
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



5 

Application of Gas Chromatography in  
a Study of Marine Biogeochemistry 

Luisa-Fernanda Espinosa1,  
Silvio Pantoja2 and Jürgen Rullkötter3 

1INVEMAR, Cerro de Punta Betin, A.A., Santa Marta,  
2Department of Oceanography and Center for Oceanographic Research in  

the Eastern South Pacific, University of Concepcion, P.O., Concepción,  
3Institute of Chemistry and Biology of the Marine Environment (ICBM),  

Carl von Ossietzky University of Oldenburg, P.O. Oldenburg, 
1Colombia 

2Chile 
3Germany 

1. Introduction 

A goal of marine biogeochemistry is to characterize the chemical composition of particulate 
organic matter (POM) in the oceanic water column in order to evaluate sources, reactivity 
and the potential for preservation of POM in the sedimentary environment, given its 
importance in biogeochemical cycles in the ocean. Organic matter transformation has 
traditionally been measured as changes in the concentration of organic matter (determined 
as organic carbon) at different depths (e.g., Gundersen et al., 1998; Wakeham, 1995). 
Nevertheless, studies of the transformation of specific compounds provide more precise 
information regarding degradation mechanisms (Abramson et al., 2010; Lee et al., 2004; 
Pantoja & Lee, 2003). Some of the specific compounds that have been investigated are amino 
acids (e.g., Abramson et al., 2010; Pantoja & Lee, 2003), carbohydrates (e.g., Çoban-Yildiz et 
al., 2000), and many lipid classes (Burns et al., 2003; Galois et al., 1996; Minor et al., 2003; 
Parrish et al., 2000; Sheridan et al., 2002; Sun et al., 1997; Treignier et al., 2006; Wakeham, 
1995; Wakeham et al., 1997, 2002).  

Lipids could be efficiently characterized with standard chromatographic techniques such as 
the gas chromatography-mass spectrometry techniques. Although lipids may be a small 
fraction of the organic matter in plankton (about 15 %) (Wakeham et al., 2000), their 
composition has been extensively studied to learn about the sources, fluxes, and alterations 
of organic matter in the water column and sediments (e.g., Grossi et al., 2001; Muri et al., 
2004;; Treignier et al., 2006; Wakeham, 1995). Lipids are suitable for such studies because 
they can be source-specific and, as such, are appropriate “biomarkers” (Pantoja & 
Wakeham, 2000; Pazdro et al., 2001; Volkman & Tanoue, 2002). 

In this chapter, we will present the results of our research carried out in the upwelling 
system off Antofagasta, northern Chile. The Antofagasta coastal zone (≈23oS) is part of the 
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Humboldt Current System (HCS) and is characterized by high biological production (Daneri 
et al., 2000), which is followed by a high export of organic matter (González et al., 2000, 
2009) and its preservation in the sediments. The quantity and quality of organic matter 
preserved in the sediments is controlled by production at the sea surface and decomposition 
processes during transport in the water column (Lee et al., 2004). In highly productive 
environments, such as HCS, we would expect to find a clear imprint of marine processes in 
the distribution of organic molecules in the water column, with a minor contribution of 
terrestrial biomarkers. Thus, we determined the distribution pattern of free alcohols, free 
fatty acids, and sterols with the goal of assessing the molecular distribution of lipids in the 
water column to evaluate sources and reactivity and to infer their potential for preservation 
in the sedimentary environment. This study of marine biogeochemistry represents an 
example of gas chromatography – mass spectrometry application. 

2. Methods 

The investigation was carried out off Antofagasta in northern Chile, at two stations: one 
coastal (23º16’S; 70º40.3’W) and one oceanic (23º06.9’S; 71º58’W) (Fig. 1). Sampling was 
carried out during the FluMO (Fluxes of Organic Matter) cruise on board the RV Abate 
Molina, from April 18 to April 25, 2001. Suspended particulate organic matter was collected 
from the oxygenated surface layer, the Oxygen Minimum Zone (OMZ), and the oxygenated 
deep layer using a rosette equipped with Niskin bottles and a CTDO. Between 120 and 150 L 
of water were filtered through a 90 mm diameter borosilicate filter (nominal pore size 0.7 
µm) precombusted at 450°C for 4 hours. Filters were kept frozen (-20 ºC) until analysis. 
Vertical profiles of dissolved O2 were determined with the CTDO sensor, calibrated using 
the Winkler method, as published elsewhere (Pantoja et al., 2009). 

