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1. Introduction 

Shallow coastal areas are extremely dynamic regions where the fluid motions associated 
with both surface waves and currents interact with the bottom sediments. The prediction of 
the wave effects on sediment transport in shallow water conditions and in intermediate 
depth is still frequently restricted to monochromatic and unidirectional wave models. 
However, in real shallow water conditions, the nonlinear process of sediment transport 
responds in a rather different way to the idealized regular wave case. Therefore, in these 
regions, both the wave non-linearity and the wave-current interaction become important 
factors to be considered. Forecasts of morphological changes are invariably dependent on 
the correct prediction of the sand transport rate under the action of waves and currents, 
which requires accurate estimation of the friction at bed level, considering all resulting 
complex interactions effects in its entirety. A major consequence of the fluid dynamics 
resulting from the combined wave and current motions is the response of the movable 
seabed, which is significantly altered from that expected for a linear superposition of a pure 
wave motion with a pure current. In recent years, various attempts have been made to 
improve the state of knowledge of the flow in the bottom boundary layer regarding the 
wave non-linearity and complex wave-current effects on the sand-transport rate, using 
theoretical models. The erosion and sediment transport estimation around usual structures 
in the fluvial and coastal environment, like bridge piers, groynes and breakwaters, are of a 
major concern for designing these structures and for considering preventive measures. After 
a brief discussion on turbulence, the following sections present mathematical and numerical 
approaches of different complexity. Starting by the fundamental equations of the Fluid 
Mechanics, a complex unresolved formulation without further assumptions is obtained. 
Afterwards, considering some physical hypotheses, practical models of different complexity 
are shown, followed by simple parametric approaches and applications. 

2. Turbulence 

Turbulence has been a long standing challenge for human mind. Five centuries after the first 
studies of Leonardo da Vinci, understanding turbulence continues to attract a great deal of 
attention. This may be due to its fascinating complexity and ubiquitous presence in a variety 
of flows in nature and engineering. The first turbulence references by Leonardo da Vinci are 
based on visual observations. In 1883, Osborne Reynolds introduced the concept of 
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averages, which became the base of great theoretical-experimental studies. In 20th century, 
Taylor by the thirties presented the first statistical theory for isotropic turbulence, 
Kolmogorov by the year 1941 formulated theoretical developments for local turbulence, 
Batchelor by the year 1953 distinguish himself for theoretical and experimental studies 
about free turbulence of waves and jets. Then, much more other studies were presented, 
mainly about wall turbulence, boundary layer and air models. Several resumes can be 
found in Monin and Yaglom (1971), Tennekes and Lumley (1972), Launder and Spalding 
(1972), Hinze (1975), Schiestel (1993), Nezu and Nakagawa (1993), Rodi (1980, 1993), 
Mohammadi and Pironneau (1994), Lumley (1996), Chen et al. (1996) and Lesieur (1997), 
among others. 
The detailed accurate computation of large scale turbulent flows has become increasingly 
important and considerable effort has been devoted to the development of models for the 
simulation of complex turbulent flows in several applications over the last decades. The 
description of turbulence flows is based on the assumption that instantaneous flow variables 
satisfy the Navier-Stokes equations, which contain a full description of turbulence, given 
that they describe the motion of every Newtonian incompressible fluid based on 
conservation principles without further assumptions. Analysing the applicability of 
continuum concepts to the description of turbulence, Moulden et al. (1978) conclude that if 
the Newtonian constitutive relation is valid, then it is plausible to accept that turbulent 
flows instantaneously satisfy the same dynamical equations as laminar flows. For laminar 
flows, analytical or numerical solutions can be directly compared to experimental results in 
some cases. Moser (2006) declared that despite the increasing range of turbulence spatial 
scales as the Reynolds number increases, in turbulence, the continuum assumption and the 
Navier-Stokes equations are an increasingly good approximation.  
The aforementioned assumption seems to be well supported as DNS “Direct Numerical 
Simulation”, in which all scales of the motion are simulated using solely the Navier-Stokes 
equations. It is the most natural approach to the numerical simulation of turbulent flows 
but, since by Kolmogorov’s theory, small scales exist down to O. (Re-3/4), in order to capture 
them on a mesh, a meshsize 3 4Reh   and consequently (in 3D) 9 4ReN   mesh points are 
necessary. Thus, it only could be applied for simple and low-Reynolds number turbulent 
flows (Kaneda & Ishihara, 2006; McComb, 2011). Even if DNS were feasible for hydraulic 
practical interest, it is not possible to define, with the precision required by the smallest 
scales of the motion, proper initial and boundary conditions. This fact is of significant 
importance due to non-linear character of the advection terms, which results in the 
production and maintenance of instabilities which in turn excite small scales in the motion. 
The presence of non-linear terms also precludes the existence, in the most general case, of 
unique solutions for a given set of initial and boundary conditions. Thus, as a large 
Reynolds number turbulent flow is inherently unstable, even small boundary perturbations 
may excite the already existing small scales, with possible corresponding perturbation 
amplifications. The lack of solution uniqueness and the infeasibility of defining precise 
initial and boundary conditions combine themselves in a way that the resultant flow 
appears random in character. Indeed, the uncontrollable nature of the boundary conditions 
(in terms of wall roughness size and distribution, wall vibration, etc.) forces the analyst to 
characterize them as “random forcings” which, consequently, produce random responses 
(Aldama, 1990). The Navier-Stokes equations can then exhibit great sensitivity to initial 
and boundary conditions leading to unpredictable chaotic behaviour. Although the 
fundamental laws behind the Navier-Stokes equations are purely deterministic, these 

www.intechopen.com



 
Turbulent Boundary Layer Models: Theory and Applications 

 

