near endfire 
can be achieved, although with a significant sidelobe level. For these antennas there is an 
optimum length depending on the desired location of the main beam. An independent 
control of the beam angle and the beam width is not possible. By contrast, the wave on a 
leaky-wave antenna (LWA) may be a fast wave, with a phase velocity greater than the speed 
of light. Leakage is caused by asymmetry, introduced in radiating structure transversal 
section (e.g.: aperture offset, waveguide shape, etc…), feeding modes or a combination of 

them. In this type of antennas, the power flux leaking from waveguide to free space ( outP  in 

Fig. 2 and Fig. 3), introduces a loss inside structure, determining a complex propagation 

wavenumber zk  [4-5]: 

 ( zk j   ) (2) 

Where is the leakage constant and   is the propagation constant . The phase constant   

of the wave controls the beam angle (and this can be varied changing the frequency), while 
the attenuation constant  controls the beamwidth. Highly-directive beams at an arbitrary 

specified angle can be achieved with this type of antenna, with a low sidelobe level. 
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Moreover the aperture distribution can also be easily tapered to control the sidelobe level or 
beam shape. Leaky-wave antennas can be divided into two important categories, uniform 
and periodic, depending on the type of guiding structure. 

 

Fig. 3. Example of periodic leaky wave antenna, using a dielectric substrate upon which are 
placed rods of other material, even metal, in a periodic layout. 

A uniform structure has a cross section that is uniform (constant) along the length of the 

structure, usually in the form of a waveguide that has been partially opened to allow 

radiation to occur [6]. The guided wave on the uniform structure is a fast wave, and thus 

radiates as it propagates. A periodic leaky-wave antenna structure is one that consists of a 

uniform structure that supports a slow (non radiating) wave that has been periodically 

modulated in some fashion. Since a slow wave radiates at discontinuities, the periodic 

modulations (discontinuities) cause the wave to radiate continuously along the length of the 

structure. From a more sophisticated point of view, the periodic modulation creates a 

guided wave that consists of an infinite number of space harmonics (Floquet modes) [7]. 

Although the main (n = 0) space harmonic is a slow wave, one of the space harmonics 

(usually the n = −1) is designed to be a fast wave, and hence a radiating wave.  

3. LWA in waveguide 

A typical example of a uniform leaky-wave antenna is a rectangular waveguide with a 

longitudinal slot. This simple structure illustrates the basic properties common to all 

uniform leaky-wave antennas. The fundamental 10TE  waveguide mode is a fast wave, with 

2 2
0 ( )k

a

     lower than 0k . As mentioned, the radiation causes the wavenumber zk of 

the propagating mode within the open waveguide structure to become complex. By means 

of an application of the stationary-phase principle, it can be found in fact that [5]: 

 
0

sin m
ph

c

k v

     (3) 

www.intechopen.com



 
Wireless Communications and Networks – Recent Advances 

 

52

where m  is the angle of maximum radiation taken from broadside. As is typical for a 

uniform LWA, the beam cannot be scanned too close to broadside ( 0m  ), since this 

corresponds to the cutoff frequency of the waveguide. In addition, the beam cannot be 

scanned too close to endfire ( m  = 90) since this requires operation at frequencies 

significantly above cutoff, where higher-order modes is in a bound condition or can 
propagate, at least for an air-filled waveguide. Scanning is limited to the forward quadrant 

only (0 < m < 
2


) for a wave travelling in the positive z direction. 

 

Fig. 4. Slotted guide (patented by W. W. Hansen in 1940). 

This one-dimensional (1D) leaky-wave aperture distribution (see Fig. 4), results in a “fan 
beam” having a narrow beam in the x-z plane (H plane), and a broad beam in the cross-
plane. Unlike the slow-wave structure, a very narrow beam can be created at any angle by 
choosing a sufficiently small value of  . From diffraction theory, a simple formula for the 

beam width, measured between half power points (3dB), is:  

 

0

cos m

const

L





   (4) 

“const” is a parameter which is influenced by the type of aperture and illumination; for 

example, if at the aperture there’s a constant field, const = 0.88 and, if the structure is 

uniform, const =0.91. As a rule of thumb, supposing: 

 

0

1

cos m
L






  (5) 

a good approximation of beamwidth is yielded, where L is the length of the leaky-wave 

antenna, and   is expressed in radians. For 90% of the power radiated it can be assumed:  

0

0

0.18L

k


   
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 
0k


 

If the antenna has a constant attenuation throughout its length ( )z zz   results: 

2( ) (0) zP z P e   

Therefore, being L the length of antenna, if a perfectly matched load is connected at the end 
of it, it’s possible to express antenna efficiency as: 

 2(0) ( ) ( )
1 1

(0) (0)
zL

rad
P P L P L

e
P P

 
       (6) 

Rearranging: 

 
ln(1 )

2
rad

z

L





    (7) 

For most application, to gain a 90% efficiency, means that the antenna length is within 

0 010 100   interval.  

Fixing the antenna efficiency, using (7), makes possible to express attenuation constant in 
terms of antenna length, and vice versa. Using antenna efficiencies grater than 90%-95% is 
not advisable; in fact, supposing constant antenna cross section and, as a consequence, fixed 

leakage constant, the necessary length L grows exactly as zL , which increases 

asymptotically, as shown in Fig 5. If we want a 100% efficiency ( 1rad  ) from (6):  

2( ) 0 0zLP L e L        

we note that is necessary an infinite antenna length. 

Substuting (7) in (5), being 0 02 / k  :  

0

4

ln(1 )cos
z

rad m k


 

 
  

 
 

Because 2cos 1 sin ,m m   considering (7) 

 
2

0

0

4

ln(1 ) 1

z

z
rad

k

k




 
 
  
         

 (8) 

Since 2 2 2
0 c zk k k   and having supposed the attenuation constant much smaller than the 

phase constant, z zk  , getting:  
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0

0

4

ln(1 )

z

c
rad

k k
k




 
  
  
 

  (9) 

where ck  is the transverse propagation constant. Alternatively, considering (7): 

2

cL k

 


  

Using waveguide theory notation, supposing c  the cut-off wavelength: 

 c

L


    (10) 

(3) and (10), provided the approximations used to be valid, are a valid tool for describing the 
main parameters of radiated beam. 

 

Fig. 5. Variation of zL  versus antenna efficiency. 

Radiation properties of leaky wave antennas are well described by dispersion diagrams. In 

fact since leakage occurs over the length of the slit in the waveguiding structure, the whole 

length constitutes the antenna’s effective aperture unless the leakage rate is so great that the 

power has effectively leaked away before reaching the end of the slit. A large attenuation 

constant implies a short effective aperture, so that the radiated beam has a large beamwidth. 

Conversely, a low value of  results in a long effective aperture and a narrow beam, 

provided the physical aperture is sufficiently long. 
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Moreover since power is radiated continuously along the length, the aperture field of a 
leakywave antenna with strictly uniform geometry has an exponential decay (usually slow), 
so that the sidelobe behaviour is poor. The presence of the sidelobes is essentially due to the 
fact that the structure is finite along z.  