 

Fig. 1. Location of the sampling stations. 
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Filters were sub-sampled for determination of particulate organic carbon content, which 
was calculated as the difference between total carbon and inorganic carbon. Total carbon 
was analyzed by combustion in a Leco CS-444 instrument, and carbonate was determined 
by acidification using a UIC coulometer. 

Filters were ultrasonically extracted with a solvent mixture of dichloromethane/methanol 

(2:1 v:v) for 30 minutes in centrifuge tubes (three times). After centrifugation, the combined 

supernatant was extracted three times with dichloromethane (30 mL each). The combined 

extracts were dried overnight with anhydrous sodium sulfate, concentrated in a rotary 

evaporator, and dried with nitrogen gas. 

The total extract was dissolved in a small amount of dichloromethane, and 5ǂ-androstan-3ǃ-

ol was added as an internal standard. The hexane-insoluble fraction (asphaltenes) was 

precipitated by adding an excess amount of n-hexane. After filtration, the asphaltene-free 

extract was separated into three fractions by liquid chromatography over an SiO2 column 

(silica gel 60 Merck, activated with 5% water): Fraction 1 containing aliphatic and aromatic 

hydrocarbons was eluted with 7 mL hexane/dichloromethane (9:1); fraction 2 containing 

phthalates was eluted with 5 mL hexane/dichloromethane (1:1); and fraction 3 containing 

alcohols, sterols, stanols, and free fatty acids was eluted with dichloromethane/methanol 

(9:1). The third fraction was derivatized with N-methyl-N-trimethylsilyltrifluoroacetamide 

(MSTFA) to form trimethylsilyl (TMS) ethers of alcohols, sterols, and and TMS esters of  

fatty acids. 

Compounds eluted in the third fraction were analyzed on a Hewlett-Packard 5890 Series II 

gas chromatograph equipped with a DB5-HT high temperature fused silica capillary column 

(30 m length; 0.25 mm ID; 0.1 µm film thickness), a flame ionization detector, and a Gerstel 

KAS3 cold injection system. Helium was used as the carrier gas. Separations were achieved 

using a temperature program of 4°C/min from 60°C to 380°C. Selected samples were 

analyzed by gas chromatography-mass spectrometry (GC-MS) using a Finnigan MAT SSQ 

710B mass spectrometer equipped with the same type of GC column and using helium as 

the carrier gas. Mass spectra were acquired over the range of m/z 50-650 at a rate of 1 scan/s, 

with an ionization electron energy of 70 eV. The temperature was programmed from 60°C to 

350°C at a rate of 3°C/min. 

Most extracts were analyzed by GC-MS for compound identification based on the elution 

order and a comparison of the mass spectral pattern with published data. Lipid 

quantification was based on response factors derived from the internal standard (5-

Androstan-3-ol). 

A Principal Component Analysis (PCA) was performed in order to determine the 

distribution patterns of biomarkers in the water column and to identify lipid sources and 

lability. For this, we used 44 lipid compounds present in nearly all samples, combined with 

the oxygen concentration, organic carbon content, and water depth. A correlation matrix 

was set up with the composition of individual compounds relative to total lipids in each 

sample, normalized according to: 

 
i

ik
ik

S

xx
n



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where x is the relative percent of compound (i) in sample (k), and S is the variance 
(Reemtsma & Ittekkot, 1992). 

The PCA was performed using STATISTICA software v. 99. Principal components were 

calculated from the correlation matrix and treated by Varimax rotation in order to maximize 

the load of each variable on one factor (Reemtsma & Ittekkot, 1992). 

3. Results and discussion  

In this study, 44 lipid compounds were identified and quantified from the following classes: 

alcohols (C14 to C32), fatty acids (C14 to C21), and sterols (C26 to C30); these represented 

between 0.8 and 0.04% of total organic carbon (Table 1). Alcohols constituted the greatest 

percentage of the three lipid classes analyzed at both stations (45% at the coastal station and 

37% at the oceanic station). Phytol, which is released by the chlorophyll a molecule through 

enzymatic hydrolysis when zooplankton consumes phytoplankton, was the most abundant 

alcohol (Table 2). In the laboratory, phytol release was achieved through saponification 

(Wakeham et al., 2002). In the present study, phytol is used as a biomarker for the decay of 

chlorophyll a, as the samples were not saponified prior to GC-MS analysis. 