207 

equations, similar to other simpler deterministic equations, can often behave chaotically 
under certain conditions. Due to the randomness in turbulent flows, it is hopeless to track 
instantaneous behaviour. Instead, the goal is to measure this behaviour in the temporal or 
spatial mean.  
Most researchers in the turbulence field accept that instantaneous flow variables satisfy the 
Navier-Stokes equations as an axiom and use it as the basis for the development of 
models for numerical simulation. Assuming that details of motion at the level small and 
intermediate scales, which tend to exhibit high randomness levels and peculiar 
characteristics such as isotropy, are not required in most applications of interest in 
engineering and geophysics, the establishment of two approaches, which have the 
potential for being applied to problems of engineering interest, can be defined. The first 
approach is based on the use of filters for the flow variables of interest, Large Eddy 
Simulation (LES). The second one relies on the use of statistical averages on the same 
variables, Reynolds-averaged Navier-Stokes equations. Although the former is formally 
superior to the latter, its use implies paying a computational price which is too high for 
applications of practical interest. LES requires less computational effort than direct 
numerical simulation (DNS), but more effort than those methods that solve the Reynolds-
averaged Navier-Stokes equations (RANS). These equations, derived by Osborne 
Reynolds in 1985, describe the dynamics of the “mean flow” in terms of a time average, 
and later defined as average in the probability space “ensemble average”. The Reynolds 
stresses produced by advection terms, which are second order correlations in statistical 
terms, are determined by exact transport equations for the Reynolds stresses derived from 
the Navier-Stokes equations. However, third-order correlations appear in such 
expressions and four-order correlations will appear in the exact transport equations for 
the third-order correlations. This is called the problem of closure of the statistical 
treatment. The approach of neglecting correlations of higher order has proved to be 
unsuccessful because the turbulent flows are not completely random. Experimental 
investigations have made it possible to identify, through the use of conditional sampling 
techniques, “coherent structures” such as shear layers imbedded in turbulent flows, and 
that the degree of coherence is scale dependent. In the solution of complicated sets of 
nonlinear partial differential equations, the interaction between physics and numerical 
approach is very strong, and the use of second approach in question makes it possible to 
have a better understanding of that interaction and, as a consequence, to control it. Four 
main approaches have been followed to find ways to close the Reynolds equations by 
introducing hypotheses based on physical insight and observational evidence: 1- 
transport; 2- mean velocity field; 3- turbulent field, and 4- invariant models. The resulting 
model equations contain a number of empirical constants which, in general, increase with 
their complexity. These models have the base on important concepts and hypotheses as 
the eddy viscosity concept by Boussinesq, in 1877, Prandtl’s mixing length concept, in 

1925, Kolmogorov’s isotropic dissipation assumption, in 1941, and Rotta’s energy 
redistribution hypothesis, in 1951 (Monin & Yaglom, 1971; Rodi, 1984). 

3. Governing equations 

The fundamental equations of the Fluid Mechanics applied to a three-dimensional flow of 
an incompressible and viscous fluid, with sediment in suspension, are written: 
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where u is the instantaneous velocity of the flow; C is the volumetric concentration of the 
sediment; p is the pressure; l  is the kinematic viscosity; gi is the acceleration due to gravity; 
  is the density; 0  is the density of the fluid; s  is the density of the sediment; ws is the 
sediment settling velocity, and m  is the molecular diffusivity. 

3.1 Turbulence closure model with sediment in suspension 
Following the classical Osborne Reynolds procedure, and assuming that the fluid is in a 
randomly unsteady turbulent state and applying time averaging to the basic equations of 
motion, the fundamental equations of incompressible turbulent motion are obtained. These 
are known as the Reynolds equations, and involve both mean and fluctuating quantities – 
the turbulent inertia tensor components. We consider only incompressible turbulent flow 
with constant transport properties but with possible significant fluctuations in velocity, 
pressure, and concentration, i.e.: 

 i   '
i iu u u ; i   '

i ip p p ; '
i i iC C C    

Substituting these functions into the basic equations (1), and taking the time average of each 
entire equation, we obtain (2) (Rodi, 1984): 
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 (2) 

where - ' '
 i ju u  are the tensor components of the Reynolds stresses, and - ''

 iu ǒ  are the tensor 
components of density-velocity correlations. Thus the mean momentum equation and the 
equation for the concentration are complicated by new terms involving the turbulent inertia 
tensor ' '

 i ju u  and density fluctuations ''
 iu ǒ . The new terms are never negligible in any 

turbulent flow with sediment in suspension, and can be defined only through knowledge of 
the detailed turbulent structure, which is, in its turn, unavailable. These turbulent quantities 
are related not only to the fluid physical properties but also to local flow conditions. As no 
physical laws are available, most attempts have been made to resolve this dilemma. Many 
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attempts have been made to add turbulence conservation relations to the time-averaged 
equations above. 

3.2 Boussinesq hypothesis (first order turbulence closure model) 

According to the Boussinesq hypothesis, the turbulent shear stresses ' '
 i ju u  are modelled in 

terms of the gradients of the mean flow velocities through (3), 

 
   2

 ;   ; 1 2 3
3

j' ' ' 'i
 i j t ij i t

j i i

u ǒu
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where  2 2 2
1 2 32 2' ' ' ' '

i jK u  u u u u     is the turbulent kinetic energy, per mass unit; tν  is 

the turbulent viscosity, and tǄ  is the turbulent diffusivity. In contrast to the molecular 

viscosity l , the turbulent viscosity t  is not a fluid property, but depends strongly on the 

state of the turbulence and may vary considerably over the flow field. A turbulence model 
thus usually has the task of determining the distribution of t  over the flow field, by 

relating the turbulence correlations to the averaged dependent variables. As a first order 
turbulence closure, the turbulent viscosity tν  is obtained through the mixing-length theory of 

Prandtl (1925), who, by analogy with kinetic theory, proposed that each turbulent 
fluctuation could be related to a length lm scale and a velocity gradient, 
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 (4) 

For the lm scale different relations have been proposed. We suggest 1ml kz z z  , where 
0.4k   is the von Kármán constant and z  is the boundary layer thickness. 

3.3 Second order turbulence closure model 
A derivation of the turbulent shear stresses, where i j , involves subtracting the above 
time-averaged equation (2-b) from its instantaneous value (1-b), for both the ix  and jx  
directions. The ith result is then multiplied by '

ju  and added to the jth result multiplied by 
'
iu . This relation is then time-averaged to yield the following Reynolds stress equation ' '

 i ju u : 
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In equation (5), the three terms of different nature  ' ' '
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  are to be either neglected or related to other variables. Let us 

consider these terms in some detail. 
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- The third-order velocity correlations  ' ' '
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 (Lewellen, 1977), where q  is 

the root-mean-square value of the total velocity fluctuation, L is the macroscale of the 
eddies, and tC  is a constant; 
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following equation (6) for the ' '
i ju  u  correlations is obtained: 
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where 2  2 ' '
 i jq = K u u , and the constants have the following values: 0.30tC  , 1.0pC   and 

1 12vC  . By analogy to equation (6), a density-velocity correlations tensor ' '
 iu ǒ  is 

obtained: 
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with the quadratic term 2'ǒ  calculated through (8), 
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An equation for the turbulent length scale (or macroscale of the eddies), L , is written: 
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where 0.75qC  , 0.1125rC  , 0.35lC  , 0.075sC   and 0.80zC  . As can be easily seen, an 

equation for the turbulent length scale L is, like all other approximations, of the form: 
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, as suggested by Lewellen (1977), and 

adding the buoyancy term, the approximation (9) above is newly obtained.  
In summary, equations (2), along with equations (6), (7), (8) and (9) for turbulence closure, 
constitute a complete 3D turbulent boundary layer model with sediment in suspension. 

