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1. Introduction

Due to the lack of water resources, the problem of water management and minimizing the
losses becomes an attraction for many researchers. Although some problems have been
already solved in the theoritical point of view, only few of the proposed solutions have
been effectively tested in a real situation (Litrico et al., 2003). Limitations of water control
technology have been discussed in (Gowing., 1999). However, there are problems that
have not been solved yet, as reported in (Bastin et al., 2009). Those problems concern
both technological applications and mathematical challenges. To solve water management
problems, the so-called St. Venant equations (De Saint-Venant., 1871) are often used as a
fondamental tool to describe the dynamics of canals and rivers. They are composed by a
2 × 2 system of hyperbolic partial differential equations.

For a long time, the matter of controlling water level and flow in open canals has been
considered in the literature. Various methods have been used to design boundary controllers
which satisfy farmers or navigability demands. Among those different methods, we have:
LQ (Linear Quadratic) control that has been particularly developped and studied by (Balogun
et al., 1988), and (Malaterre., 1998) (see also (Weyer., 2003) and (Chen et al., 2002)). (Weyer.,
2003) has considered LQ control of an irrigation canal in which the water levels are controlled
using overshot gates located along the canal. A LQ control problem for linear symmetric
infinite-dimensional systems has been considered by (Chen et al., 2002). PI (proportional
and integral) control method has been used by (Xu & Sallet., 1999) to propose an output
feedback controller using a linear PDE model around a steady state. Such an approach
has been considered by (Litrico et al., 2003), where the authors expose and validate a
methodology to design efficient automatic controllers for irrigation canals. Riemann and
Lyapunov approaches are also considered (Leugering & Schmidt., 2002), (De Halleux et al.,
2003), and recently by (Cen & Xi., 2009) and (Bastin et al., 2009).

For networks of open canals, many results have been shown by researchers using some
of the methods mentionned above. For example, (De Halleux et al., 2003) have used the
Riemann approach to deduce a stabilization control, for a network made up by several
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2 Will-be-set-by-IN-TECH

interconnected reaches in cascade (also (Cen & Xi., 2009) and reference cited therein). (Bastin
et al., 2009) have used the Lyapunov stability approach to study the exponential stability
(in L2-norm) of the classical solutions of the linearised Saint-Venant equations for the same
network with a sloping bottom. (Leugering & Schmidt., 2002) have studied stabilization and
null controlability of pertubations around a steady state for a star configuration network. Star
configuration network can also be found in (Li., 2005) and (Goudiaby et al., -). (Goudiaby et
al., -), have used a new approach to design boundary feedback controllers which stabilize the
water flow and level around a given steady state.

Concerning network made up by several interconnected reaches in cascade, we have noticed,
in the theoritical point of view, two approaches that are the Riemann invariants (De Halleux
et al., 2003) and Lyapunov Analysis approaches (Bastin et al., 2009), (Cen & Xi., 2009).
The purpose of this paper is to apply the approach given in (Goudiaby et al., -) to that
network. The approach is applied to a network of two reaches but it can be generalize.
Choosing a different type of network requires different treatment of junction where canals met
together. On the other hand, the Saint-Venant equations considered in the present paper are
in the non-conservation form. We consider the velocity at the boundaries as the controllable
quantities.

The approach consists in expressing the rate of change of energy of the linearized problem, as
a second order polynomial in terms of the flow velocity at the boundaries. The polynomial
is handled in such a way to construct boundary feedback controllers that result in the water
flow and the height approaching a given steady state. The water levels at the boundaries and
at the junction are used to build the controllers. After deriving the controllers, we numerically
apply them to a real problem, which is nonlinear, in order to investigate the robustness and
flexibility of the approach.

The paper is organized as follows. In section 2, we present the network and the equations.
We discuss how to determine a steady state solution and derive the linearized system and
corresponding characteristic variables, on which controllers are built. We also formulate
the main result, stating controllers and corresponding energy decay rates. In section 3, we
demonstrate the approach by proving a corresponding result for a single reach, while the case
of the network is proven in section 4. Numerical results obtained by a high order finite volume
method (Leveque., 2002; Toro., 1999) are presented in section 5.

2. Governing equations and main result

The network can be given by Figure 1 or by any type of network where several reaches are
interconnected in cascade (see (Bastin et al., 2009; De Halleux et al., 2003) ). In Figure 1, M is
considered as the junction node. The network model is given by the 1D St. Venant equations
in each reach (i = 1, 2) and a flow conservation condition at M. The following variables are
used: hi is the height of the fluid column (m), vi is the flow velocity (ms−1), Li is the length of
the reach (m). The one dimensional St. Venant equations considered in the present paper are
the following:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂hi

∂t
+

∂(vihi)

∂x
= 0, in [0, Li]

∂vi

∂t
+

1

2

∂v2
i

∂x
+ g

∂hi

∂x
= 0, in [0, Li]

(1)
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M

h1(t,x)
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h2,L

L1 L2

xx

Hdown

h1,0

Reach 1 Reach 2

Fig. 1. The cascade network

together with a flow conservation condition at M,

h1(t, L1)v1(t, L1) = h2(t, 0)v2(t, 0), (2)

initial conditions

hi(0, x) = h0
i (x), vi(0, x) = v0

i (x), (3)

and boundary conditions

v1(t, 0) = v1,0(t), v1(t, L1) = v1,L1
(t), v2(t, L2) = v2,L2

(t). (4)

The results in the present paper concern a linearized system around a desired steady state.
The controllers are built using that linear system and will be applied numerically to the above
nonlinear model.