Station 
Depth 

(m) 
Corg 

(μg Corg/L) 

% Corg % Total Lipids 

Total 
Lipids 

n-Alcohols 
Fatty 
acids 

Sterols 

Oceanic 

100 122 0.22 38 30 32 

220 66 0.22 43 31 26 

1000 91 0.04 31 46 21 

Average    37 36 26 

Coastal 

20 177 0.78 55 15 30 

250 76 0.52 54 27 20 

300 68 0.29 42 34 24 

800 93 0.04 29 29 42 

Average    45 26 29 

Table 1. Organic carbon (Corg), and percent of lipid concentrations to Corg in particulate 
organic matter. 

The total lipid concentration (alcohols + fatty acids + sterols) was five times greater at the 

coastal than at the oceanic station (Figs. 2a, b). At both stations, the concentration of total 

lipids was highest in the samples from shallowest water depth, reaching values of 1.97 μg/L 

at the coastal station (20 m) and 0.20 μg/L at the oceanic station (100 m). This agrees with 

the greater primary production measured at the coastal station (between 1.3 and 3.3 g C/m2 

d) as compared with that at the oceanic station (between 0.27 and 0.30 g C/m2 d) (Daneri 

and Pantoja, unpublished results). The total lipid concentrations decreased with depth. At 

the coastal station, the decrease was more significant, reaching values two orders of 

magnitude lower (0.04 μg/L) in the deepest sample (800 m). At the oceanic station, the 

decrease was less significant, dropping only to one half (0.11 μg/L) at 1000 m depth  

(Figs. 2a, b). 
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Fig. 2. Total lipid concentrations, and lipid/Corg ratios in particulate organic matter. 
Shaded areas represent the Oxygen Minimum Zone ([O2] < 22.5 µM). 
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Most of the particulate organic matter in the ocean is biosynthesized at the surface by 

photoautotrophic plankton via photosynthetic fixation of carbon (Lee et al., 2004). Although 

a lesser percentage could be biosynthesized by the microbial activity in the deeper ocean 

layers, the changes observed in the vertical concentrations (Table 2, Figs. 2a, b) mainly 

reflect the breakdown of the lipid molecules in transit to the seafloor. When the lipid 

concentration is normalized to the organic carbon content (Figs. 2c, d), it becomes obvious 

that the proportion of lipid components decreases in relation to the total organic carbon  
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Table 2. Concentration of lipids (ng L-1) identified in suspended particulate organic matter at 

the two sampling stations off Antofagasta. nd = not detected. 

(Corg). This is interpreted to show that the lipid molecules analyzed in this study are more 

labile than other components representing the bulk of the organic matter. 

At the coastal station, phytol and the sterols were the most abundant compounds at the 

surface (20 m) and had the greatest decrease in concentration with increasing depth (Table 2, 

Fig. 3a). At the oceanic station, the shallowest sample was collected at the oxycline (100 m), 

which is the transition zone between the well-oxygenated surface layer and the deep layer, 

where oxygen concentrations fall below 22.5 µM (suboxic conditions). At this depth, the 

most abundant compounds were the fatty acids; their concentration decreased to 50% at 

1000 m depth (Fig. 3b). 

The vertical distribution of the concentration of each lipid class normalized to Corg indicates, 

on the one hand, the relative importance of each class, and on the other, the preferential 

consumption of some compound types with respect to others (Lee et al., 2004). At the coastal 

station, the most abundant compounds at 20 m were phytol (3.3 x 103 μg/g Corg) and the 

sterols (2.3 x 103 μg/g Corg), but within the Oxygen Minimum Zone, the fatty acids (1.4 x 103  
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Fig. 3. Lipid class concentrations, and lipid classes/Corg ratios in particulate organic matter. 
Shaded areas represent the Oxygen Minimum Zone ([O2] < 22.5 µM). 
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μg/g Corg) and n- alkanols (0.95 x 103 μg/g Corg) were more abundant (Table 2, Fig. 3c). If we 
consider photosynthetic production to be the main source for the formation of organic 
matter at the ocean surface, our results show that phytol and sterols are preferentially 
consumed in the water column, as they disappear more quickly than Corg with increasing 
depth. At the coastal station, the fatty acids are the most abundant lipids at 100 m depth (1.0 
x 103 μg/g Corg), but in the Oxygen Minimum Zone, the n- alkanols (0.9 x 103 μg/g Corg) and 
sterols (0.5 x 103 μg/g Corg) are more abundant than the fatty acids (Table 2, Fig. 3c). At the 
oceanic station, the compounds that disappear most quickly with depth are the fatty acids 
(Table 2, Fig. 3d), meaning that these are the most labile compounds in this environment. 