When we change the cross-sectional geometry of the guiding structure to modify the value 

of   at some point z, however, it is likely that the value of   at that point is also modified 

slightly. However, since   must not be changed, the geometry must be further altered to 

restore the value of  , thereby changing   somewhat as well.  

In practice, this difficulty may require a two-step process. The practice is then to vary the 

value of   slowly along the length in a specified way while maintaining   constant (that is 

the angle of maximum radiation), so as to adjust the amplitude of the aperture distribution 
to yield the desired sidelobe performance. 

Radiation modes 

Let us consider a generic plane wave, whose propagation vector belongs to plane (y-z), 

directed towards a dielectric film grounded on a perfect electric conductor (PEC) parallel to 

plane (x-z), as shown in Fig. 6 [8-9].  

 

Fig. 6. Incident wave on a grounded dielectric film, whose thickness is t. 

If the incident wave polarization is linear and parallel to the x axis, since both reflection and 
refraction occur: 

0 0

0

( ) ( )

cos( ) sin( )

y yjk y t jk y t
x

x y y

E Ae Ce

E B k y D k y
  

    


 
 

0

y t

t y


 

 

Being the tangent components of electric field null on a PEC surface, B = 0: 

 
0 0

0

( ) ( )

sin( )

y yjk y t jk y t
x

x y

E Ae Ce

E D k y
 

    



 

0

y t

t y


 

 (11) 

One constant can be expressed by the remaining two, as soon as continuity of tangent 
components of electric field is considered in y = t. First equation of (11) contains an 
exponential term which, diverging for y → ∞ , violates the radiation condition at infinite 

distance. Therefore, C ≠ 0 only near plane y = t , at the incidence point. zk  can assume any 
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value from 0 to 0k  (i.e.: radiating modes); above it, only discrete values of kz exist, 

identifying the associated guided modes. Since separability condition must be satisfied, in 
air: 

 
0

2 2 2 2
0 0 0 y zk k k      where 0k    (12) 

For every zk , it’s now possible calculate 
0yk . In fact, considering only positive solutions: 

0

2 2
0y zk k k   

Obtaining: 

 

Mode Wave numbers 

Guided 0zk k  
0yk   

Radiating 0 0zk k   
00 0yk k   

Evanescent 0 zk j     
0 0yk k    

Table 1. Wave modes identified by zk . 

Thus, a spectral representation of electromagnetic field near the air-dielectric interface, must 

contain all values of 
0yk , from 0 to ∞: the associated integral is complex and slowly 

convergent. Alternatively, a description, which uses leaky waves and guided modes, both 

discrete, can well approximate such field. 

It’s been observed that it’s often enough a single leaky wave to obtain a good far field 
description. 

Letting 
0y yk k , from (2) and (12), in general: 

2 2 2 2
0

0

y z y z

y y z z

k    

   

    


 
 

alternatively  

  0

222

0

k  

 

  

  

 (13) 

Having defined the attenuation and the phase vectors, respectively, as: 

0 0y zy z     

0 0y zy z     
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Being 0k  , from (9) 0  , and    

Considering waves propagating in the positive direction of z axis, 0z   and supposing no 

losses in z direction, 0z  , from (13):  

0      

Leaving out , 0y y    , two situations can occur: 0y  and 0y  . If 0y  , equations 

describe a uniform plane wave passing the air-dielectric interface. On the other hand, if 

0y  , two types of superficial waves exist, depending on 0y   sign: 

 

0y   

 

Confined superficial wave 

0y   

 

Improper superficial wave 

Fig. 7. Superficial waves at air-dielectric interface when 0y  . 

Because confined superficial waves amplitude decreases exponentially as distance from 
interface increases, when y is greater than 10 times radiation wavelength, electromagnetic 
field practically ceases to exist. Improper superficial wave, whose amplitude increases 
exponentially as distance from interface increases, are not physically possible because they 
violate the infinite radiation condition.  

Removing the hypothesis 0,z   both 0,y   and 0.y   

 

 

Losses in Dielectric 

 

Leaky Wave 

Fig. 8. General mutual ǃ and ǂ configurations depicting condition 0    . 

When losses in dielectric occur,   must point towards the inner part of dielectric to 

compensate such losses (see Fig.8). In the other configuration, when   points upwards, 

even though a non-physical solution is described, the associated wave is useful to describe 

electromagnetic field near air-dielectric interface. 

4. LWA in microstrip 

Microstrip antenna technology has been the most rapidly developing topic in antennas 
during the last twenty years [10]. Microstrip is an open structure that consists of a very thin 
metallic strip or patch of a width, w, separated from a ground plate by a dielectric sheet 
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called substrate (Fig. 9). The thickness of the conductor, t, is much less than a wavelength, 
and may be of various shapes. The height of the substrate, h, is usually very thin compared 

to the wavelength (.0003   ≤ h ≤ 0.05  ) [11]. The substrate is designed to have a known 

relative permittivity, r , that is homogeneous within specified temperature limits.  

 

Fig. 9. Geometry of a microstrip transmission line. 

The antenna can be excited directly by a microstrip line, by a coaxial cable, or a combination 

of the two. The antenna can also be fed from a microstrip line without direct contact through 

electromagnetic coupling. Feeding by electromagnetic coupling through an aperture in the 

ground plane tends to improve bandwidth. To maximize efficiency, the impedance of the 

feed must be matched to the input impedance of the antenna. There are a variety of stubs, 

shunts, and other devices used for matching. The major disadvantages of microstrip are 

lower gain, very narrow bandwidth, low efficiency and low power handling ability. In 

addition, antennas made with microstrip typically have poor polarization purity and poor 

scan performance [12]. 

Operating above the cutoff frequency, the field lines of microstrip extend throughout the 

substrate as well as into the free space region above the substrate, as seen in Fig. 10. The 

phase velocity of the field in the free space surrounding the structure is the speed of light, c, 

and the phase velocity of the field in the substrate is given by Equation (14) 

 p
r

c
v


  (14) 

This difference in phase velocity at the interface between the substrate and free space makes 

the TEM mode impossible. Instead, the fundamental mode for microstrip is a quasi-TEM 

mode, in which both the electric and magnetic fields have a component in the direction of 

propagation. Likewise, a higher order mode in microstrip is not purely TE or TM, but a 

hybrid combination of the two. The nth higher order mode is termed the nTE  mode. The 

fundamental mode of microstrip, as seen in Fig. 10, does not radiate since the fields 

produced do not decouple from the structure. If the fundamental mode is not allowed to 

propagate, the next higher order mode will dominate. Fig. 11 shows the fields due to the 

first higher order mode, 10TE . A phase reversal, or null, appears along the centerline, 

allowing the fields to decouple and radiate. 
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Fig. 10. Field pattern associated with the fundamental mode of microstrip. 

 

Fig. 11. Field pattern associated with the first higher order mode of microstrip. 