2.1 Steady state

The goal is to achieve a prescribed steady state (h̄i, v̄i), with the help of the controllers, when
time goes to infinity. From (1), the steady state solution (h̄i, v̄i) satisfies:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂v̄i

∂x
= 0, in [0, Li],

∂h̄i

∂x
= 0, in [0, Li].

h̄1(L1)v̄1(L1) = h̄2(0)v̄2(0) at M.

(5)

The steady state is such that

h̄2 < h̄1. (6)
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4 Will-be-set-by-IN-TECH

To determine the stady state (5), one gives h̄1, v̄1 and h̄2. On the other hand, using the flow
direction (Figure 1) and the subcritical flow condition, one has

v̄i ≥ 0 and
√

gh̄i > v̄i. (7)

2.2 Linearized model

We introduce the residual state (ȟi, v̌i) as the difference between the present state (hi, vi) and
the steady state (h̄i, v̄i): ȟi(t, x) = hi(t, x) − h̄i(x), v̌i(t, x) = vi(t, x) − v̄i(x). We use the
assumptions |ȟi| ≪ h̄i and |v̌i| ≪ |v̄i| to linearize (1)-(4). Therefore, the solution (ȟi, v̌i)
satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(a)
∂ȟi

∂t
+ h̄

∂v̌i

∂x
+ v̄i

∂ȟi

∂x
= 0,

(b)
∂v̌i

∂t
+ v̄i

∂v̌i

∂x
+ g

∂ȟi

∂x
= 0,

(c) v̄1ȟ1(t, L1) + h̄1v̌1(t, L1) = v̄2ȟ2(t, 0) + h̄2v̌2(t, 0) at M

(8)

together with the initial condition

ȟi(0, x) = ȟ0
i (x), v̌i(0, x) = v̌0

i (x), (9)

and the boundary conditions as control laws

v̌1(t, 0) = v̌1,0(t), v̌1(t, L1) = v̌1,L1
(t), v̌2(t, L2) = v̌2,L2

(t). (10)

The functions v̌1,0(t), v̌1,L1
(t) and v̌2,L2

(t) are the feedback control laws to be prescribed in

such a way to get an exponential convergence of (ȟi, v̌i) to zero in time.

2.3 Eigenstructure and characteristic variables

The following characteristic variables are used to build the controllers:

ξi1 = v̌i − ȟi

√

g

h̄i
and ξi2 = v̌i + ȟi

√

g

h̄i
. (11)

The characteristic velocities are

λi1 = v̄i −
√

gh̄i and λi2 = v̄i +
√

gh̄i.

The subcritical flow condition and the flow direction give

λi1 < 0 < λi2 and λi1 + λi2 ≥ 0, (12)

respectively. The characteristic variables satisfy

dξij

dt
=

∂ξij

∂t
+ λij

∂ξij

∂x
= 0, i, j = 1, 2. (13)
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An Algebraic Approach for Controlling Cascade of Reaches in Irrigation Canals 5

2.4 Main result

To build the feedback controllers, we express outgoing characteristic variables at the free
endpoints and at the junction M in terms of initial data and the solution at the endpoints
and at the junction M at earlier times. For reach 1, the outgoing characteristic variable at the
endpoint x = 0 is ξ11. For reach 2, the outgoing characteristic variable at the endpoint x = L2

is ξ22. Concerning the junction M, ξ12 and ξ21 are the outgoing characteristic variables. In
section 4, we will see that

⎛

⎜

⎜

⎝

ξ11(t, 0)
ξ22(t, L2)
ξ12(t, L1)
ξ21(t, 0)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

b1(t)
b2(t)
b3(t)
b4(t)

⎞

⎟

⎟

⎠

, (14)

where bi, i = 1, 2, 3, 4 depend only on the initial condition and the solution at the endpoints

and at the junction M at earlier times τ = t − δt with δt ≥ min
(

L1
λ12

, L2
λ22

)

.