3.1 Sterols 

At the coastal station, the sterols represented 29% of all three lipid classes analyzed (Table 

1). The surface sample (20 m) was dominated by 24-methylcholesta-5,24(28)-dien-3ǃ-ol (24-

methylenecholesterol), cholest-5-en-3ǃ-ol (cholesterol), 24-methylcholest-5-en-3ǃ-ol, and 24-

methylcholesta-5,22(E)-dien-3ǃ-ol (diatomsterol) (Table 2, Fig. 4a). The sterols 24-

methylenecholesterol and diatomsterol are phytoplankton biomarkers (known as 

phytosterols) (Burns et al., 2003; Volkman et al., 1998; Wakeham et al., 1997), fundamentally 

diatom biomarkers (Burns et al., 2003; Parrish et al., 2000), and cholesterol is a biomarker of 

both phytoplankton and zooplankton (Burns et al., 2003). Although less abundant than the 

diatom biomarkers, some sterols (4ǂ,23,24-trimethyl-5ǂ-cholest-22E-en-3ǃ-ol and 23,24-

dimethylcholesta-5,22E-dien-3ǃ-ol), biomarkers of dinoflagellates, were detected (Fig. 4a) 

(Burns et al., 2003; Volkman et al., 1998; Wakeham et al., 2002). 

A general decrease in the relative abundance of phytosterols was observed within the 

Oxygen Minimum Zone (sampling depths 250 and 300 m). In this area, the phytosterols 24-

methylenecholesterol, diatomsterol, cholesterol, 24-methylcholest-5-en-3ǃ-ol, and 4ǂ,23,24-

trimethyl-5ǂ-cholest-22E-en-3ǃ-ol were equally predominant (Fig. 4a). An increase in the 

abundance of some stanols such as 5ǂ-Cholestan-3ǃ-ol, 24-methyl-5ǂ(H)-cholest-22E-dien-

3ǃ-ol, and 24-ethyl-5ǂ(H)-cholest-22E-en-3ǃ-ol was also evident. Wakeham, 1989 sugested 

these compounds are produced by the bacterial hydrogenation of stenols under suboxic 

conditions, for which their presence has been recognized as the result of diagenetic 

transformation (Parrish et al., 2000; Volkman et al., 1998; Wakeham et al., 2007). 

In the deepest sample (800 m), the relative abundance of cholesterol, 24-methylcholest-5-

en-3-ol, 24-ethyl-5ǂ-cholestan-3ǃ-ol, 24-ethyl-5ǂ(H)-cholest-22E-en-3ǃ-ol, and 5ǂ-
cholestan-3ǃ-ol increased to different extents compared to the Oxygen Minimum Zone 
and partly also to the surface waters (Fig. 4a). At this depth, cholesterol was the most 
common sterol and, although common in phytoplankton, the principal source of this 
compound is zooplankton. 

At the oceanic station, sterols represented 26% of the lipids on average (Table 1). The 
relative abundance pattern was different from that at the coastal station (Fig. 4b). At 100 m 
depth (oxycline), the most abundant sterols were 24-methylcholesta-5,24(28)-dien-3ǃ-ol, 
cholesterol, and diatomsterol. At this station, a high proportion of the A-ring stanols 24-
methyl-5ǂ-cholest-24(28)-en-3ǃ-ol, and 24-ethyl-5ǂ-cholestan-3ǃ-ol was also observed; these 
are used as indicators of bacterial decay of organic matter under suboxic conditions 
(Wakeham & Ertel, 1987). 
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Fig. 4. Distribution of sterols in particulate organic matter. Letter codes are defined in Table 2. 

Within the Oxygen Minimum Zone (220 m), the relative abundance of the majority of the 

sterols identified decreased (Fig. 4b), except for 27-nor-24-methylcholesta-5,22E-dien-3ǃ-ol 

and 24-ethyl-5ǂ-cholestan-3ǃ-ol. The sterol 27-nor-24-methylcholesta-5,22E-dien-3ǃ-ol, 

although commonly reported in sediments, has also been found in some dinoflagellates. 

Unlike at the coastal station, 24-ethyl-5ǂ-cholestan-3ǃ-ol was the only stanol that increased 

within the Oxygen Minimum Zone (Fig. 4b). 