Recently, there has been significant interest in the microstrip leaky-wave antenna which 

utilizes a higher order radiative microstrip mode. Since Menzel in 1979, published the first 

account of a travelling wave microstrip antenna that used a higher order mode to produce 

leaky waves [13], many microstrip leaky-wave antenna designs incorporating various 

modifications have been investigated. The design of Menzel antenna [13], can be seen in Fig. 

12. Menzel’s antenna uses seven slots cut from the conductor along the centerline to 

suppress the fundamental mode allowing leaky wave radiation via the first higher order 

mode. Menzel’s antenna has been analyzed by a host of researchers over the past 25 years 

[14] and its performance is known and reproducible. Instead of transverse slots, we can uses 

a metal wall down the centerline of the antenna to block the fundamental mode. Symmetry 

along this metal wall invites the application of image theory. One entire side of the antenna  

 

Fig. 12. Menzel’s original antenna [13]. 
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is now an image of the other side, making it redundant and unneeded. This property 
allows to design the resulting antenna half of the width of Menzel’s antenna, as shown in 
Fig. 13. 

 

Fig. 13. Half Width Leaky Wave Antenna. 

As mentioned the microstrip structures do not radiate for the fundamental mode, therefore, 

a higher order mode must be excited to produce leaky waves. This method of producing 

radiation by exciting higher order modes in a transmission line has been documented since 

the 1950’s [6]. By the 1970’s, rectangular waveguides, circular waveguides, and coaxial 

cables were in use as leaky traveling wave antennas. However, until Menzel, the jump to 

microstrip had not been made. By looking at a cross section of microstrip excited in the 

fundamental mode, the E field is strongest in the center and tapers off to zero at the sides, as 

depicted in Fig 10. If the electric field down the centerline is suppressed, the fundamental 

mode will be prohibited, forcing the energy to propagate at the next higher mode, 10TE . As 

seen in Fig. 11, 10TE  mode causes E to be strongest at the edges. Menzel attempted to force 

the 10TE  mode using several means. Feeding two equal magnitude waves 180° out of phase 

with a “T” or “Y” feed produced 10TE  as desired, but did not fully eliminate the 

foundamental mode. Easier to produce and providing an even better response was given 

using transverse slots down the centerline (Fig. 12). The multiple feeds were not necessary 

to produce the 10TE  mode when the fundamental mode was suppressed. Menzel 

demonstrated that the beam angle can be predictively steered by input frequency if the 

electrical length of the antenna is at least 3 . If the length is less than 3 , too little of the 

incident wave is being radiated and a resonance standing wave pattern is forcing the beam 

toward broadside. Qualitative analysis shows that the beamwidth of Menzel’s antenna is 

not frequency dependent, however, it is inversely related to length. The 3 dB beamwidth 

approaches 10° for electrical length of over 6  and approaches nearly 90° for fractions of a 

wavelength. Menzel’s gain varied from 7 dB for l = 0.2  to 14 dB for l = 4 . 7 dB is 

comparable to a similar sized resonant antenna. An antenna longer than l = 4  would have 

an even higher gain as the radiation aperture increases. Lee notes that Menzel assumed that 

his antenna should radiate simply because the phase constant due to his operating 

frequency was less than 0k  [15]. If Menzel had considered the complex propagation 

constant, he would have realized that his antenna was operating in a leaky regime. The 

length would need to be roughly 220 mm, or more than twice as long as his design, to 
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radiate at 90% efficiency. Radiation patterns in Menzel’s paper clearly show the presence of 

a large backlobe due to the reflected traveling wave. 

Now this class of printed antennas that is particularly well suited for operation at mm-
wave frequencies, alleviate some of the problems associated with resonant antennas since 
they provide higher gain, broader bandwith performance, and frequency scanning 
capabilities. These microwave and millimeter leaky wave antennas, have the same 
properties of the waveguide leaky wave antennas described previously. In addition, when 
opening a waveguide to free space, a discrete spectrum is not enough to express an 
arbitrary solution [16].  

In fact, when considering a closed region, all characteristic solutions, individuated by the 
associated eigenvalues, constitute a complete and orthogonal set of modes, whose linear 
combination can express any field satisfying boundary conditions. As soon as the region is 
not perfectly bounded, an arbitrary field solution cannot be expressed only using discrete 
eigenmodes but, generally, a continuous spectrum of modes, which don’t necessarily have 
finite energy (e.g.: plane waves), must be considered, too.  

Fortunately, for leaky wave antennas, an approximation that uses particular waves, called 
leaky, can be used instead of the continuous spectrum. Moreover, leaky waves are well 
described by dispersion constants (i.e.: leakage and phase constants) that strongly affect the 
radiated beam width and elevation. 

5. Dispersion curves, spectral-gap 

Dispersion curves, describing how attenuation and phase vectors, solutions of dispersion 
equation (12), evolve, are a valid tool to study leaky waves. 

As discussed previously, the radiation mechanism of higher order modes on microstrip 

LWA is attributed to a traveling wave instead of the standing wave as in patch antennas and 

above cutoff frequency, where the phase constant equals the attenuation constant ( c = c ), 

it is possible to observe three different range of propagation: bound wave, surface wave and 

leaky wave [15]. At low frequency, below the cutoff frequency, we have the reactive region 

due to evanescent property of LWA.  

From (3) we can observe that the leaky mode leaks away in the form of space wave when 

0K  , therefore we can define the radiation leaky region from the cutoff frequency to the 

frequency at which the phase constant equals the free-space wavenumber 0( )K  . For 

( )sK  we have the bound mode region and for 0 sK K  , exists a narrow frequency 

range (
1

s
r

K


 ), in which we can have surface-wave leakage, where sK  is the surface 

wavenumber.  

Moreover the transition region between surface wave leakage and space wave leakage 
including a small range in frequency for which the solution is non-physical, and it therefore 
cannot be seen. For this reason, the transition region is called a spectral gap. Such a spectral 
gap occurs commonly (but not always) at such transitions in printed circuits, but it also 
occurs in almost all situations for which there is a change from a bound mode to a leaky  
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Fig. 14. The typical normalized attenuation constant, 0/ k , and phase constant 0/ k , in 

the direction of propagation of the first higher order mode, 10TE . There are four frequency 

regions associated with propagation regimes: Reactive, Leaky, Surface, and Bound. 

mode, or vice versa. For example, a spectral gap will appear when the beam approaches 

endfire in all leaky-wave antennas whose cross section is partly loaded with dielectric 

material. It is necessary to employ a greatly enlarged scale, on which the dispersion plot is 

sketched qualitatively. The transition region itself is divided into two distinct frequency 

ranges, one from point A to point B and the second from point B to point C. Before point B, a 

leaky wave occurs. As soon as frequency reaches 1f  (point B), an improper superficial wave 

is solution of dispersion equation [9]. Because, both z  and z  cannot increase with 

frequency between 1f  and 2f  , their trend will change until point C, from which a confined 

superficial wave is an acceptable solution for increasing values of frequency. 