3.4 Simplified turbulent boundary layer models 
Proceeding with a non-dimensional analysis of the mean flow equations, without sediment 
in suspension, and considering: 
1. A sinusoidal wave  ˆ

w wU , T, L . 
2. The following boundary layer approximations: 

- Small boundary layer thickness    z 2 ,   being the wave length; 
- Nikuradse equivalent bottom rugosity much inferior to the boundary layer 

thickness ( zNk  ). 

3. Small wave amplitude and Stokes hypothesis, which assumes that: 
- The maximum wave velocity amplitude is much inferior to the celerity 

( ˆ
wU gh ). 

4. Local equilibrium turbulence, along with the turbulent kinetic energy is equivalent to 
the viscous dissipation. Assuming local equilibrium there is no time evolution or spatial 
diffusion of the correlations, and the Reynolds stress equation ' '

 i ju u  can be reduced. 

In summary, assuming these hypotheses we can: i) consider a horizontal flow (u, v, w = 0); ii) 
neglect the convective and horizontal diffusion transport, and iii) simplify the turbulent 
transport equations, cancelling the remaining time variation terms and the diffusion terms 
of the velocity correlations. 
Considering the above hypotheses in the pure hydrodynamic Reynolds equations (2-b), 
without stratification, the following approximations (11) result: 
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On the other hand, under the same assumptions, the Reynolds stress equation ' '
 i ju u  (6) can be 

written explicitly: 
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 (12) 

Adding the last three equations we get (13) for 2q : 

 
   

     

2 2 3
 

2 ' ' 2 ' ' 3t v

q q qu v
u w v w C qL C

t z z z z L

   
    

 
      

 
 (13) 

Taking now into account local equilibrium turbulence (Sheng, 1984), which can be assumed 
when the scale L/q is much smaller than the time scale of the mean flow and when the 
turbulent quantities have a small variation on the macroscale of the eddies L. In addition, 
neglecting both variations in time and diffusive transport terms, from equations system (12) 
the following equations (14) are obtained: 

 

2 2

2 3
2

2 3
2

2 3
2

   

' ' '   0  ;  ' ' ' 0

    2 ' ' ' 0
3

    2 ' ' '   0
3

                   '   0
3

v

v

v

q qu v
w u w w v w

z L z L

q q qu
u w u C

z L L

q q qv
v w v C

z L L

q q q
w C

L L

 
 







   

 
     

 
 

     
 
 

    
 

 (14) 

This system of equations allows us to obtain (15): 

 

2 2
2 2 2 2 2 2

           

2 2
          

' 6 3   ;  ' 6  3 ;

' 3   ;  ' ' 3    ;  ' ' 3

v v v v

v v v

u v
u C L C q v C L C q

z z

u v
w C q u w C q L v w C q L

z z

 
 

 
 

         
   

    
 (15) 
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Comparing the last two equations of (15) with 
 

 ' '  t

u
u w

z




   and  ' '  t

v
v w

z




   it is 

clear that: 

 t

 
     

2
3  = 3 2

4v v

K L
C qL C K L    (16) 

In addition, it can be seen from the first three equations of (15) that: 

 
    

    

2 2 2 2
2 2 2

  2 24 2v

u v u v
q K C L L

z z z z

   
   

                        
             

 (17) 

3.5 1DV turbulent boundary layer models 
Considering now a horizontal flow along x-direction (u, v = 0, w = 0) with sediment in 
suspension, so with the buoyancy terms, and local equilibrium turbulence, the system (12) is 
written in the following form (18): 

 

 

 

 

 

  2

0

2 32 2
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  2

' '
0 '        ' ' ' '

2'
0                        ' ' '
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' '
0 ' ' ' '                            ' '

' '
0 '

p

p v

q

g qu w u
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qu u
w u w C u

t z z L

w
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t

  
  

 
 

   


 


    

 
       

 
 

    
 


  

 

2   

0

2  2     

      '                         ' '

'  
0 2 ' '                                        '

q

r

g q
C w

z L

q
w C

t z L

  


   


 



   



 (18) 

Solving this equation system for ' 'u w  and ' 'w   we obtain (19): 

 
 

  
 1 16 444

' '
1 19 778 1 4

.  Ω qL u
u w

. Ω z

 
 

  
; 

 
 1

' '
1 19.778 3 z

qL
w

 
 

  
 (19) 

where 
2

 

2
0

4

3

g L

z q





 


. As shown before and from (3) 

 
 ' '  t

u
u w

z




   and 
 ' '

 t

ǒ
w ǒ Ǆ

z




  ; 

comparing with the expressions (19) above we can write (20) and (21): 

 
 

  
 

  
1 16 444 1 16 444 2

1 19 778 1 4 1 19 778 1 4

  

t

. Ω . ΩqL KL

. Ω . Ω
 

  
   

 (20) 

 
 

 
 

11 4

1 19.778 3 1 16 444 3t t
 

qL

. Ω
 


 

  
 (21) 
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3.5.1 Two-equation K-L 1DV boundary layer model 
Taking into account the assumptions stated before, a complete set of governing equations 
(22) for the two-equation K L  model is written (Tran-Thu & Temperville, 1994): 

   

0

1
t

u P u

t x z z

   
    

     
 

;   

0

1
t

v P v

t y z z

   
    

     
 

  

 





  

0

  

2 2

rate of dissipation diffusion buoyancyproductionchange

2

rate of
change

2
0.30 2

4

0.35
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t t
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gK u v K K
K KL

t z z L z z z

L u v

t K z

                                    

         

  

 

 

0

2

dissipation

production

2

diffusion buoyancy

0.075 2

0.375
            0.30 2 2 0.80

22
t

s
t

L K
z

gL L
KL KL

z z z K zK

w CC C

t z z z

     
   

                   

    
   




 


 
 

 (22) 

where u and v are horizontal components of flow velocity in the boundary layer; C is the 
volumetric concentration; sw  is the sediment settling velocity; K is the turbulent kinetic 

energy, and L is the length scale of the large vortices. 
The turbulent viscosity t  and the turbulent diffusivity t  are given by equations (20) and 

(21), respectively. The hydrodynamic equations and the concentration equation are coupled 
through the equation (23) for the density: 

  0 0  sǒ ǒ ǒ ǒ C    (23) 

where 0ǒ  and sǒ  are the densities of the fluid and sediment, respectively. 

3.5.2 One-equation K-L 1DV boundary layer model 
With ( , , )L f k z K , a complete one-equation K L  turbulence closure model is simply 

written: 

 

 

0 0

0

    

2 2
  

1 1
   ;   

2
0.30 2

4

( , , )  ;   

t t

t t

s
t

u P u v P v

t x z z t y z z

gK u v K K
K KL

t z z L z z z

w CC C
L f k z K

t z z z

        
         

      
      

  
   

           
   

                
       

     
 

  (24) 

where (20), (21) and (23) apply. 
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A number of empirical equations for the length scale L could be found in the literature; some 
examples are (with k = 0.4): 

 4  lL k c z , where 0.08lc  . 