In spite of their different profiles in terms of relative sterol abundance, biomarkers for the 

diatoms, i.e. 24-methylenecholesterol and diatomsterol, were predominant at both stations 

(Fig. 4a, b). This result is not surprising, since studies performed along the northern coast of 

Chile off Antofagasta have shown that the phytoplankton assemblages in this area are more 

dominated by diatoms than by dinoflagellates (González et al., 2000; Iriarte y González, 

2004; Iriarte et al., 2000). 

3.2 Alcohols 

The n-alkanols are formed by hydrolysis of esterified alcohols and are derived from a large 
variety of marine organisms (phytoplankton, zooplankton, bacteria) or higher plants 
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(Treignier et al., 2006; Jeng et al., 2003). In the Antofagasta area, the identified n-alkanols 
represented, on average, 45% of the total lipids at the coastal station and 37% at the oceanic 
station (Table 1). At both stations, 16 n-alkanols were identified in the range between 
nC14OH and nC32OH (Table 2), with a predominance of even-carbon-numbered chains, i.e. 
nC16OH, nC18OH, nC20OH, and nC22OH; of these, nC22OH was the most abundant alkanol 
(Fig. 5). The short-chain n-alkanols (≤C20) have a marine origin (phytoplankton, 
zooplankton, bacteria), whereas the long-chain alkanols (≥C22) are attributed to terrestrial 
plants (Treignier et al., 2006; Wakeham, 2000; Jeng et al., 2003). Nonetheless, nC22OH is also 
attributed to occur in cyanobacteria. For example, studies carried out in the Baltic Sea found 
that nC22OH was the most abundant n-alkanol in samples containing principally 
cyanobacteria (Volkman et al., 1998). Given the very low contribution from terrestrial 
sources in the arid zone off Antofagasta, we attribute the presence of nC22OH to 
cyanobacteria. 
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Fig. 5. Distribution of n-alkanols in particulate organic matter. 

In order to determine the sources of the n-alkanols in aquatic environments, Fukushima and 
Ishiwatari developed a parameter that is based on the ratio of the sum of short-chain n-
alkanols (Σ [nC14OH–nC20OH]) over the sum of long-chain n-alkanols (Σ [nC22OH–nC30OH]) 
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(Treignier et al., 2006). Values >1 reveal a predominance of short-chain compounds and 
values <1 a predominance of long-chain compounds (Treignier et al., 2006). The values 
calculated for our samples at each depth level show that ratios >1 occur in the coastal zone 
(except at 250 m depth) and in the oceanic zone, indicating that the n-alkanols are primarily 
planktonic in origin (Table 2). We feel that the dominance of the nC22OH alcohol found at all 
depths at the oceanic station (Fig. 5b) should be attributed to cyanobacteria, as found for 
other ecosystems (Volkman et al., 1998). 

The isoprenoid alcohol phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol) was also found in all 
samples. This compound occurred at high concentrations (0.58 μg/g) in the coastal zone at 
20 m depth and its concentration decreased rapidly with increasing water depth until values 
three orders of magnitude lower (0.001 μg/g) were reached at 800 m depth (Fig. 3a). At the 
oceanic station, the phytol concentration was greatest at 100 m (0.006 μg/g) and, as at the 
coastal station, decreased with depth until, at 1000 m, the compound was no longer detected 
(Fig. 3b). Phytol is a biomarker of phytoplankton consumed by zooplankton. It is released 
from chlorophyll a through enzymatic hydrolysis when zooplankton grazes on 
phytoplankton (Sheridan et al., 2002). As explained earlier, primary production is higher at 
the coastal than at the oceanic station, so that we expect greater grazing activity in the 
former environment as well. The abundance of metazoans (or zooplankton) was three times 
greater (2189 ± 1888 ind/m3) in the surface layer (0-50 m) at the coastal station than at the 
oceanic station (625 ± 184 ind/m3) (Zenteno-Devaud, unpublished results), which is 
supporting evidence for the phytol profiles observed. On the other hand, phytol is a fairly 
labile molecule, since it practically disappears in the deepest zones at both stations (800 and 
1000 m) (Figs. 3a, b). 