To depict normalized constants behaviour around the spectral-gap, it’s necessary a very 

precise numerical method since, leaving out particular structures, its width ( f ) is very 

small compared to working frequencies.  

The dispersion characteristics for microstrip has been investigated by a number of authors 

using different full wave methods and evaluating different regimes of the dispersion 

characteristic.  

The spectral domain analysis has proven to be one of the most efficient and fruitful 

techniques to study the dispersion characteristics of printed circuit lines [17]. As is explained 

in literature, the Galerkin method in conjunction with Parseval theorem can be used to pose 

the dispersion relation of an infinite printed circuit line as the zeros of the following 

equation:  
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 2
;( ) ( ) ( ) 0

x

z zz x z x x

C

F k G k k T k dk     (15) 

where ( )xT k , is the Fourier transform of the basis function ( )xT k used to expand the 

longitudinal current density on the strip conductor as 

( , ) ( ) zjk z
szJ x z T x e  

The term ; ,( )zz x zG k k 
 is the zz component of the spectral dyadic Green’s function, and xC  is 

an appropriate integration path in the complex xk  plane to allow for an inverse Fourier 

transform non uniformly convergent function. The spectral dyadic Green’s function has the 

following singularities in the complex xk  plane: branch point, a finite set of poles on the 

proper sheet and a infinite set of poles on the improper sheet. For a fixed frequency, the 

function ( )zF k is not uniquely defined because of the many possible different xC  integration 

paths that can be used to carry out the integral (15) [18].  

 

Fig. 15. Transition region between leaky wave and confined superficial wave showing the 

spectral-gap occurring 1f  and 2f . 

The different xC  paths come from the different singularities of the spectral dyadic Green’s 

function, that can be detoured around. For complex leaky mode solution, an integration 

path detouring around only the proper poles of the spectral dyadic Green’s function is 

associated with an surface-wave leaky mode solution. If the path also detours around the 

branch points, passing trough the branch cuts and, therefore, lying partly on the lower 

Riemann sheet, the path will be associated with an space-wave leaky mode solution (see Fig. 

16). This procedure, is not trivial. We shown in the next chapters how it is possible to extract 

the propagation constant of a microstrip LWA more simply using an FDTD code with 

UPML boundary condition, who directly solves the _elds in the time domain using 

Maxwell's equations and with which the analysis is easy modifying the geometries of the 

LWAs. The results are in a good agreement with transverse resonance approximation (a full 

wave method) derived by Kuestner [19]. 
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Fig. 16. Possible integration paths C . The three different are denoted as 0C  for the real-axis 

path (bound mode solution), 1C  for the path that detours around only the spectral dyadic 

Green’s function poles (surface-wave leaky modes solution), and 2C  for the path that also 

passes around the branch points (space-wave leaky modes solution). 

6. Tapered leaky wave antennas 

Nowdays, some applications especially with regard to communication applications like the 
indoor wireless LAN(WLAN) actually are increasing the use of millimeterwave antennas 
like leaky-wave antennas (LWA), suited for more purpose. In detail, the transmitting/ 
receiving antennas with relatively broadbeam and broadband can be obtained from the 
curved and tapered leakywave structures. In fact, the microstrips (LWA), are very popular 
and widely used in applications thanks to their advantages of low-profile, easy matching, 
narrow beamwidth, fabrication simplicity, and frequency/electrical scanning capability. Is 
well know that the radiation mechanism of the higher order mode on microstrip LWAs is 
attributed to a traveling wave instead of the standing wave as in patch antennas. Moreover 
the symmetry of the structure along this physical grounding structure, thanks to the image 
theory, allows to design only half of an antenna with the same property of one in its 
entirety, and reducing up to 60% the antenna’s dimensions. Using this tapered antenna we 
can obtained a quasi linear variations of the phase normalized constant and than a quasi 
linear variations of the its radiation angle. Moreover the profile of the longitudinal edges of 
the LWA, was designed, by means of the reciprocal slope of the cutoff curve, symmetrically 
to the centerline of the antenna, allows a liner started of leaky region.  

Nevertheless the variation of the cross section of the antenna, allowing a non-parallel 
emitted rays, such as happens in a non-tapered LWA. In fact, using the alternative 
geometrical optics approach proposed in the tapering of the LWA, for a fixed frequency, 
involves the variation of the phase constant ┚ and the attenuation constant ┙, obtained as a 
cut plane of 3D dispersion surface plot varying width and frequency. We can be determined 
a corresponding beam radiation interval with respect to endfire direction. As mentioned 
previously, for a tapered antenna with a curve profile (square root law profile) the radiation 
angle in the leaky regions, vary quasi linearly whit the longitudinal dimension, so it is 
possible to calculate the radiation angle of the antenna as a average of the phase constant 
using the simple formula.  
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Alternatively using the geometrical optics approach it is easy to determine the closed 
formula to predict the angle of main beam of a tapered LWA.  

7. Design of tapered LWA 

The radiation mechanism of the higher order mode on microstrip LWAs is attributed to a 
traveling wave instead of the standing wave as in patch antennas [13,20].  

We can explain the character of microstrip LWAs trough the complex propagation constant 

k j   , where   is the phase constant of the first higher mode, and  is the leakage 

constant. Above the cutoff frequency, where the phase constant equals the attenuation 

constant ( c = c ), it is possible to observe three different propagation regions: bound wave, 

surface wave and leaky wave.  

The main-beam radiation angle of LWA can be approximated by: 

 1

0

cos
K

   
  

 
   (16) 

where   is the angle measured from the endfire direction and 0K  is the free space 

wavenumber. According to (16) we can observe that the leaky mode leaks away in the form 

of space wave when 0K  , therefore we can define the radiation leaky region, from the 

cutoff frequency to the frequency at which the phase constant equals the free-space 

wavenumber 0( )K  . An example of tapered LWA was proposed in [21-22], using an 

appropriate curve design to taper LWA.  

In fact through the dispersion characteristic equation, evaluated with FDTD code, we can 
obtain the radiation region of the leaky waves indicated in the more useful way for the 
design of our antenna: 

 
2 1

c r
c

eff r r

fc
f f

w


 

  


 .  (17) 

From equation (17) we can observe that the cutoff frequency increases when the width of the 

antenna decrease, shift toward high frequencies, the beginning of the radiation region as 

shown in Fig. 17. 1. 

Therefore it is possible to design a multisection microstrip antenna [as Type I antenna in Fig. 

17.a], in which each section able to radiate at a desired frequency range, can be 

superimposed, obtaining an antenna with the bandwidth more than an uniform microstrip 

antenna. In this way every infinitesimal section of the multisection LWA obtained 

overlapping different section should be into bound region, radiation region or reactive 

region, permitting the power, to uniformly radiated at different frequencies.  