  1L k z z z  , z  being the boundary layer thickness. 

    1 2 1 2  ,  ,
o

z

o o o oz
L k K K dz z K K K z t    . 

   1 wz A
wL k z e



  , where 26A  , wz  is the distance to the wall and   w w T lz z u   , 

Tu  being the friction velocity. 

The influence of a stable stratification on L can be taken into account through (25), 

      
2

1 ,  with 10,  14  and 0.5,  1.5
n

i
o

L
R n

L
 

 
      

 
  (25) 

where 
2 2

i

g u v
R

z z z




                   
 is the Richardson number and oL  is the length scale L 

value without stratification. 

3.5.3 Zero-equation boundary layer model 
Defining the mixing length as  1ml k z z z  , where 0.4k   and z  is the boundary layer 

thickness, equations (26) for the u and v variables in the boundary layer are obtained: 

 
  0 0

      2 21 1
  ;  m m

u P u u v P v v
l l

t x z z z t y z z z

         
           

   
        

   
  (26) 

Stable stratification effects on ml  could be taken into account through the relation 
    0.5

1 10
2

m mo il l R
  , where 0ml  is the mixing length ml  value without stratification, and 

iR  is the Richardson number, as defined above. We now assume in (26): 

 
0 0

1 1
  and  

P U P V

x t y t

   
     

     (27) 

where U and V are the velocity components outside of the boundary layer. Defining the 
deficit velocity components  ,d du v  as (28), 

            , ,   ;  , ,d du u U v v Vz t z t t z t z t t     (28) 

and substituting in (26) the following equations (29) are obtained, 

 
      2 2  ;  d d d d d d

m m

u u u v v v
l l

t z z z t z z z

      
       

   
    

   
  (29) 

These equations are non-linear and no analytical solutions are available, so they have to be 
solved numerically, as will be shown later. 
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3.6 Boundary conditions for 1DV turbulent boundary layer models 
3.6.1 One- and two-equation boundary layer models of the K-L type 
 At the lower limit of the boundary layer, 0z z  

-    0 0 0u z v z  ; 0K z   ;    0 0L z z , with 0.67   (empirical constant). 

- At the hydraulic rough regime, the level 0z  is taken to be 30Nk , with 2.5 Nk d  

the Nikuradse equivalent roughness of a bed of sand with diameter d. In the 
transitory regime, Nk  and 0z  are calculated following Sleath (1984) (Tran Thu and 

Temperville, 1994). 
- For the reference concentration at the bottom, bC , the following relations may be 

used: 0.63bC C  , or  C C Ǚ , where     1bǙ τ t ǒ s gd  . 
 At the upper limit of the boundary layer, z z  

Assuming that the instantaneous velocity   U t


 is given at a level z z  outside the 

boundary layer, the boundary conditions are: 
-      u z U t 


,   U t


 may contain a component of the mean current cU  as well as 
oscillatory components of the wave; 

-   0K z    (pure wave),  or 0
z

K z


    (combined wave and current); 

-   0L z    (pure wave),  or    L z z  (combined wave and current); 

- Depending on the problem, the condition 0
z

L z


    may be also adequate; 

-   0C z    (pure wave),  or 0
b

q t
z

w C C t     (combined wave and current). 
Initial values for u, v, K and L are the solution for the initial field current velocities (Uc, 
Vc). 

 Estimation of the boundary layer thickness, z  

Considering a pure current ( ˆ 0wU  ) in a channel with a water column h, the boundary 

layer thickness is z h  . 

Assuming now a pure wave (Uc = Vc = 0) propagating in a channel, the boundary layer 
thickness reaches its minimum value and can be approximated by 

 0.81ˆ0.246 N Nz k a k   (Huynh-Thanh, 1990), where  the orbital amplitude is given by 
  ˆˆ 2weq cha U T   for an equivalent sinusoidal wave with ˆ

weqU , and during a 
characteristic signal period chT  (Antunes do Carmo et al., 1996). The relation proposed 
for Nz k  corresponds to the thickness beyond which K is zero. 

A general rough estimation for z  can be obtained by (30): 

 
ˆ  

ˆ
c w w

c w

U h U z
z

U U











  =>
   

0.81 ˆˆ0.246 

ˆ
c N N w

c w

U h k a k U
z

U U









   (30) 

3.6.2 Zero-equation model 
The following conditions (31) are imposed at the lower limit 0z z  and at the upper limit 
z z  of the boundary layer: 

         ; 0  ;    ; 0d o d d o du z ,t U   u z ,t v z ,t V   v z ,t        (31) 
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3.7 2DV turbulent boundary layer model 
Over movable beds, the interaction of flow and sediment transport creates a variety of bed 
forms such as ripples, dunes, antidunes or other irregular shapes and obstacles. Their 
presence, in general, causes flow separation and recirculation, which can alter the overall 
flow resistance and, consequently, can affect sediment transport within the water mass and 
bottom erosion. For dunes, in particular, the flow is characterized by an attached flow on 
their windward side, separation at their crest and formation of a recirculation eddy in their 
leeside (Fourniotis et al., 2006). A detailed description of the flow over a dune is then of 
fundamental interest because the pressure and friction (shear-stress) distributions on the 
bed determine the total resistance on the bottom and the rate of sediment transport. Over 
bed forms a 1DV version of the turbulent boundary layer is no able to describe the main 
processes that occur above and close to the bed surface. Consequently, a 2DV turbulent 
boundary layer model is developed herein.  
Considering a two-dimensional mean non-stratified flow in the vertical plane  , 0,u v w , 
only non-zero y-derivatives are present. The physical problem is outlined in figure 1 below, 
under the action of a wave. Knowing that the wavelength is always greater than the length 
of the ripples, i.e. w rL L , we can restrict the domain of calculation, instead of investigate 
all the domain over of the whole wavelength. 
 