Let us consider θ1 : R
+ −→]0, 1] satisfying:

θ1(t) ≥
2v̄1

λ12
. (15)

and θ2, θ3 : R
+ −→]0, 1] two arbitrary functions. We choose the feedback controllers as

follows:

v̌1,0(t) = − b1(t)

2

(

√

1 − θ1(t)− 1

)

,

v̌2,L2
(t) = − b2(t)

2

(

√

1 − θ2(t)− 1

)

,

v̌1,L1
(t) =

γ(t)

2σ

(

√

1 − θ3(t)− 1

)

,

(16)

where ,

σ = h̄1|λ11|
(

1 +
|λ11|
λ22

)

, γ(t) = h̄1|λ11|
(

1 − 2v̄1

λ22

)

b3(t) + |λ11|
√

h̄1h̄2

(

1 − 2v̄2

λ22

)

b4(t),

and bi, i = 1, 2, 3, 4, are given by (14). Therefore, defining

T = max

(

L1

|λ11|
,

L2

|λ21|

)

, (17)

and the energy of the network by

E =
2

∑
i=1

Ei, Ei =
∫ Li

0

(

gȟ2
i (t) + h̄i v̌

2
i (t)

)

dx, (18)

we get the main result of this paper:
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Theorem 1. Let tk = kT, k ∈ N, where T is given by (17). Assume that the flow in the
network is subcritical, the initial condition (ȟ0

i , q̌0
i ) is continuous in ]0, Li[, v̌1,0, v̌1,L1

, v̌2,L2
satisfy

(16), θ1 satisfies (15) and λi1 + λi2 ≥ 0. Then (8)-(10) has a unique solution (ȟi, q̌i) continuous in
[tk, tk+1]×]0, Li[ satisfying the following energy estimate:

E(tk+1) ≤ (1 − Θk)E(tk), (19)

where E is given by (18) and

Θk = min
(

Γk
1, Γk

2

)

∈ [0, 1[,

Γk
1 = min

(

inf
x∈]0,L1[

(

θ1(tk +
x

|λ11|
)− 2v̄1

λ12

)

, 4v̄1
(v̄2 − v̄1)

λ22λ12

)

,

Γk
2 = min

(

inf
x∈]0,L2[

( |λ21|
λ22

θ2(tk +
L2 − x

λ22
) +

2v̄2

λ22

)

, 2
(v̄2 − v̄1)

λ22

(

1 − 2v̄2

λ22

)

)

.

Remark 1.

1. In addition to (19), within the interval ]tk, tk+1[, the energy is non-increasing.

2. The controllers (16) tend to zero when time goes to infinity. This is due to (19) and the fact that
they are built on the solution at earlier times.

3. Estimation (19) can be written as

E(tk) ≤ E(0) exp
(

−µk tk

)

.

where µk =
1

k

k−1

∑
j=0

νj and νj = − ln

(

(1 − Θj)
1
t1

)

. Thus, the functions θ can be viewed as

stabilization rate for the exponential decrease.

3. Building the controller for a single reach

We construct a stabilization process for a single canal, which should drive the perturbations
ȟ and v̌ to zero exponentially in time. We consider the 1D Saint-Venant equations (1) without
the index i standing for the reach number:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂h

∂t
+

∂(vh)

∂x
= 0,

∂v

∂t
+

1

2

∂v2

∂x
+ g

∂h

∂x
= 0,

(20)

together with initial conditions

h(0, x) = h0(x), v(0, x) = v0(x) (21)

and boundary conditions

v(t, 0) = v0(t), v(t, L) = vL(t). (22)
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An Algebraic Approach for Controlling Cascade of Reaches in Irrigation Canals 7

The steady state solution (h̄, v̄) satisfies:

∂v̄

∂x
= 0,

∂h̄

∂x
= 0, in [0, L].

with

v̄ ≥ 0 and
√

gh̄ > v̄. (23)

The linearized model is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(a)
∂ȟ

∂t
+ h̄

∂v̌

∂x
+ v̄

∂ȟ

∂x
= 0,

(b)
∂v̌

∂t
+ v̄

∂v̌

∂x
+ g

∂ȟ

∂x
= 0,

(24)

together with initial conditions

ȟ(0, x) = ȟ0(x), v̌(0, x) = v̌0(x), (25)

and the boundary conditions

v̌(t, 0) = v̌0(t), v̌(t, L) = v̌L(t). (26)

The functions v̌L(t) and v̌0(t) are the feedback control laws to be prescribed in such a way to
get an exponential convergence of (ȟ, v̌) to zero in time.

The characteristic variables are:

ξ1 = v̌ − ȟ

√

g

h̄
and ξ2 = v̌ + ȟ

√

g

h̄
, (27)

with the characteristic velocities

λ1 = v̄ −
√

gh̄ and λ2 = v̄ +
√

gh̄.

The subcritical flow condition and the flow direction give

λ1 < 0 < λ2 and λ1 + λ2 ≥ 0, (28)

respectively. Considering the characteristic variables (27), system (24) is written as two
independant equations:

dξ j

dt
=

∂ξ j

∂t
+ λj

∂ξ j

∂x
= 0, j = 1, 2. (29)

3.1 A priori energy estimation

Let E be the energy of (24) defined as

E(t) =
∫ L

0

(

gȟ2(t) + h̄v̌2(t)

)

dx. (30)

375An Algebraic Approach for Controlling Cascade of Reaches in Irrigation Canals
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8 Will-be-set-by-IN-TECH

We consider the following system as a weak formulation of (24)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∀(ψ, φ) ∈ H1(]0, L[),

∫ L

0
gψ

∂ȟ

∂t
dx − gh̄

∫ L

0
v̌

∂(ψ)

∂x
dx − gv̄

∫ L

0
ȟ

∂(ψ)

∂x
dx+

gh̄ψ(L)v̌L(t)− gh̄ψ(0)v̌0(t) + gv̄ψ(L)ȟL(t)− gv̄ψ(0)ȟ0(t) = 0,

∫ L

0
h̄φ

∂v̌

∂t
dx − h̄v̄

∫ L

0
v̌

∂(φ)

∂x
dx − gh̄

∫ L

0
ȟ

∂(φ)

∂x
dx

+h̄v̄φ(L)v̌L(t)− h̄v̄φ(0)v̌0(t) + gh̄φ(L)ȟL(t)− gh̄φ(0)ȟ0(t) = 0,

(31)

together with boundary and initial conditions.