The isoprenoid alcohol phytol (3,7,11,15-tetramethylhexadec-2-en-1-ol) was also found in all 
samples. This compound occurred at high concentrations (0.58 μg/g) in the coastal zone at 
20 m depth and its concentration decreased rapidly with increasing water depth until values 
three orders of magnitude lower (0.001 μg/g) were reached at 800 m depth (Fig. 3a). At the 
oceanic station, the phytol concentration was greatest at 100 m (0.006 μg/g) and, as at the 
coastal station, decreased with depth until, at 1000 m, the compound was no longer detected 
(Fig. 3b). Phytol is a biomarker of phytoplankton consumed by zooplankton. It is released 
from chlorophyll a through enzymatic hydrolysis when zooplankton grazes on 
phytoplankton (Sheridan et al., 2002). As explained earlier, primary production is higher at 
the coastal than at the oceanic station, so that we expect greater grazing activity in the 
former environment as well. The abundance of metazoans (or zooplankton) was three times 
greater (2189 ± 1888 ind/m3) in the surface layer (0-50 m) at the coastal station than at the 
oceanic station (625 ± 184 ind/m3) (Zenteno-Devaud, unpublished results), which is 
supporting evidence for the phytol profiles observed. On the other hand, phytol is a fairly 
labile molecule, since it practically disappears in the deepest zones at both stations (800 and 
1000 m) (Figs. 3a, b). 

3.3 Fatty acids 

The free fatty acids represented 26% of the total lipids at the coastal station and 36% at the 
oceanic station (Table 1). As with the alcohols, the most abundant fatty acids were straight-
chain compounds, which represented more than 65% of fatty acids at all depths, followed in 
abundance by unsaturated and branched (especially iso + anteiso) fatty acids, respectively 
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(Fig. 6). The straight-chain fatty acids C14, C16, and C18 come from mixed planktonic sources 
of phytoplankton, zooplankton (Canuel & Zimmerman, 1999; Wakeham , 1995), and bacteria 
(Gong & Hollander, 1997). In cyanobacteria, fatty acids are dominated by the C16 straight-
chain acid (Wakeham, 1995), whereas diatoms biosynthesize large amounts of the 16:1ω7 
acid (Wakeham et al., 2007). The absence of long-chain fatty acids (>24 carbon atoms) is 
indicative of the very low continental contribution in the northern zone of Chile (absence of 
important rivers), since the long-chain fatty acids are terrestrial higher plant markers 
(Derieux et al., 1998; Parrish et al., 2000). 
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Fig. 6. Distribution of fatty acids in particulate organic matter. 
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In natural systems, fatty acids are found free or associated with other compounds through 
ester bonds. The associated fatty acids are more abundant (S.D. Killops & V.J. Killops, 1994; 
Pazdro et al., 2001) and mainly occur as constituents of phospholipids which are integral 
constituents of the membranes of all living organisms (Petsch et al., 2003, Wakeham et al., 
2007). The relative abundance of free fatty acids analyzed in this work can be interpreted as 
the result of reworking of the organic matter of decayed organisms in the water column, 
more than as specific indicators of organism abundance (Pazdro et al., 2001; Wakeham, 
1995). Thus, the greater relative abundance of saturated fatty acids over monounsaturated 
fatty acids (Fig. 6) and the absence of polyunsaturated fatty acids can be interpreted as the 
result of the increasing metabolization of organic matter with depth since the 
monounsaturated and polyunsaturated fatty acids are more susceptible to breakdown than 
the saturated fatty acids (Derieux et al., 1998; Galois et al., 1996; Pazdro et al., 2001). 

The relative abundance of iso- and anteiso-C15:0 was greater within the Oxygen Minimum 
Zone, as compared to surface and deep samples at both the coastal (250 – 300 m) and oceanic 
(220 m) stations (Figs. 6a, b). Considering that i and ai-C15:0 fatty acids are markers of 
bacteria and that they are commonly used as indicators of intense reworking of organic 
matter (Pazdro et al., 2001; Wakeham, 2007), their occurrence within the Oxygen Minimum 
Zone can be interpreted as pointing to significant bacterial activity on the organic matter in 
this layer. 

3.4 Principal Component Analysis 

Principal component analysis (PCA) has become a powerful tool for reducing the quantity 
of variables and uncovering tendencies in data series having numerous entries. This analysis 
allows a simple graphic representation of the degree of likeness existing within a data 
group, thereby establishing the main characteristics of the group of variables in a series of 
samples, reducing it to a smaller set of derived variables (principal components). More 
information can often be extracted from these principal components than from the original 
variables. 