 
Fig. 1. Scheme of the physical system (Huynh-Thanh & Temperville, 1991) 

The basic equations of the model are derived from the previous ones (2). In order to simplify 
the numerical resolution of the equations we make use of the stream function (  ) and 
vorticity ( ) variables, instead of the velocities u and v, and a transformation of the physical 
domain into a rectangular one. Considering that only two-independent spatial derivatives 
are involved in the flow, in the xz-plane, i.e., a flow with only velocity components  , ,u x z t  
and   , ,w x z t , the equations of motion are restricted to the continuity equation and the two 
components of the Reynolds equations. Under these assumptions, from (2) the two 
components (32) and (33) of the pure hydrodynamic momentum equation are written: 

        21
' ' '  

pu u u
u w u u w

t x z ǒ x x z

  
   

 
       

 
 (32) 
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        21
' ' '  

pw w w
u w u w w

t x z ǒ z x z

  
   

 
       

 
 (33) 

Substituting in (32) and (33) the approximations (34), 
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 ' 2 t

u
u

x
 

 


; 
  

' ' t

u w
u w

z x
        

 and 
 2

 ' 2 t

w
w

z
 

 


 (34) 

the governing equations (35) and (36) result: 

 
       

 
1

2 t t
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u w

t x z ǒ x x x z z x

    
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                          
 (35) 

 
       1

2t t

pw w w u w w
u w

t x z ǒ z x z x z z

    
   

                          
 (36) 

The unknown pressure gradient due to the bed forms can now be eliminated from equations 
(35) and (36) by cross-differentiation, i.e., taking the curl of the two-dimensional vector 
momentum equations. The result reads: 

 

      

     
2 2 2

 

2 2
    2t t t

u w u w u w
u w

t z x x z x z z x

u w u w u w

z x x z x z z xx z
  

                                    
                                                   

 (37) 

By definition, the following relations (38) account: 

 u
z





; w
x


 


; 

  u w

z x
  
 
 

  (38) 

Inserting the stream function (  ) and vorticity ( ) variables in equation (37) the following 

result (39) for the vorticity is obtained (Huynh-Thanh, 1990; Tran-Thu, 1995): 

 
 
   

2 2 22 2 2
2

2 2 2 2

,
2 2

,
t t t

t
t x z x z x zx z z x

     
           

                
 (39) 

where 
 
 

,

,x z x z z x

       
 

    
 and 

2 2
2

2 2x z

 
  

 
. 

An equation for the stream function is obtained through the definitions (38), substituting u 
and v in  : 

 2      (40) 

which is known as the Poisson equation. The turbulent viscosity t  is obtained assuming 
local equilibrium turbulence. Once more in the vertical plane  , 0,u v w , the following 
equations system (41) can be written: 
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t x z L L

 
  

               

  (41) 

The third equation of this system allows us to obtain 2 2' 4 2v q K  , with 1.0pC   and 

1 12vC  .  

Assuming identical production along both x- and z-directions, from the second and fourth 

equations we find that 2 2' 'u w . This hypothesis is supported by laboratory experiments 
over a bottom with ripples conducted by Sato et al. (1984), among others.  Therefore, as 

2 2 2 22 ' ' 'q K u v w    , the above results show that 2 2 2' ' 3 8 3 4u w q K   . On the other 

hand, from the first equation of the system (41) we find that: 

 
      

2
2 2

 
3 3

' ' ' ' 2
8 8

qL w u L w u w u
u w u w KL

q x z q x z x z

     
     

                
     

 (42) 

Therefore, 

 
3

2
8t KL   (43) 

The equation for the turbulent kinetic energy, K, is obtained through the earlier already 
presented in two-dimensions in the vertical plane: 
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                              

        
   

  (44) 

Inserting the stream function ( ) in equation (44), we find (45): 
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                              
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   

 


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  (45) 
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The length scale L is directly imposed by the analytical solution (46): 

 0.67 1L z z z    (46) 

In order to describe the space-time distribution of the sediments concentration over a 
bottom with ripples, an equation for C is included, considering in it the advection and 
diffusion terms in both x-horizontal and z-vertical directions: 

    s t t

C C C
uC w w C

t x z x x z z
                            

 (47) 

In order to simplify the numerical resolution of the equations, as well as the description of 
the boundary conditions at the ripples surface, the physical domain in coordinates (x, z) is 
transformed into a rectangular one (the computation domain) utilizing orthogonal 
curvilinear coordinates (X, Z) (Figure 2), using the following transformations (48) (Sato et al., 
1984; Huynh-Thanh, 1990; Tran-Thu, 1995; Silva, 2001): 

 1

1

2 2
exp   sin  

2 2
exp   cos  

N

n n
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n n
r rn

X x a n Z n X
L L

Z z a n Z n X
L L

  

  





   
      

   
   

      
   




  (48) 

where N, na  and n  are coefficients to be determined in such a way that the curve Z = 0 

represents the real ripple. 
 

 

Fig. 2. Physical and computational domains. Transformation of coordinates    , ,x z X Z  

The Jacobian of the transformation is defined by (49): 

 
  2 2,

( , )

X Z X Z X Z X X

x z x z z x x z

                         
J  (49) 

which is calculated from the inverse transformation of the Jacobian  1
0 0 J J J . After 

carried out the transformation of coordinates    , ,x z X Z , the above equations (39), (40), 
(43), (45) and (47) are written and solved iteratively as will be shown later (see Huynh-
Thanh, 1990, Tran-Thu, 1995, and Silva, 2001, for details): 
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2
8t KL   (52) 

where an algebraic equation for L is used, 0.67 1L Z Z z  . For K we get (53), 
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where 

2 22 2 2
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4 t

x z z x

                          

P  represents the production of K, and for C: 

 
  ψ ψ

  0s t s t

C x C x C
w C w C

t X Z Z X Z X X Z
                                         

J J  (54) 

3.8 Boundary conditions for a 2DV turbulent boundary layer model 
 At the lower limit of the boundary layer, 0 30Nz z k   

- conditions for the stream current: 0X Z       ; 0  . 
- condition for the turbulent kinetic energy: 0K Z   . 
- condition for the vorticity:  2  0 1 1 02 J Z Z    , where 1  is the stream function 

value at height Z1.. Value for 0  can be also obtained from the one obtained at the 
time precedent through 2 2 2

 XZJ J Z        . 
 At the upper limit of the boundary layer, z z  

- condition for the stream current:  Z U t   , where    sinc wU t U U t  , or 
   ,z t Q t   if the flow is known at the level z z . 

- condition for the turbulent kinetic energy. K = 0 (pure current), or 0K Z    
(combined wave and current). 

- condition for the vorticity: 0   (it is assumed non-rotational flow outside of the 
boundary layer). 

At the lateral boundaries (X = 0 and X = L), a spatially periodic condition for  ,   and K is 

assumed. 

3.9 Other simplified two-equation turbulence closure models 
A relation for the turbulent viscosity, equivalent to (16), can be written as 2

tν  C K ǆ , 

where   is the turbulent dissipation rate defined by 
''
ji

l
k k

uuν
x x


 

 . Comparing this 

definition of the eddy viscosity t  with (16), a relation between L  and   is found 
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3 2
Kǆ C K L . Any other combination of the form m nK L  can be utilized, for example the 

specific dissipation rate  1 2
 ǚLǚ C K L C K  . This suggests the use of different 

variables, other than the macroscale of the eddies L, with all approximations of the form 
(10). One of these turbulence closure schemes, possibly the best known, is the two-equation 
K   model; its governing equations are written: 

 
   

  ;  , 1,2,3
x x

jt i i
j t

j j K j j i j

uu uK K K
u i j

t x x x x

   
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        
          

 (55) 
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1 2 ;  , 1,2,3
x x
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j j j j i j
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u C C i j

t x x x K x K
 



    
  

     
        
          

  (56) 

where, 0.08 0.09KC C   , 1.0LC  , 1.0K  , 1.30  , 1 1.44C    and 2 1.92C   . 
The turbulent viscosity is calculated by 2

tν  C K ǆ , where 0.09C  . 
The Wilcox (1993) model is a two-equation K   turbulence closure scheme. The K and   
equations are determined through (57) and (58): 

  
   

 1 2
j
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x x
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j l K t t K

j j j i j
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 (57) 
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x x
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j l t t

j j j i j

uu u
u C C C i j

t x x x K x
  

      
 

     
                  

 (58) 

where 1 0.50KC  , 2 0.09KC  , 1 0.50C   , 2 5 9C    and 3 3 40C   . The turbulent 
viscosity is calculated by tν  K  . 