We estimate the variation of the energy E on the canal in order to define the controllers v̌L(t)
on {x = L} and v̌0(t) on {x = 0}. To this end, we let (ψ, φ) = (ȟ, v̌) in (31) to get

1

2

d

dt
E(t) = − h̄v̄

2
v̌2

L(t)−
gv̄

2
ȟ2(t, L)− gh̄ȟ(t, L)v̌L(t)

+
h̄v̄

2
v̌2

0(t) +
gv̄

2
ȟ2(t, 0) + gh̄ȟ(t, 0)v̌0(t).

(32)

The difference among control methods depends on how the energy is defined and its variation
handled to obtain a convergence of the perturbations ȟ and v̌ to zero in time (see (Bastin et al.,
2009; De Halleux et al., 2003)).

3.2 Controllers and the stabilization process

The feedback control building relies on the fact that we can express the height at the
boundaries in terms of the flow velocity and outgoing characteristic variables. Using (29)

2

0

t

xLy0

0

τ1

τ2

/λ  2   L

/ λ   1 −L

ξ1

ξ

Fig. 2. Characteristic variables.

and refering on the characteristic variables indicated in figure 2, one has:

(

ξ1(τ2, 0)
ξ2(τ1, L)

)

=

(

b1(τ2)
b2(τ1)

)

, (33)
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An Algebraic Approach for Controlling Cascade of Reaches in Irrigation Canals 9

where

b1(τ2) =

⎧

⎪

⎨

⎪

⎩

ξ1(0, |λ1|τ2), τ2 ≤ L
|λ1| ,

ξ1(τ2 − L
|λ1| , L), τ2 ≥ L1

|λ1| ,
b2(τ1) =

⎧

⎪

⎨

⎪

⎩

ξ2(0, L − λ2τ1), τ1 ≤ L
λ2

,

ξ2(τ1 − L
λ2

, 0), τ1 ≥ L
λ2

.

(34)

From (27), one derives

ȟ(τ1, L) =

(

ξ2(τ1, L)− vL(τ1)

)

√

h̄

g
, (35)

ȟ(τ2, 0) =

(

− ξ1(τ2, 0) + v0(τ2)

)

√

h̄

g
. (36)

Considering the energy equation (32), one deduces from (34)-(36) that

1

2

dE

dt
(t) = a1v̌2

0(t)− a1b1(t)v̌0(t) + c1(t) + a2v̌2
L(t)− a2b2(t)v̌L(t) + c2(t) (37)

where

a1 = h̄λ2, a2 = h̄|λ1|, c1(t) =
h̄v̄

2
b2

1(t), c2(t) = − h̄v̄

2
b2

2(t), (38)

b1(t) and b2(t) are given by (34).

The RHS of (37) is treated in such a way to get an exponential decrease of the energy. For this
propose, the following observation for second order polynomials is used.

Lemma 1. Consider a second order polynomial P(q) = av2 + bv, where a > 0. For any θ ∈ [0, 1]

P

(

b

2a
(
√

1 − θ − 1)

)

= − b2

4a
θ. (39)

If the flow velocity at the boundary is prescribed as follows:

v̌L(t) = − b2(t)

2

(

√

1 − θ2(t)− 1

)

and v̌0(t) = − b1(t)

2

(

√

1 − θ1(t)− 1

)

, (40)

where θ1, θ2 : R
+ −→ [0, 1], then by Lemma 1, (37) becomes

1

2

dE

dt
(t) = − b2

1(t)

4a1
θ1(t) + c1 −

b2
2

4a2
θ2(t) + c2,

= − h̄

4

(

λ2θ1(t)− 2v̄
)

b2
1(t)−

h̄

4

(

|λ1|θ2(t) + 2v̄
)

b2
2(t). (41)

In order to get an energy decrease, we chosse θ1 such that the RHS of (41) is non-positive. In
fact we choose θ1 as follows:

θ1(t) ≥
2v̄

λ2
. (42)

Note that this choice of θ1 is always possible since
2v̄

λ2
< 1. Indeed

2v̄

λ2
< 1, because the

subcritical flow condition (23) gives λ2 =
√

gh̄ + v̄ > 2v̄. Thus, we get the following result

377An Algebraic Approach for Controlling Cascade of Reaches in Irrigation Canals
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10 Will-be-set-by-IN-TECH

Theorem 2. Let tk = kL/|λ1|, k ∈ N. Assume that (28) holds, the initial condition (ȟ0, v̌0) is
continuous in ]0, L[, (v̌0, v̌L) satisfies (40) and θ1 satisfies (42). Then (24)-(26) has a unique solution
(ȟ, v̌) continuous in [tk, tk+1]×]0, L[ satisfying the following energy estimate:

E(tk+1) ≤ (1 − Θk)E(tk), (43)

where E is given by (30) and

Θk = min

(

inf
x∈]0,L[

( |λ1|
λ2

θ2(tk +
L − x

λ2
) +

2v̄

λ2

)

, inf
x∈]0,L[

(

θ1

(

tk +
x

|λ1|
)

− 2v̄

λ2

)

)

∈ [0, 1[.