Using the same start width and substrate of Menzel travelling microstrip antenna (TMA) 

[13], and total length of 120 mm., we have started the iterative procedure mentioned in [23] 

to obtain the number, the width and the length of each microstrip section. From Menzel 
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TMA width, we have calculated the STARTf  (onset cutoff frequency) of the curve tapered 

LWA, than, choosing the survival power ratio ( 2 i iLe   ) opportunely, at the end of the 

first section, we have obtained the length of this section. The cutoff frequency of subsequent 

section ( if ), was determined by FDTD code, while the length of this section was 

determined, repeating the process described previously. This iterative procedure was 

repeated, until the upper cutoff frequency of the last microstrip section. 
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Fig. 17.1 Cutoff frequency of multisection microstrip LWA. 

The presence of ripples in return loss curve and the presence of spurious sidelobes shows 

the impedence mismatch and discontinuity effect of this multisection LWA that reduce the 

bandwidth. A simple way to reducing these effects is to design a tapered antenna in which 

the begin and the end respectively of the first and the last sections are linearly connected 

together (as the Type II antenna in Fig. 17.a). 

Alternatively the ours idea was to design a LWA using a physical grounding structure along 

the length of the antenna, with the same contour of the cutoff phase constant or attenuation 

constant curve ( c = c ), obtained varying the frequency (the cutoff frequency fc is the 

frequency at which c = c ) , for different width and length of each microstrip section as 

shown in Fig. 17.1, employing the following simple equation (18): 

 2
1 2 3c c f c f c     (18) 

obtained from linear polynomials interpolation, where 1c  = 0.0016, 2c = 0.03, 3c = -15.56. 

The antenna layout (as the Type III antenna in Fig. 17.a), was optimized through an 3D 

electromagnetic simulator, and the return loss and the radiation pattern was compared with 

Type I antenna and Type II antenna. 
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8. Simulation results 

An asymmetrical planar 50 Ω feeding line was used to excite the first higher-order mode 
while a metal wall down the centerline connecting the conductor strip and the ground plate 
was used to suppress the dominant mode for Type I - III. The chosen substrate had a 
dielectric constant of 2.32 and a thickness of 0.787 mm, while the total length of the leaky 
wave antenna was chosen to be 120 mm.  

The leaky multisection tapered antenna Type I was open-circuited, with a 15 mm start 
width, and 8.9 mm of final width obtained according to [23]. For LWA layout Type I, we 
used four microstrip steps, for layout Type II we tapered the steps linearly, while the curve 
contour of the LWA layout Type III, was designed through equation (18). 

Fig. 17.b shows the simulated return loss of three layouts. We can see that the return loss 
(S11) of Type I is below -5 dB from 6 to 10.3 GHz, but only three short-range frequencies are 
below -10 dB. S11 of Type II is below -5 dB from 6.1 to 9.1 GHz, and below -10 dB from 6.8 to 
8.6 GHz. At last, S11 of Type III is below -5 dB from 6.8 to 11.8 GHz, and below -10 dB from 
8.0 to 11.2 GHz. In Fig.17.c are shows the mainlobe direction at 9.5 GHz for the different 
Type I to Type III. We can see a reduction of sidelobe and only few degrees of mainlobe 
variation between Type I to Type III. Moreover, in Fig. 18 is shown the variation of mainlobe 
of antenna Type III, for different frequency, while in Fig. 19 is shown the trend of gain 
versus frequency of the same antenna. It is clear that, the peak power gain is more than 12 
dBi, which is almost 3 dBi higher than uniform LWAs. 

Finally the simulated VSWR is less than 2 between 8.01 and 11.17 GHz (33%), yielding an 
interesting relative bandwidth of 1.39:1, as shown in Fig. 20, compared with uniform 
microstrip LWAs (20% for VSWR < 2) as mentioned in [24].  

 

 

 

Fig. 17a. Layout of leaky wave antennas Type I-III. A physical grounding structure was used 
to connecting the conductor strip and the ground plane. 

Type I 

Type II 

Type III 
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Fig. 17b. Simulated Return loss of Type I-III LWA.  

These results indicate a high performance of Type III LWA: high efficiency excitation of the 

leaky mode, increases of the bandwidth, improves the return loss and reduction of 19% of 

metallic surface with respect to uniform LWA. Moreover, these results are in a good 

agreement whit the experimental results of return loss and radiation pattern of a prototype 

made using a RT/Duroid 5880 substrate with thickness of 0.787 mm and relative dielectric 

constant of 2.32, as shown in Fig.21 and Fig.22.  
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Fig. 17c. Radiation patterns of  Electric field (H plane) of Type I-III, LWA at 9.5 GHZ.  

a)

  

Fig. 18. a) Simulated radiation patterns of E field of  LWA Type III for different frequency. b) 
3-D radiation pattern of Electric field. 
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Fig. 19. The gain versus frequency of the LWA Type III. 
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Fig. 20. Simulated VSWR of LWA Type III. 

 

Fig. 21. A prototype of tapered LWA Type III with holes made in the centerline of the antenna. 

 

a)      b) 

Fig. 22. a) Measurement set-up of LWA Type III. b) Experimental and simulated return loss 
of LWA Type III. 
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Fig. 23. A prototype of half tapered LWA. 

Moreover the use of a physical grounding structure along the length of the antenna, as 
suggested in [21-22], allows the suppression of the dominant mode (the bound mode), the 
adoption of a simple feeding, and due to the image theory, it is also possible to design only 
half LWA (see Fig. 23) with the same property of one entire, as shown in Fig. 24 and in Fig. 
25, reducing up to 60% the antenna’s dimensions compared to uniform LWAs [24]. 

 

Fig. 24. Measured return loss of full and half Leaky Wave Antennas 

 

Fig. 25. The measured and simulated radiation patterns of E field of half tapered LWA at 8 
GHz. 
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9. Focusing-diverging property 

As described in [21-22], the profile of the longitudinal edges of the LWA, was designed, by 

means of the reciprocal slope of the cutoff curve, symmetrically to the centerline of the antenna, 

allows a liner started of leaky region. Using this tapered antenna we can obtained a quasi linear 

variations of the phase normalized constant and than a quasi linear variations of the its 

radiation angle as we can see in Fig. 26 and in Fig. 27. Nevertheless the variation of the cross 

section of the antenna, allowing a non-parallel emitted rays, such as happens in a non-tapered 

LWA (see Fig. 28). In fact, as was described in the alternative geometrical optics approach 

proposed in [24] the tapering of the LWA, for a fixed frequency, involves the variation of the 

phase constant   and the attenuation constant  , as shown in Fig. 29, obtained as a cut plane 

of 3D dispersion surface plot varying width and frequency (see Fig. 30).  

 

Fig. 26. The variation of the main beam radiation angle versus length of the antenna, at f= 8 
GHz, for linear, square and square root profile of the LWA. 

 

Fig. 27. The variation of the phase constant versus length of the antenna, at f= 8 GHz, for 
linear, square and square root profile of the LWA. 
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From (16) can be determined in the leaky regions of the antenna, a corresponding beam 

radiation interval [ min
, max

], , with respect to endfire direction.  

As mentioned previously, for a tapered antenna with a curve profile (square root law 

profile) the radiation angle in the leaky regions, vary quasi linearly whit the longitudinal 

dimension, so it is possible to calculate the radiation angle of the antenna as a average of the 

phase constant using the simple equation (19).  