4. Numerical approaches 

4.1 1DV boundary layer models 
4.1.1 One- and two-equation models of the K-L type 
Equations system (22) can be easily solved applying an implicit finite-difference approach in 
the raw unknowns (u, v, K, L, C, t , and t ) of five differential equations, both in space and 
time, and two algebraic ones.  
Final solution for the vertical profiles of the horizontal components of the velocity (u, v), 
turbulent kinetic energy (K), macroscale of the eddies (L), concentration (C) and turbulent 
viscosity ( t ), is obtained iteratively during the time-period T of the signal introduced at the 
upper limit of the boundary layer. A flowchart representing the numerical solution 
implemented is presented in figure 3.  

4.1.2 Zero-equation model 
The model equations (29) are to be solved in this section. Considering the du , we note that 
the non-linear term should be linearized in time using Taylor series. With 2

t m du l u z   , the 
following form of the du -equation show how the solution could be obtained: 
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Considering the case 0du  , a discretized form of this equation reads: 

 1 1 1
 1   1  ;  2 1n n n

j d j j d j j d j jA u B u C u D j J  
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where the coefficients jA , jB , jC  and jD  are: 
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2 2
n

j d j j d j j d jD u A u C u        

with n n n
  1 2   1d j d j d ju u u     and n n n

  1 2  1  d j d j d ju u u    . 
 

 

Fig. 3. Flowchart for the 1DV two-equation K L  boundary layer model 

Applications of 1DV boundary layer models are presented later, in this chapter. 
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4.2 2DV boundary layer model 
Equations (50) to (54) are easily solved applying an implicit finite-difference approach 
centred in space and forward in time. The alternating direction implicit (ADI) method is 
used to solve the equations for   and K. The Poisson equation for   is solved by the bloc-
cyclic reduction method (Roache, 1976), which allows a huge saving in calculation time 
compared to the Gauss-Seidel iteration method (Huynh-Thanh & Temperville, 1991). Final 
solution is obtained iteratively during the time-period T of the signal introduced at the 
upper limit of the boundary layer. A flowchart representing the numerical solution 
implemented is presented in figure 4. 
 

 

Fig. 4. Flowchart for the 2DV one-equation K L  boundary layer model 

Comparisons of laboratory experiments with numerical results of the 2DV boundary layer 
model are presented later, in section 6. 

5. Parametric formulations 

Following we show how different parametric approaches are derived, and tested with 
experimental data, using the two-equation K L  boundary layer model (22). Using this 
model, Huynh Thanh (1990) proposed formula (59) below for the wave friction coefficient, 

 w rf , in the rough turbulent flow case: 
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1

 ( ) 1 2exp
n

w r
N

A
f c c

K

     
   

 (59) 

where A is the wave excursion amplitude, and with the empirical coefficients 1c , 2c  and 1n  
determined by Huynh Thanh, and presented in table 1 (formula HTfwr). Using the same 
boundary layer model (22), considering the best overall fit with a large number of the model 
results, in the interval 1 36.4 10 3.4 10NA k    , Antunes do Carmo et al. (2003) proposed 
formula (59) with the empirical coefficients determined in that study, listed in table 1 as 
formula CTfwr. 
 

Coeff. 
Formula 

c1 c2 n1 

HTfwr 
 

0.00278 4.6500 -0.2200 

CTfwr 
 

0.00140 4.5840 -0.1340 

Table 1. Fitting coefficients 1c , 2c  and 1n , for model of Huynh Thanh (1990) (= HTfwr) and 
proposed  by Antunes do Carmo et al. (2003) (= CTfwr) 

In the case of a current alone, Huynh Thanh found that the friction coefficient  c rf  coincides 
with the value obtained by the theoretical formula (60): 

 
 

2

( )
 0

2 
1c r

k
f

Ln h z

 
  

  
 (60) 

5.1 Sinusoidal wave alone 
Considering rough turbulent flows, for values of the wave friction coefficient,  w rf , Antunes 
do Carmo et al. (2003) proposed formula (59) with CTfwr coefficients (table 1); Tanaka & Thu 
(1994) suggested formula (61), Swart (1974) formula (62) and Soulsby et al. (1994) formula (63): 

   0.10
 ( ) 0 exp 7.53 8.07 w rf A z

    (61) 

   0.19
 ( ) 0.00251 exp 5.21 w r Nf A K

  (62) 

   0.52
( ) 01.39 w rf A z

   (63) 

A comparison between formulae (59), with HTfwr and CTfwr coefficients, (61), (62) and (63) is 
shown in Antunes do Carmo et al. (2003). The same figure also shows experimental 
measurements of Sleath (1987), Kamphuis (1975), Jensen et al. (1989), Sumer et al. (1987) and 
Jonsson & Carlsen (1976).  
According to Sleath (1991), bottom shear stress may be split into two components: 

 ˆ ˆ ˆwp w p     (64) 
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The shear stress in the fluid, ˆw , is taken into account by the model, but the value of ˆp , due 
to the mean pressure gradient acting on the bed roughness, is not. Using Sleath’s 
experiments, it can be seen that a global friction coefficient may be split into the following 
two components: 

 wp w pf f f   (65) 

where wf  represents the friction coefficient obtained by the K-L model, and pf  represents 
the pressure gradient contribution. Assuming 502.5 NK d , Sleath (1991) presented the 
formula (66): 

   1
0.48 p Nf A K

  (66) 

The pressure gradient was not taken into account in experiments conducted by Sleath, 
Sumer, Jensen and Jonsson. Therefore, results of their experimental data are compared with 
model (59) considering CTfwr coefficients. Excluding a small part of the Sleath’s experiments, 
all other cases show a close agreement model (Antunes do Carmo et al., 2003). Discrepancies 
are explained as a consequence of some of Sleath’s experiments being in the smooth-laminar 
transition regime. The pressure gradient is taken into account in Kamphuis’ experiments, so 
this data should be compared with values for the following expression (67): 

 
0.134 1

0.0014 exp 4.584 0.48 wp w p
N N

A A
f f f

K K

            
     

 (67) 

For values of 100NA K  , the pf  term is negligible and expression (59) with CTfwr 
coefficients (table 1) is in close agreement with results (Antunes dio Carmo et al., 2003). 