Proof: The existence and uniqueness of the solution follow by (27) and construction (33).

Integrating (41) from 0 to t1, we have

E(L/|λ1|) = E(0)− h̄

2

∫ L/|λ1|

0

(

λ2θ1(t)− 2v̄
)

b2
1(t) dt − h̄

2

∫ L/|λ1|

0

(

|λ1|θ2(t) + 2v̄
)

b2
2(t) dt,

≤ E(0)− h̄

2

∫ L/|λ1|

0

(

λ2θ1(t)− 2v̄
)

ξ2
1(0, |λ1|t) dt

− h̄

2

∫ L/λ2

0

(

|λ1|θ2(t) + 2v̄
)

ξ2
2(0, L − λ2t) dt,

≤ E(0)− h̄

2|λ1|
∫ L

0

(

λ2θ1(
x

|λ1|
)− 2v̄

)

ξ2
1(0, x) dt

− h̄

2λ2

∫ L

0

(

|λ1|θ2(
L − x

λ2
) + 2v̄

)

ξ2
2(0, x) dt,

≤ E(0)− h̄

2λ2

∫ L

0

(

λ2θ1(
x

|λ1|
)− 2v̄

)

ξ2
1(0, x) dt

− h̄

2λ2

∫ L

0

(

|λ1|θ2(
L − x

λ2
) + 2v̄

)

ξ2
2(0, x) dt,

≤ E(0)− h̄

2

∫ L

0

(

θ1(
x

|λ1|
)− 2v̄

λ2

)

ξ2
1(0, x) dt

− h̄

2

∫ L

0

( |λ1|
λ2

θ2(
L − x

λ2
) +

2v̄

λ2

)

ξ2
2(0, x) dt,

≤ E(0)− h̄

2

∫ L

0

[

ξ2
2(0, x) + ξ2

1(0, x)
]

Θ0dx, (44)

where

Θ0 = min

(

inf
x∈]0,L[

( |λ1|
λ2

θ2(
L − x

λ2
) +

2v̄

λ2

)

, inf
x∈]0,L[

(

θ1

( x

|λ1|
)

− 2v̄

λ2

)

)

.

We have Θ0 ∈ [0, 1[, since we get 0 < θ1

( x

|λ1|
)

− 2v̄

λ2
< 1 from (42) and the fact that

2v̄

λ2
< 1.
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On the other hand, one has the following estimation

ξ2
1(0, x) + ξ2

2(0, x) =

(

v̌0(x)− ȟ0(x)

√

g

h̄

)2

+

(

v̌0(x) + ȟ0(x)

√

g

h̄

)2

,

= 2(v̌0(x))2 +
2g

h̄
(ȟ0(x))2,=

2

h̄

(

h̄(v̌0(x))2 + g(ȟ0(x))2
)

. (45)

Therefore we deduce from (44)-(45) that

E(L/|λ1|) ≤ E(0)− Θ0
∫ L

0

(

h̄(v̌0(x))2 + g(ȟ0(x))2
)

dx ≤ (1 − Θ0)E(0). (46)

In order to generalize (46) with respect to time, we consider the time tk = kL/|λ1| as initial
condition. Then, we let

b1(t) = ξ1(tk, |λ1|(t − tk)), i f t ∈ ]tk, tk + L/|λ1|[,

b2(t) = ξ2(tk, L − λ2(t − tk)), i f t ∈ ]tk, tk + L/λ2[,

and

Θk = min

(

inf
x∈]0,L[

( |λ1|
λ2

θ2(tk +
L − x

λ2
) +

2v̄

λ2

)

, inf
x∈]0,L[

(

θ1

(

tk +
x

|λ1|
)

− 2v̄

λ2

)

)

∈ [0, 1[.

And, by integrating from tk to tk+1 and using the same arguments as for the interval [0, t1],
the proof of Theorem 2 is finished. �

Remark 2.

1. Using the weak formulation (31) and the fact that C0(]0, L[) is dense in L2(]0, L[), it is possible
(using the arguments of (Goudiaby et al., -)) to prove that for initial data (ȟ0, v̌0) in (L2(]0, L[))2,
the solution (ȟ, v̌) of (24)-(26) satisfies (43) and the following regularity

(

ȟ

h̄v̌ + v̄ȟ

)

,

(

v̌

v̄v̌ + gȟ

)

∈ H(div, Q), (47)

where Q =]tk, tk+1[×]0, L[,

div ≡
( ∂

∂t
,

∂

∂x

)

and H(div, Q) =

{

V ∈ L2(Q)2 ; div V ∈ L2(Q)

}

.