 1

0
0

1
( )

L

m sen z dz
K L

   
  

 
  (19) 

Alternatively using the geometrical optics it is easy to determine the closed formula to 
predict the angle of main beam of a tapered LWA. Through simple mathematical passages, 

the main beam angle m  can be obtained by the equation (20).  

 1 min

2 2
min max

1
(2 ) ( 2 cos )

2

m
Asen

sen

Asen L C


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

 
 

  
   
 

  (20) 

Where A  and C  are respectively the distance between real focus F  and the beginning and 

the end of the length of the antenna L . Therefore, if we know the begin width and the end 

width of the antenna, from the curves of normalized phase and attenuation constant at fixed 

frequency, we can determine the beam radiation range from (16), and the main beam angle 

through (20). 

 

Fig. 28. The ray optical model for a tapered Leaky Wave antenna. 

Furthermore this focusing phenomena of a tapered LWA can determine a wide-beam 
pattern in a beam radiation range which is evident when the antenna length is increased 

( 050L  ) [25].  
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Fig. 29. The curve of normalized phase and attenuation constants versus the width, at 8 GHz 
for the LWA with the angular range [28°, 76°]. The leaky region start from 10.8 mm. (cutoff 
frequency). 

To obtain a broad beam pattern without the use of a longer LWA, we can bend a tapered 

LWA (see Fig. 31), leading the electromagnetic waves to diverge. This, increases the beam of 

the radiation pattern and reduce furthermore the back lobes as we can see compared the 

curves of Fig. 32. Finally in Fig. 33 is shown the measured return loss of half bend LWA 

Type III.  

 

Fig. 30. The 3D normalized phase constant and attenuation constant of tapered LWA versus 
frequency and width. 
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a) 

  

b) 

Fig. 31. a)Layout of a bend tapered LWA. b) A prototype of bend half LWA Type III made 

using Roger 5880 RT/Duroid. 

  

a)      b) 

Fig. 32. a)The radiation patterns of E field of tapered LWA at f= 8 GHz. b) The radiation 

patterns of E field of bend tapered LWA at f= 8 GHz. 
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Fig. 33. Experimental return loss of half bend LWA Type III. 

10. Tapered composite right/left-handed transmission-line (CRLH-TL) leaky-
wave antennas (LWAs) 

Recently composite right/left-handed (CRLH) leaky-wave antennas (LWAs) have been 

shown as one of the applications of the CRLH transmission line (TL) metamaterials thanks 

to their advantages of fabrication simplicity and frequency/electrically scanning capability 

without any complex feeding network. Neverthless the fixed geometrical size of a unit cell 

of the CRLH-TL Leaky-wave antennas, prevents the possibility to improve the antenna 

bandwidth “tapering” the geometrical size of unit cell. 

It is well known as a composite right/left-handed transmission-line (CRLH-TL) 
metamaterials, used for the leaky-wave antennas (LWAs) allow to obtain a superior 
frequency scanning ability than its conventional counterpart [26-27]. The leaky-wave 
antennas possess the advantages of low-profile, easy matching, fabrication simplicity, and 
frequency/electrically scanning capability without any complex feeding network.  

However, the conventional leaky-wave antennas suffer from major limitations in their 

scanning capabilities. In fact the radiation pattern is restricted to strictly positive  for 

uniform configurations, or to a discontinuous range of negative or positive  excluding 

broadside direction, for periodic configurations. The CRLH LWAs have essentially 

suppressed these limitations, being able to scans the entire space from  = -90° to  = +90° 

and thereby paved the way for novel perspectives for leaky-wave antennas.  

Although actually the designs of CRLH-TL for LWAs available in the literature, are 
developed as a different number of unit cell with a fixed geometrical size for all the unit 
cells of the entire antenna.  

These design prevents the possibility to improve the antenna bandwidth “tapering” the 
geometrical size of unit cell. In order to obtain an improvement of the antenna bandwidth a 
novel design of CRLH LWAs was used in our work. The simulation results of the the CRLH 
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unit-cell with different size, obtained by a commercial 3D EM simulator has shown the good 
performance of this antenna compared with the performance of the uniform CRLH TL LWA 
antenna.  

The good performance of this composite right/left-handed LWA are also demonstrated by 
measured results, which shown a good agreement with simulation results paving the way 
for the future applications of the antenna. 

11. Antenna design 

It has been shown that the leakage rate of the CRLH-TL LWA can be altered by using 
different sizes of the unit-cell [27] as shown in Fig.34.  

 

Fig. 34. Different size and number of fingers of CRLH-TL unit cell. 

In detail the radiation resistance, of the unit-cell having four fingers and the unit-cell of six 

fingers, both the unit-cells designed to have the phase origin at the same frequency, shows 

two different bandwidth as mentioned in [27-28].  

The radiation resistance of the four finger antenna is always higher than that of the six-

finger one, which implies faster decay of power (more leakage) along the structure for the 

former.  

Moreover it should be noted that increasing the number of fingers the size of the unit-cell 

has to be reduced in order to have the same centre-frequency for the antenna antennas, 

otherwise, the centre-frequency for the antenna with unit-cell which have the larger number 

of fingers will shift down to a lower frequency [29-30].  

As shown in [21-22] for a simple microstrip leaky wave antenna the radiation bandwidth is 

governed by the line width once the substrate is fixed. The bandwidth can be improved by 

adopting a tapered line structure (Fig.35), where, the radiation of different frequency 

regions leaks from different parts of the antenna. 

 

Fig. 35. A taper layout of LWA with a different frequency regions leaks from different parts 
of the antenna. 
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In fact from the propagation characteristics of the leaky wave antenna, we known that the 

leakage radiate phenomena, can only be noted above the cutoff frequency of higher order 

mode, and below the frequency such that, the phase constant is equal at the free space wave 

number. Decreasing the width of the antenna for a microstrip leaky-wave antenna the cutoff 

frequency increases shift toward high frequency. This behaviour allows to design a 

multisection microstrip LWA according [21-22] superimposing different section, in which 

each section can radiate in a different and subsequence frequency range, obtaining a 

broadband antennas. In this way each section should be into bound region, radiation region 

or reactive region, permitting the power, to uniformly radiated at different frequencies.  

Following these idea in the our developed procedure we have applied a process to get the 

dimension of the physical parameters of the unit cell shows in Fig. 36 whit different 

optimized number of fingers (see Fig. 37). Naturally we have calculated the extraction 

parameters of every cell of CRLH implementation: LR, CR, LL, and CL using the equation 

mentioned in [26].  

In the case of CRLH transmission line based LWA the amount of radiation by the unit cell 

can be related to the beam shape required and thus can be used to determine the total size of 

the structure as mentioned in [31]. 

 

Fig. 36. Unit cell equivalent circuit with radiation resistance. 