5.2 Time-dependent shear stress 
For the purpose of calculating time-dependent shear stress  t  in the case of an irregular 
wave whose instantaneous velocity is given by  U t , Soulsby et al. (1994) propose 
calculating the value of the friction coefficient wf  for the equivalent sinusoidal wave with 
orbital velocity amplitude equal to  2 rmsU  and period Tp. It can therefore be deduced 
(Antunes do Carmo et al., 2003): 

 
0.52

0

1.39 w

A
f

z


 

  
 

 
 

 2

2
rmsU

A


  (68) 

where rmsU  = root-mean-square of orbital velocities. For a sinusoidal wave, this formulation 
correctly represents, in parametric form, the bottom shear stress obtained using K L  
model (22), but does not take into account the phase shift between  t  and  tU . For an 
asymmetric wave, or an irregular wave, more important differences appear between this 
parametric formulation and the results calculated directly by the K L  model. 
To illustrate these phenomena, we consider the instantaneous velocity records presented in 
figure 5 for three cases (Antunes do Carmo et al., 2003): a) a sinusoidal wave, with orbital 
velocity amplitude 0.225 m/s and period 3.6 sec; b) a cnoidal wave, with a total velocity 
amplitude 1.107 m/s and period 9 sec, and c) an irregular wave obtained by the non-linear 
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propagation of a sinusoidal wave, making use of a numerical Boussinesq-type model 
(Antunes do Carmo et al., 1993), with a 3.0 sec period in a channel 0.30 m depth. 
The values of the friction coefficient for a sinusoidal wave are shown in figure 6. Close 
agreement is evident between results 1 and 2. The instantaneous bottom shear stresses  t  
have been calculated using model (59) with CTfwr coefficients. In figure 7, results given by 
the K L  model (22) (result 2) are compared both with those of model (59) (result 1) and 
with those obtained by a constant friction coefficient without the phase shift (result 3). 
Computed shear stresses for the sinusoidal wave case are presented in figure 7-a). Results of 
the model (59) with CTfwr coefficients (result 1) are in close agreement with those of the 
K L  model (22).  
 
 

 
 

Fig. 5. Instantaneous velocity records: a – Sinusoidal wave (orbital velocity amplitude = 
0.225 m/s, period = 3.6 sec); b – Cnoidal wave (total velocity amplitude = 1.107 m/s, period 
= 9.0 sec); c – Irregular wave (resulting from the non-linear propagation of a sinusoidal 
wave with a period = 3.0 sec in a channel 0.30 m depth) (Antunes do Carmo et al., 2003) 
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Fig. 6. Comparisons between the parameterized friction coefficient and the K L  model 
result for a sinusoidal wave. Model (59) with CTfwr coefficients (result 1: ---- ; result 3: 
…..…) and that obtained by K L  model (result 2: _____) (Antunes do Carmo et al., 2003) 

 

 

Fig. 7. Comparisons between the parameterized shear stress and the K L  model result: a) 
Sinusoidal wave; b) Cnoidal wave; c) Irregular wave. Model (59) with CTfwr coefficients 
(result 1: ---- ; result 3: .…....) and that obtained with K L  model (result 2: _____) 
(Antunes do Carmo et al., 2003) 

A phase error between result 3 and result 2 ( K L  model) is evident. In the cnoidal wave 
case, the bottom shear stress calculated by the numerical boundary layer model is 
represented in figure 7-b) by the continuous line. As can be seen, for this case (figure 7-b), 
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result 1 is closer to result 2 than it is to result 3, for both phase and negative values. 
However, asymmetries are not reproduced and a discrepancy can be seen for the maximum 
value. Several observations can be made concerning these results (Antunes do Carmo et al., 
2003): i) The representative curve  t  does not present the symmetry of velocities  U t . 
The negative values of  t  are more important after the main positive peak than before it. 
It may be assumed that a “turbulence memory” created for this main peak influences what 
happens afterwards; ii) If the maximum velocity value is considered to be 1U  and the 
minimum velocity value 2U , it follows that: 

 
2

2 2

1 1

0.08
U

U




 
  
 

 (69) 

Figure 7-b) shows that the relation 2 1 0.24    is greater than the value calculated by (69). 
Therefore, as in the case of a sinusoidal wave, the friction coefficient does not remain 
constant when velocity changes, assuming increasing values with decreasing velocity. 
Antunes do Carmo et al. (2003) propose calculating a time-dependent friction coefficient by 
replacing the maximum velocity with the instantaneous velocity  U t  , which takes into 
account the phase shift. The coefficient  f t  will accordingly be calculated using expression 
(59), with CTfwr coefficients (table 1), where A is given by (70): 

 
 

max

2

2

 rms pU  T U t θ
A

Ǒ U


  (70) 

and  t  is defined by (71): 

         
2

f t
τ t U t θ U t θ    (71) 

  represents the phase lag between  U t  and the bottom shear stress  τ t  at the upper 

limit of the boundary layer. Computed shear stresses for the more complex velocity case 
(irregular wave obtained by the non-linear propagation of an input sinusoidal wave) is 
presented in figure 7-c). A comparison of results 1 and 3 with result 2 shows that result 1 is 
still closer to that of the K L  model (22) than to result 3. Also, a slight discrepancy can be 
seen for the maximum value. Despite the “turbulence memory effects”, the model (59) with 
CTfwr coefficients fits closely with the boundary layer model results for the three cases 
analysed. Comparisons were made, however, assuming that results given by the K L  
model correctly represent the real conditions. Moreover, some discrepancies occur, 
especially for the maximum values. 

6. Applications 
6.1 K-L 1DV boundary layer model 
Following closely Antunes do Carmo et al. (1996), an application of the K L  turbulence 
model is presented, which corresponds to a sinusoidal mass oscillation where the velocity at 
the top of the bottom boundary layer is a pure sinusoidal wave with amplitude 170u   
cm/s and period 7.2 sec. The following values were considered: 2.6sw   cm/s, 50 0.021d   
cm, 2

0 0.175 10z    cm, 502 0.042az d   cm and 16.2z   cm. Figure 8-a) to d) show the 
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time series of sediment concentration computed at different levels above az  (z = 0.10, 1.62, 
2.08 and 4.54  cm). In figure 8-e) the vertical profiles of sediment concentration with phase   
shift of 60º are plotted (full lines), as well as the mean values over a wave period (dash 
lines). In each case the numerical solutions are compared to experimental data obtained by 
Ribberink & Al-Salem (Tran-Thu, 1995). Finally, in figure 8-f) the eddy diffusivity vertical 
profile averaged over a wave period is plotted.  
 