2. It is also possible to stabilize the reach by acting only on one free endpoint as in (Goudiaby et al., -).

3. Only the initial condition and the on-line measurements of the water levels at the endpoints are
required to implement the feedback control law (40).

4. For an application need, in order to implement the controllers (40), one can use two underflow gates
located at the left end (x = 0) and the right end (x = L) of the canal (see Fig 3). Denote by I0 and
IL the gates opening. A relation between under flow gates opening and discharge is given as follows
(see (De Halleux et al., 2003; Ndiaye & Bastin., 2004)).

lh(t, 0)v(t, 0) = I0(t)k1

√

2g
(

Hup − h(t, 0)
)

, (48)

lh(t, L)v(t, L) = IL(t)k2

√

2g(h(t, L)− Hdown), (49)
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12 Will-be-set-by-IN-TECH

where, l is the width of the reach (m), k1, k2 are gate coefficients, v(t, x) = v̄(x)+ v̌(t, x), h(t, x) =
h̄(x) + ȟ(t, x), Hup and Hdown are the left and right water levels outside the canal, respectively.
Hup and Hdown are supposed to be constant and satisfy Hup > h(t, 0) and h(t, L) > Hdown.

L

Hdown

Hup

Upstream gate

Downstream gate

h (t,x)

v (t,x)

x

L

I0 I

Fig. 3. A canal delimited by underflow gates

4. Building the controller for the cascade network

In this section, we use the idea of section 3.2, to build feedback control laws for the network.

4.1 Energy estimation and controllers building

Consider the energy of the network given by

E =
2

∑
i=1

Ei, Ei =
∫ Li

0

(

gȟ2
i (t) + h̄i v̌

2
i (t)

)

dx. (50)

Arguing as in section 3.1, from the weak formulation of (8), we deduce

1

2

d

dt
E(t) = − h̄1v̄1

2
v̌2

1,L1
(t)− gv̄1

2
ȟ2

1(t, L1)− gh̄1ȟ1(t, L1)v̌1,L1
(t)

+
h̄1v̄1

2
v̌2

1,0(t) +
gv̄1

2
ȟ2

1(t, 0) + gh̄1ȟ1(t, 0)v̌1,0(t)

− h̄2v̄2

2
v̌2

2,L2
(t)− gv̄2

2
ȟ2

2(t, L2)− gh̄2ȟ2(t, L2)v̌2,L2
(t)

+
h̄2v̄2

2
v̌2

2,0(t) +
gv̄2

2
ȟ2

2(t, 0) + gh̄2ȟ2(t, 0)v̌2,0(t).

(51)

Using (13) and refering to figure 4, we express outgoing characteristic variables in terms of
initial data and the solution at the endpoints and at the junction M at earlier times, i.e (14) is
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2

11ξ 12ξ
21ξ

22ξ

t

0 L1

0 L

Fig. 4. Characteristic variables for the cascade network

satisfies with,

b1(t) =

⎧

⎪

⎨

⎪

⎩

ξ11(0, |λ11|t), t ≤ L1

|λ11| ,

ξ11(t − L1

|λ11| , L1), t ≥ L1

|λ11| .
b2(t) =

⎧

⎪

⎨

⎪

⎩

ξ22(0, L2 − λ22t), t ≤ L2
λ22

,

ξ22(t − L2
λ22

, 0), t ≥ L2
λ12

.

b3(t) =

⎧

⎪

⎨

⎪

⎩

ξ12(0, L1 − λ12t), t ≤ L1
λ12

,

ξ12(t − L1
λ12

, 0), t ≥ L1
λ12

.

b4(t) =

⎧

⎪

⎨

⎪

⎩

ξ21(0, |λ21|t), t ≤ L2

|λ21| ,

ξ21(t − L2

|λ21| , L2), t ≥ L2

|λ21| .

(52)

On the other hand, using (11) we also express the height at the boundaries and at the junction
in terms of the flow velocity and outgoing characteristic variables:

ȟi(t, Li) =

(

ξi2(t, Li)− vi,Li
(t)

)

√

h̄i
g ,

ȟi(t, 0) =

(

− ξi1(t, 0) + vi,0(t)

)

√

h̄i
g .