Given the unit cell equivalent circuit in Fig. 36, we have the per unit length series impedance 
and per unit length shunt admittance as follows [31]: 

 ' ' ' '
'a l R
L

j
Z R R j L

C



     (21) 

 ' ' ' '
'l R
L

j
Y G R j C

L



     (22) 

Where '
aR represents radiation resistance per unit length, '

lR represents the per unit length 

resistance associated with transmission loss, '
RL and '

RC denotes per unit length parasitic 

inductance and capacitance respectively, '
LC and '

LL denotes times unit cell length left-hand 

capacitance and inductance respectively.  

Propagation constant and characteristics impedance are given by the following relations: 
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 ' 'j ZY      (23) 

 
'

'c
Z

Z
Y

  (24) 

From the above expression of propagation constant and line impedance we can find the 
centre frequency of the CRLH LWA [31]. 

These procedure was applied for subsequency frequency range of interest able to obtain a 
broadband antenna and a narrow-beam radiation pattern more than the uniform CRLH-TL 
LWA. 

 

Fig. 37. Layout of a single unit cell of CRLH-TL LWA were p is the length of the unit cell 
period, lc, is the length of the capacitor w and ws represent, the overall width of its finger 
and the width of the stub respectively.  

The optimized antenna design as we can see in Fig. 38 was obtained considering the 

sequence of 16 cells composed respectively by 4 cell with 12 fingers, 4 cells with 10 fingers,   

 

Fig. 38. Layout of the 16 unit-cell CRLH-TL LWA with cells of 10, 8 and 6 fingers. 
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4 cell with 8 fingers and 4 cell with 6 fingers for the entire length of the antenna of 207.55 
mm and width between 2.9 mm (cells with 12 fingers) and 5.9 mm (cells with 6 fingers). 

12. Simulation and experimental results 

In the following Fig. 39 and Fig. 40 are showing the simulation data of the return loss 

obtained with a 3D EM commercial software, of the uniform 16 unit-cell CRLH-TL LWA of 

10 fingers compared with the results of tapered 16 unit-cell CRLH-TL LWA. Instead in Fig. 

41 and in Fig. 42, are shown the results of the radiation pattern of the uniform CRLH-TL 

LWA compared with 16 unit-cell of 10 fingers and tapered 16 unit-cell CRLH-TL LWA. It is 

evident the good performance of the tapered 16 unit-cell CRLH-TL LWA compared with 

uniform CRLH-TL LWA in term of broadband and narrowbeam. 

 

Fig. 39. Return loss (S11) of the uniform 16 unit-cell CRLH-TL LWA with 10 fingers. 

 

Fig. 40. Return loss (S11) of the 16 unit-cell CRLH-TL LWA with cells of 12, 10, 8 and 6 

fingers. 
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Fig. 41. Radiation pattern of the E field of the uniform CRLH-TL LWA for f=1.12 GHz (red 
line), f=2.30 GHz (brown line), f= 3.20 GHz (blu line). 

 

Fig. 42. Radiation pattern of the E field of the tapered CRLH-TL LWA for f=1.12 GHz (red 
line), f=2.30 GHz (brown line), f= 3.20 GHz (blu line). 

The simulation results were compared with experimental results made on a prototype of 

CRLH-TL LWA (see Fig. 43) designed with 16 unit-cell on Rogers RT/duroid 5880 substrate 

with dielectric constant εr = 2.2 and thickness h = 62 mil (loss tangent = 0.0009) showing a 

quite good agreement with simulated results of tapered 16 unit-cell CRLH-TL LWA as we 

can see in Fig. 44 and Fig. 45. 
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Fig. 43. A prototype and its detail of Radiation patter of tapered 16 unit-cell CRLH-TL LWA 
made on Rogers RT/duroid 5880. 

 

Fig. 44.  Experimental return loss (S11) of the 16 unit-cell prototype CRLH-TL LWA with 
cells of 12, 10, 8 and 6 fingers. 

 

Fig. 45. Experimental E field radiation pattern of tapered prototype CRLH-TL LWA for 
f=1.12 GHz (red line), f=2.30 GHz (brown line), f= 3.20 GHz (blu line). 

13. Meander antenna 

Nowadays, miniaturization of electronic devices is the main request that productions have 
to fulfil. In this process, the reduction of the antenna size is the crucial challenge to face, 
being its dimensions related to the working frequency.  

The rapid developing of the modern society has become to a crescent interest for the 
wireless communications. Nowadays, everybody wants to be connected everywhere 
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without the use of cumbersome devices. The current tendency goes towards portable 
terminals that have to be light and hand pocket. A suitable antenna for the portable 
terminals should be low cost, low profile, light weight and especially small size. 

Printed antennas are commonly used for their simple structure and easy fabrication. As 
applications are space limited, it is challenging to design an antenna of small size but with 
simple tunable feature. For microstrip antennas, some techniques, such as making slots in 
their structure or using high dielectric constant substrates, can be used to reduce the 
antenna size. However, it results in the narrow bandwidths for its high Q factor and the low 
radiation efficiency. 

In the following sentences is described an antenna printed on a substrate with low dielectric 
constant in order to get a reliable bandwidth. Moreover, the meander configuration allows 
us to reduce the antenna size keeping good radiation performance.  

Meander dipole antennas have been already designed through numerical techniques that 
apply either time- or frequency-domain algorithms demanding high computational efforts 
and long-time processing. The common approach in the design of meander antenna is to 
draw a meander path with a suited length to the working frequency in commercial software 
and run simulations. Nevertheless, This empirical approach may lead to several consecutive 
trials and verifications. In order to decrease the long-time processing and avoid these cut 
and try methods, it would be convenient to start simulations with a commercial software 
having an antenna size close to its optimized dimensions. Thus, a good initial configuration 
can strongly affect the numerical convergence efficiency and the design process would be 
quicker. 

This paper presents a transmission line model that provides an initial geometrical 
configuration of the antenna that allows us a computational improvement in the design of 
meander antennas. The dimensions obtained from the model have been used to run a 
simulation with a commercial software and an antenna resonating very close to that 
working frequency has been achieved. Finally, a quick optimization has been performed to 
definitely tune the antenna according to the ISM band. 

14. TL model for meander antennas 

Commercial and military mobile wireless systems demand for high compactness devices. 

An important component of any wireless system is its antenna. Whereas significant efforts 

have been devoted towards achieving low power and miniaturized electronic and RF 

components, issues related to design and fabrication of efficient, miniaturized, and easily 

integrable antennas have been overlooked. In this paper a novel approach for antenna 

miniaturization is presented. The meander topology is proposed as a good approach to 

achieve miniaturization and a transmission line model for the analysis and synthesis of 

meander antennas is developed.  

Indeed, the miniaturization of an antenna can be accomplished through loads placed on the 
radiating structure. [32-33]. For example, monopoles were made shorter through center 
loaded (inductive) or top loaded (capacitive). Hence appropriate loading of a radiating 
element can drastically reduce the size, however, antenna efficiency may be reduced as well. 
To overcome this drawback, lumped elements of large dimensions can be created using 
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distributed reactive elements. For this reason, we propose a meander topology that allows 
us to distribute loading through short-circuited transmission lines. 