Application of PCA to our data set showed that the three first components explained a large 
proportion of the total variance (75 %). Component I explained 32% of the variance, 
Component II 26%, and Component III 17% (Table 3). Figure 7 shows the plane that 
represents the first two components. For Factor I, to which the variables were most 
positively loaded (Table 3), comprised the sterols 24-ethyl-5ǂ-cholest-22E-en-3ǃ-ol, 24-ethyl-
5ǂ-cholestan-3ǃ-ol, and 5ǂ-cholestan-3ǃ-ol; the C20, C14, and C16 n-alkanols; and the C14 fatty 
acid (in the hatched oval, Fig. 7), which suggests that these variables are related to each 
other. The n-alkanols, fatty acids, and two of the stenols, precursors of the stanols 24-
ethylcolesta-5,22E-dien-3ǃ-o1 and cholest-5-en-3ǃ-ol, which loaded positively to Component 
I, were derived from phytoplanktonic organisms. On the other hand, free alcohols and free 
fatty acids are considered lipid decay indicators (since most of these compounds are found 
linked to other molecules (Galois et al., 1996; Gong & Hollander, 1997; Parrish et al., 2000); 
the same applies to the increase of the relative abundance of straight-chain fatty acids at the 
expense of their unsaturated counterparts (Wakeham, 1995) and the presence of stanols that 
are produced by the microbial reduction of their stenol analogues under suboxic conditions 
(Minor et al., 2003; Wakeham, 1995). These results lead us to conclude that the substances in 
Component I represented highly degraded organic matter of planktonic origin. 
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Variable Factor 1 Factor 2 Factor 3 

N = 24-Ethyl-5ǂ-cholest-22E-en-3ǃ-ol  0.905 0.093 -0.385 

nC20OH 0.833 -0.102 -0.216 

Q = 24-Ethyl-5ǂ-cholestan-3ǃ-ol 0.782 -0.036 0.168 

F = 5ǂ-Cholestan-3ǃ-ol 0.750 -0.001 -0.545 

nC14OH 0.624 0.476 -0.547 

nC16OH 0.614 -0.547 -0.273 

C14:0 0.600 -0.317 -0.612 

E = Cholest-5-en-3ǃ-ol 0.600 0.378 0.002 

R = 4ǂ,23,24-Trimethyl-5ǂ-cholest-22E-en-
3ǃ-ol 

-0.964 0.018 0.097 

P = 24-Ethylcholest-5-en-3ǃ-ol -0.823 -0.061 -0.442 

nC28OH -0.807 -0.374 0.130 

nC30OH -0.710 0.026 -0.517 

Σ i+ai(C15-C17) -0.737 -0.504 -0.3598 

J = 24-Methylcholesta-5,24(28)-dien-3ǃ-ol -0.758 0.553 -0.102 

M = 23,24-Dimethylcholesta-5,22E-dien-
3ǃ-ol 

-0.761 -0.007 0.014 

nC32OH -0.641 0.191 -0.719 

L = 24-Methylcholest-5-en-3ǃ-ol -0.029 0.964 0.115 

Phytol -0.305 0.823 0.135 

K = 24-Methyl-5ǂ-cholest-24(28)-en-3ǃ-ol -0.285 0.805 0.223 

Oxygen -0.165 0.783 0.117 

B = 27-nor-24-Methyl-5ǂ-cholest-22E-en-
3ǃ-ol 

-0.243 0.718 0.316 

nC22OH 0.053 -0.904 0.237 

A = 27-nor-24-Methylcholesta-5,22E-dien-
3ǃ-ol 

-0.347 -0.865 0.272 

C18:0 0.446 -0.812 0.023 

nC24OH 0.172 -0.785 -0.301 

H = 24-Methyl-5ǂ-cholest-en-3ǃ-ol -0.100 -0.460 0.616 

C21:0 -0.155 -0.006 -0.838 

C16:1 -0.645 -0.109 -0.713 

Eigenvalues 13.337 11.057 7.115 

% total variance 32 26 17 

Table 3. Loading scores for the three factors explaining 75% of the variance in particulate 
organic matter. 