(53)

Plugging (53) into (51), one gets

1

2

dE

dt
(t) = a1v̌2

1,0(t)− a1b1(t)v̌1,0(t) + c1(t) + a2v̌2
2,L2

(t)− a2b2(t)v̌2,L2
(t) + c2(t)

+a3v̌2
1,L1

(t)− a3b3(t)v̌1,L1
(t) + c3(t) + a4v̌2

2,0(t)− a4b4(t)v̌2,0(t) + c4(t)

(54)

where

a1 = h̄1λ12, a2 = h̄2|λ21|, a3 = h̄1|λ11|, a4 = h̄2λ22,

c1(t) =
h̄1v̄1

2
b2

1(t), c2(t) = − h̄2v̄2

2
b2

2(t), c3(t) = − h̄1v̄1

2
b2

3(t), c4(t) =
h̄2v̄2

2
b2

4(t),

(55)

bi, i = 1, 2, 3, 4 are given by (52).
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14 Will-be-set-by-IN-TECH

The flow conservation condition (8.c) is used to express v̌2,0 in terms of v̌1,L1
and outgoing

characteristic variables. From (8.c) and (53), one has

v̌2,0(t) = αv̌1,L1
(t) + βb3(t) + δb4(t). (56)

where

α =
|λ11|
λ22

√

h̄1

h̄2
, β =

v̄1

λ22

√

h̄1

h̄2
, δ =

v̄2

λ22
. (57)

Thus, the last six terms of (54) can be expressed as follows:

a3v̌2
1,L1

(t)− a3b3(t)v̌1,L1
(t) + c3(t) + a4v̌2

2,0(t)− a4b4(t)v̌2,0(t) + c4(t)

= σv̌2
1,L1

(t) + γ(t)v̌1,L1
(t) + ρ(t), (58)

where

σ = (a3 + α2a4) = h̄1|λ11|
(

1 +
|λ11|
λ22

)

(59)

γ(t) = (2a4αβ − h̄1|λ11|)b3(t) + α(2a4δ − h̄2λ22)b4(t)

= h̄1|λ11|
(

2v̄1

λ22
− 1

)

b3(t) + |λ11|
√

h̄1h̄2

(

2v̄2

λ22
− 1

)

b4(t) (60)

ρ(t) =

(

a4δ2 − h̄2λ22δ +
h̄2v̄2

2

)

b2
4(t) +

(

a4β2 − h̄1v̄1

2

)

b2
3(t)

+β(2a4 − h̄2λ22)b3(t)b4(t)

=
h̄2v̄2

2

(

2v̄2

λ22
− 1

)

b2
4(t) +

h̄1v̄1

2

(

2v̄1

λ22
− 1

)

b2
3(t)

(61)

+v̄1

√

h̄1h̄2

(

2v̄1

λ22
− 1

)

b3(t)b4(t).

Taking into account (58), the energy law (54) becomes

1

2

dE

dt
(t) = a1v̌2

1,0(t)− a1b1(t)v̌1,0(t) + c1(t) + a2v̌2
2,L2

(t)− a2b2(t)v̌2,L2
(t) + c2(t)

+σv̌2
1,L1

(t) + γ(t)v̌1,L1
(t) + ρ(t).

(62)

If we prescribe the velocity at the boundaries as follows,

v̌1,0(t) = − b1(t)

2

(

√

1 − θ1(t)− 1

)

,

v̌2,L2
(t) = − b2(t)

2

(

√

1 − θ2(t)− 1

)

,

v̌1,L1
(t) =

γ(t)

2σ

(

√

1 − θ3(t)− 1

)

,

(63)
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where θ1, θ2, θ3 : R
+ −→ [0, 1], it follows from Lemma 1 that

1

2

dE

dt
(t) = − b2

1(t)

4a1
θ1(t) + c1(t)−

b2
2(t)

4a2
θ2(t) + c2(t)−

γ2(t)

4σ
θ3(t) + ρ(t). (64)

Let us calculate explicitely the RHS of (64). On the one hand, using (a1, c1) and (a2, c2) given
in (55), we have

− b2
1

4a1
θ1 + c1 = − h̄1

4

(

λ12θ1 − 2v̄1

)

b2
1(t), (65)

and

− b2
2

4a2
θ2 + c2 = − h̄2

4

(

|λ21|θ2 + 2v̄2

)

b2
2(t). (66)

On the other hand, from (59)-(61) and using the fact that θ3 ∈]0, 1] we have

− γ2

4σ
θ3 + ρ ≤ ρ =

h̄2v̄2

2

(

2v̄2

λ22
− 1

)

b2
4(t) +

h̄1v̄1

2

(

2v̄1

λ22
− 1

)

b2
3(t)

(67)

+v̄1

√

h̄1h̄2

(

2v̄1

λ22
− 1

)

b3(t)b4(t).

Since 2v̄2
λ22

< 1, we get

v̄1

√

h̄1h̄2

(

2v̄2

λ22
− 1

)

b3(t)b4(t) ≤
h̄1v̄1

2

(

1 − 2v̄2

λ22

)

b2
3(t) +

h̄2v̄1

2

(

1 − 2v̄2

λ22

)

b2
4(t). (68)

Combining (68) and (67), one has

− γ2

4σ
θ3 + ρ ≤ h̄1v̄1

(v̄1 − v̄2)

λ22
b2

3(t) +
h̄2

2

(

2v̄2

λ22
(v̄2 − v̄1)− (v̄2 − v̄1)

)

b2
4(t). (69)

Using (65), (66) and (69), the energy law (64) becomes

1

2

dE

dt
(t) ≤ − h̄1

4

(

(

λ12θ1 − 2v̄1

)

b2
1(t) + 4v̄1

(v̄2 − v̄1)

λ22
b2

3(t)

)

− h̄2

4

(

2(v̄2 − v̄1)

(

1 − 2v̄2

λ22

)

b2
4(t) +

(

|λ21|θ2 + 2v̄2

)

b2
2(t)

)

.