In the past, meander structures were suitably introduced to reduce the resonant length of an 
antenna without great deterioration of its performances [34-36].  

To exploit the meander topology to miniaturize printed antennas and develop a 

transmission line model for the analysis and the synthesis of this kind of antennas is 

proposed an antenna shown in Fig 46. It is a meander printed on the same side of the chassis 

of a circuit board on a FR4 substrate with r =3.38 and thickness 0.787 mm. The feeding is 

between the meander structure and the ground plane. Even if the antenna is a printed 

monopole, it can be studied as an asymmetric dipole and its input reactance has been 

studied through a transmission line model. It is well known that the resonance condition is 

obtained when the input impedance is purely resistive [37-39]. The antenna has been 

modelled as a transmission line periodically loaded from inductive reactances Xm 

represented by the half meanders shown in Fig 46. We have named half-meander the 

shorted transmission line of length w/2. 

 

Fig. 46. Meander antenna monopole printed on the same side of the ground plane of the 
substrate. 

The height b of each half meander and their total number 2n are related to the total length of 
the monopole Lax with the following formula: 

 (2 1)axL n b   (25) 

Each half meander was studied as a short transmission line w/2 long with a characteristic 
impedance Zcm obtained as: 

 120ln( / )cmZ b a   (26) 

and terminating with a metallic strip having an inductance Lsc: 

 72 10 [ln(8 / ) 1]  scL b b a .  (27) 
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The inductance Lsc of the strip with the length b and width a was substituted by a line Lall 
long terminating with a short circuit. The length Lall was properly chosen because this line 
had the same inductance of the strip (Lsc ). 

At the end, the inductance of each meander Xm was obtained by the formula (28): 

 [2 ( / 2 / 2)]
effm cm e allX Z tg w L a      (28) 

The total characteristic impedance of the transmission line with a length Lax and loaded by 
2n half meanders was: 

 120[ln(8 / ) 1]c axZ L a   (29) 

In Fig. 47 the normalized length Lax of the printed monopole versus the normalized 

thickness a according to the transmission line model for w / b = 1 is shown. It is pointed out 

from the figure that, when b=w, the meander length is smaller than the conventional 

monopole at its resonant frequency.  

In Fig 48, for several values of the parameter x=w/, the resonant length Lax/ versus the 

ratio w/b is plotted.  

It can be seen that, for each value of w/b, a remarkable reduction of the antenna length  

is obtained by increasing the values of w at the resonant frequency. Therefore, by 

choosing a value of w/b, the model allows to detect the correspondent resonant length of 

the antenna. 

 

Fig. 47. The normalized length Lax of the printed monopole versus the normalized thickness 
a according to the transmission line model for w / b = 1. 
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Fig. 48. Transmission line model for meander antenna printed on substrate with r =3.38 and 

s = 0.81 mm for different x=w/┣. 

15. Simulated and experimental results 

To test the validity of the model, simulations were run with full wave commercial software 

CST Microwave Studio © at a frequency of 2.45 GHz with appropriate model as shows in 

Fig 49. 

 

Fig. 49. Top and bottom model of meander antenna monopole designed with CST 

Microwave Studio ©. 

The transmission line model (TLM) and the full wave simulation were in a good agreement 

and the difference between the resonant length obtained by TLM and the full wave 
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simulations was within 250 MHz as it has been summarised in Table 2. Figs 47 and Fig. 48 

show, respectively, the normalized length Lax versus antenna thickness a for different 

values of w/b and the normalized length Lax versus w/b for different values of x=w/┣. 

 

 w/b=1.4 

  model 1° run 2° run 

w/ n Lax/ fr sim. Lax/ fr sim. Lax/  fr sim. 

   [GHz]  [GHz]  [GHz] 

0.029 3 0.158 2.26 0.137 2.54 0.143 2.448 

0.025 4 0.177 2.13 0.154 2.40 - - 

0.021 5 0.185 2.12 0.162 2.37 0.157 2.430 

0.017 6 0.180 2.23 0.159 2.49 - - 

 

 w/b=1 

  model 1° run 2° run 

w/ n Lax/ fr sim. Lax/ fr sim. Lax/  fr sim. 

   [GHz]  [GHz]  [GHz] 

0.029 2 0.155 2.43 - - - - 

0.025 3 0.189 2.14 0.160 2.446 - - 

0.021 3 0.160 2.45 - - - - 

0.017 4 0.169 2.41 - - - - 

Table 2. Resonant frequencies calculated with FIT method. 

The antenna sizes derived from the model allow us to obtain a design very close to the final 

project which can be quickly optimized by avoiding long simulations with commercial 

software. 

Table 2 shows that the antenna sizes derived from the model allow us to get antenna sizes 

close to the final structure as the antenna resonates almost at 2.45 GHz. Moreover, in order 

to get exactly 2.45GHz, a quick optimization has to be carried out by running few 

simulations with a commercial software. 

To validate the proposed TLM method, simulations and measurements have been 

performed. The antenna has been printed on a Rogers R04003C with r =3.38 and 

thickness 0.81 mm. A prototype is presented in Fig 50. The geometrical sizes chosen were 

a=0.5 mm, b=8 mm and w=b that has led to a length Lax =56mm by considering 6 half 

meanders (Fig 50). The board total size is L1=72mm and W1=32mm, by considering also 

the chassis. The antenna is fed by a microstrip printed on the back of the chassis by 

terminating with a stub for achieving good matching. The microstrip is 20mm length and 

the stub is L2=8mm and W2= 4mm. The dimensions of the microstrip line has been 

optimized using full wave software to provide better impedance matching for the 

frequency antenna-resonance. 

The simulated and measured return loss is shown in Fig 51. Simulation has been performed 
by using CST Microwave Studio © 2009 and it has shown a value of -44dB at 2.45 GHz.  
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Fig. 50. Meander antenna monopole printed on the Rogers R04003C substrate. 

The measurements were carried out in an anechoic chamber by connecting the antenna at a 
network analyser through coaxial cables.  

The measured return loss in Fig 51 shows a slight shift of the antenna resonant frequency 

towards lower frequencies from 2.45 GHz to 2.42 GHz. Nevertheless, a good matching  

is still observed because the reflection coefficient assumes the value -26 dB instead of  

-44 dB. 
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Fig. 51. Comparison of S11 simulation results with measured results. 

Fig. 52 shows the E field radiation patterns of the antenna at 2.45 GHz on two principal 

planes, xz plane (Ф=0°) and yz plane (Ф=90°). The comparison of the radiation patterns 

shows that simulations and measurements are in a good agreement. 
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Fig. 52. Comparison of measured and simulated E-field at 2.45 GHz for a) = 0° and  

b) = 90°. 

Fig 53 shows the current distribution on the antenna. It can be observed that the current is 

particularly intense at the end of each half meander. Full wave simulations confirm that 

each half meander can be studied as a transmission line terminating in a short circuit.  
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Fig. 53. Current distribution on the meander antenna. 
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