On the other hand, the variables that were negatively loaded to Component I (in the dark 
grey oval, Fig. 7) were the sterols 4�,23,24-trimethyl-5ǂ-cholest-22E-en-3ǃ-ol, 24-
ethylcholest-5-en-3ǃ-ol, 24-methylcholesta-5,24(28)-dien-3ǃ-ol, and 23,24-dimethylcholesta-
5,22E-dien-3ǃ-ol; the C28, C30, and C32 n-alkanols; and the i- and ai-C15 and -C17 (Σ i+ai(C15-
C17)) bacterial fatty acid markers (Table 3). The long-chain n-alkanols and 24-ethylcholest-5-
en-3ǃ-ol are usually considered biomarkers of terrestrial higher plants (Parrish et al., 2000; 
Treignier et al., 2006; Hinrichs et al., 1999), but 24-ethylcholest-5-en-3ǃ-ol in highly 
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productive marine ecosystems can also arise from planktonic sources. Nonetheless, since the 
PCA showed this sterol to be highly related to terrestrial biomarkers such as long-chain n-
alcohols, this compound in the investigated marine environment appears to be more 
terrestrial than planktonic in origin. 
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Fig. 7. Compound loadings on Factor 1 vs. Factor 2 for the principal component analysis of 
lipids in particulate organic matter. The hatched oval shows components with positive 
loadings on Factor I, the dark grey oval shows components with negative loadings on Factor 
I, the light gray oval shows components with positive loadings on Factor II, and the white 
oval shows components with negative loadings on Factor II. 

For Factor II, the positively loaded variables were 24-methylcholest-5-en-3ǃ-ol, 24-methyl-
5ǂ-cholest-24(28)-en-3ǃ-ol, and 27-nor-24-methyl-5ǂ-cholest-22E-en-3ǃ-ol, phytol and the 
oxygen concentration (shown in the light gray oval, Fig. 7; Table 3). This Component is 
represented by diatom biomarkers. Phytol is the indirect indicator of phytoplankton, being 
released from the chlorophyll molecule, and the three sterols are bioindicators of diatoms. 
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These molecules, in turn, are directly related to the oxygen concentration, that is, as the 
oxygen concentration drops in the water mass, the concentration of these compounds 
decreases, which means that they are effectively degraded under suboxic conditions; this is 
supported by the disappearance of these biomarkers below the OMZ (Figs. 3 and 4). 

The variables that were negatively loaded for Factor II (in the oval, Fig. 7) were the C22 and 

C24 n-alkanols; the C18:0 fatty acid; and the sterol 27-nor-24-methylcholesta-5,22E-dien-3ǃ-ol 

(Table 3). Both the C18 fatty acid and 27-nor-24-methylcholesta-5,22E-dien-3ǃ-ol are 

planktonic in origin, the sterol was reported to be a bioindicator of some flagellates 

(Wakeham, 1995). The alkanols >C22 have been reported to be biomarkers of higher plants; 

nonetheless, there is uncertainty with respect to nC22-OH, since it can also be derived from 

cyanobacteria (Volkman et al., 1998). In Figure 7, this alcohol is observed to be more related 

to planktonic biomarkers than to compounds of terrestrial origin, so we consider n-alkanol 

in the Antofagasta area to be derived from cyanobacteria. 

PCA allowed the separation of planktonic biomarkers (positively charged in Component I) 

from terrestrial biomarkers (negatively charged in Component I). Moreover, it showed 

phytol, a biomarker of grazing activity, to be closely correlated with the oxygen 

concentration in the water column, as it was more abundant at the surface where the oxygen 

concentration was higher. 

4. Conclusions 

The analysis of individual compounds within each of several lipid classes (alcohols, fatty 

acids, and sterols) allowed us to determine that phytoplankton, mainly diatoms, are the 

main sources of lipids in the suspended particulate organic matter in the Antofagasta area. 

Continental contributions are scarce, as seen in the low concentrations of terrestrial 

biomarkers, e.g., the sterol 24-ethylcholest-5-en-3ǃ-ol and the long-chain n-alkanols (>C22), 

as well as in the absence of long-chain fatty acids. 

On the other hand, the analysis of these lipid classes showed that, as depth increased, the 

particles were intensely degraded. The rapid disappearance of labile molecules such as 

phytol, the increase in n-alkanols and straight-chain fatty acids, the decrease of unsaturated 

fatty acids, and the increase of bacterial biomarkers all indicate increased microbial activity 

on the lipid molecules. 
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The details of the applications were briefly handled by the authors to increase their comprehensibility and

feasibility. This guide should be certainly valuable to the novice, as well as to the experienced gas

chromatography user who may not have the enough experience about the specific applications covered in this

book. We believe this book will prove useful in most laboratories where modern gas chromatography is

practiced.
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