 
Fig. 8. Sinusoidal mass oscillation (Antunes do Carmo et al., 1996) 
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The analyses of results show that:  
i. the vertical distribution of sediment agrees well with experimental data; 
ii. the pick concentration in the time series occurs with larger and larger phase the further 

away the level is located from the bed; 
iii. at the upper levels, a time phase shift between the computed values of concentration 

and the experimental ones is observed; 
iv. in the vicinity of the bottom (figure 8-a)) the time series of concentration shows the 

intermittence phenomena; 
v. the maximum values of sediment concentration agree well with data at all levels. 

6.2 2DV boundary layer model 
The flow in the bottom boundary layer established over a rippled bed was investigated 
through experiments and numerical calculations with a 2DV model. Experiments were 
conducted in an oscillatory flow tunnel illustrated in figure 9. This device was built from an 
existing wave flume at the Department of Civil Engineering of the University of Coimbra, 
Portugal. The wave tunnel has a rectangular cross section with 0.30 m width and 0.20 m 
high. The total length of the tunnel is 7.5 m. 
 

7.5  m

0.6  m

0.2  m

A B

 
Fig. 9. Wave tunnel 

At the left end (A) the vertical motion of a wave paddle produces an oscillatory flow within 
the tunnel. Five artificial symmetrical ripples have been placed on the tunnel’s bed: each of 
the ripples has a length (Lr) of 7 cm and height (Hr) equal to 1.2 cm. The ripples were made 
in aluminium with the following profile (72): 

 2
2

4 4
0 2r r

r r
rr

H H
z x x H  ;   x L /

LL
      (72) 

Sediment with a median grain diameter of 0.27 mm was glue to the surface of the ripples in 
order to simulate the skin roughness. Velocities were measured with an acoustic Doppler 
system (ADV) under sinusoidal oscillations at the wave paddle, over one ripple crest and 
one trough. Table 2 presents the experimental conditions considered in one of the tests 
made, being z1 the height above the crest where the measurements were done. With the 
configuration of the ADV used, the measurements could only be done for heights above 4 
cm from the bed. Figure 10 represents the mean values of the measured values of u and w at 
different levels during the wave cycle: u and w represent, respectively, the horizontal 
velocity in wave’s tunnel direction and the vertical velocity. 
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Serie Nr Crest/Trough T (s) Zi (cm) 
S1 1 Cr 3.60 3.9 
- 2 Cr 3.60 4.0 
- 3 Cr 3.60 4.8 
- 4 Cr 3.60 5.7 
- 5 Cr 3.60 6.8 
- 6 Cr 3.60 7.9 
- 7 Cr 3.60 8.9 
- 8 T 3.60 2.6 
- 9 T 3.60 2.8 
- 10 T 3.60 3.1 
- 11 T 3.60 3.6 
- 12 T 3.60 4.1 
- 13 T 3.60 4.6 
- 14 T 3.60 5.1 
- 15 T 3.60 6.1 
- 16 T 3.60 8.1 
- 17 T 3.60 9.9 

Table 2. Experimental conditions 

 

 
Fig. 10. Measured time series of U and W for different levels above the crest (i, ii) - (z1 (a) = 
8.9 cm, z1 (b) = 7.9 cm, z1 (c) = 4.0 cm, z1 (d) = 3.9 cm) and above the trough (iii, iv) – (z1 (a) = 
9.9 cm, z1 (b) = 8.1 cm, z1 (c) = 2.8 cm, z1 (d) = 2.6 cm) (Silva, 2001) 
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These values were divided by the amplitude of the horizontal velocity outside the boundary 
layer, Uw, and were obtained by averaging equi-phase data over approximately 20 wave 
periods. The analysis of figure 10 shows that: (1) The oscillatory flow in the wave tunnel 
does not correspond to a sinusoidal oscillation as we can observe from the velocities 
measured at the highest levels (a), and (2) At the lower levels (c, d) the measured values of w 
show oscillations with a time scale inferior to the ones observed in the highest levels: this 
suggest that the flow at those levels is perturbed by the lee vortex developed during the 
wave cycle and that are ejected from the bottom after flow reversal (0º and 180º). 
A numerical simulation of the flow in the bottom boundary layer was done with the 2DV 
model (50) to (54). In figure 11 the numerical results are compared with the experimental 
data. The results are only plotted for the lower level of measurements. 
 

 
 

Fig. 11. Numerical results vs experimental data (Silva, 2001) 

It is seen that there is a good agreement between the computed and measured horizontal 
velocity. The computed vertical velocity shows small oscillations after flow reversal, 
between 0º-90º and 210º-300º. The shape of these oscillations is similar to the observed one, 
although there is a phase shift between them. The amplitude of these oscillations is also 
lower than the amplitude of the measured values of w: this means that the model dissipates 
the kinetic energy of the ejected vortex at a rate that is superior to what it is observed. This 
feature has also been noted in other comparisons. To analyse with more detail the flow in 
the bottom boundary layer, namely the vortex paths during the wave cycle, we have plotted 
in figure 12 the vorticity field at different wave phases. It is seen that the lowest level of 
measurements over the ripple crest is above the track of the vortex that is carried by the flow 
after it is ejected. This justifies the poor agreement between the numerical and experimental 
results in the figure 11 (iv). 
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Fig. 12. Computed vorticity field (s-1) at different phases of the flow. The lower levels of the 
measurements over the ripple crest and trough are marked  
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7. Conclusion 

Assuming that the fluid is in a randomly unsteady turbulent state and applying time 
averaging to the basic equations of motion, the fundamental equations of incompressible 
turbulent motion are obtained. A three-dimensional form of conservation equations for a 
single Reynolds stress and for the turbulent kinetic energy is derived. However, as the full 
three-dimensional form of equations is very complex and not easy to solve, with many 
unknown correlations to model, other much simpler one- and two-dimensional boundary 
layer forms of these relations are derived. A brief discussion about numerical models based 
on control volumes and finite difference approximations is presented to solve 1DV versions 
of the one- and two-equation rough turbulent bottom boundary layer model of the K-L type, 
and of the 2DV boundary layer model. These numerical models are then used to calibrate 
general parametric formulations for the instantaneous bottom shear stress due to both a 
wave and a wave-current interaction cases. They are still used to discuss some important 
aspects, like the phase shift and the turbulence memory effects. Mathematical formulations and 
parametric approaches are extended to include the effect of suspended non cohesive 
sediments. Comparisons with experimental results show that both 1DV and 2DV boundary 
layer models are able to predict quite well the complex flow properties. However, these 
models are strictly valid for permanent flows in the fully developed turbulent regime at 
high Reynolds numbers. When the flow is oscillatory, the condition of local equilibrium of 
the turbulence is no longer completely satisfied, particularly at the time when the velocity of 
the potential flow is small. Therefore, improvements are necessary to obtain more precise 
results for moderate Reynolds numbers. 
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