(70)

The way the steady state (h̄1, v̄1, h̄2, v̄2) is chosen (see (6)), yields that

v̄2 ≥ v̄1. (71)

The function θ1 satisfies a condition similar to (42), i.e

θ1(t) ≥
2v̄1

λ12
. (72)

Using the fact that 2v̄2
λ22

< 1, (71) and (72), the RHS of (70) is non-positive. Thus we give the
proof of Theorem 1.
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4.2 Proof of theoreme 1

The existence and uniqueness of the solution follow by (11) and constructions (14).

Integrating (70) from 0 to t1, one has

E(t1) ≤ E(0)− h̄1

2

∫ t1

0

(

λ12θ1(t)− 2v̄1

)

b2
1(t)dt − h̄1

2

∫ t1

0
4v̄1

(v̄2 − v̄1)

λ22
b2

3(t)dt

− h̄2

2

∫ t1

0
2(v̄2 − v̄1)

(

1 − 2v̄2

λ22

)

b2
4(t)dt − h̄2

2

∫ t1

0

(

|λ21|θ2 + 2v̄2

)

b2
2(t)dt.

(52)
≤ E(0)− h̄1

2

∫

L1
|λ11 |

0

(

λ12θ1(t)− 2v̄1

)

ξ2
11(0, |λ11|t)dt

− h̄1

2

∫

L1
λ12

0
4v̄1

(v̄2 − v̄1)

λ22
ξ2

12(t, L1 − λ12t)dt

− h̄2

2

∫

L1
|λ21 |

0
2(v̄2 − v̄1)

(

1 − 2v̄2

λ22

)

ξ2
21(t, |λ21|t)dt

− h̄2

2

∫

L2
λ22

0

(

|λ21|θ2(t) + 2v̄2

)

ξ2
22(0, L2 − λ22t)dt,

≤ E(0)− h̄1

2

∫ L1

0

(

θ1(
x

|λ11|
)− 2v̄1

λ12

)

ξ2
11(0, x)dx

− h̄1

2

∫ L1

0
4v̄1

(v̄2 − v̄1)

λ22λ12
ξ2

12(0, x)dx

− h̄2

2

∫ L2

0

( |λ21|
λ22

θ2(
L2 − x

λ22
) +

2v̄2

λ22

)

ξ2
22(0, x)dx

− h̄2

2

∫ L2

0
2
(v̄2 − v̄1)

λ22

(

1 − 2v̄2

λ22

)

ξ2
21(0, x)dx.

≤ E(0)− h̄1

2

∫ L1

0

[

ξ2
11(0, x) + ξ2

12(0, x)
]

Γ0
1dx

− h̄2

2

∫ L2

0

[

ξ2
22(0, x) + ξ2

21(0, x)
]

Γ0
2dx, (73)

where

Γ0
1 = min

(

inf
x∈]0,L1[

(

θ1(
x

|λ11|
)− 2v̄1

λ12

)

, 4v̄1
(v̄2 − v̄1)

λ22λ12

)

,

Γ0
2 = min

(

inf
x∈]0,L2[

( |λ21|
λ22

θ2(
L2 − x

λ22
) +

2v̄2

λ22

)

, 2
(v̄2 − v̄1)

λ22

(

1 − 2v̄2

λ22

)

)

.
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Arguing as for (45), we get

ξ2
i1(0, x) + ξ2

i2(0, x) =
2

h̄i

(

h̄i(v̌
0
i (x))2 + g(ȟ0

i (x))2
)

. (74)

Therefore, using (74) in (73), one has

E(t1) ≤ (1 − Θ0)E(0) (75)

where

Θ0 = min
(

Γ0
1, Γ0

2

)

∈ [0, 1[, since 0 < θ1(
x

|λ11|
)− 2v̄1

λ12
< 1.

In order to generalize (75) with respect to time, we consider the time tk = kT as initial
condition, with T given by (17). Then, we let

b1(t) = ξ11(tk, |λ11|(t − tk)), t ∈ ]tk, tk + L1/|λ11|[,

b2(t) = ξ22(tk, L2 − λ22(t − tk)), t ∈ ]tk, tk + L2/λ22[,

b3(t) = ξ12(tk, L1 − λ12(t − tk)), t ∈ ]tk, tk + L1/λ12[,

b3(t) = ξ21(tk, |λ21|(t − tk)), t ∈ ]tk, tk + L2/|λ21|[,

Γk
1 = min

(

inf
x∈]0,L1[

(

θ1(tk +
x

|λ11|
)− 2v̄1

λ12

)

, 4v̄1
(v̄2 − v̄1)

λ22λ12

)

,

Γk
2(x) = min

(

inf
x∈]0,L2[

( |λ21|
λ22

θ2(tk +
L2 − x

λ22
) +

2v̄2

λ22

)

, 2
(v̄2 − v̄1)

λ22

(

1 − 2v̄2

λ22

)

)

.

and
Θk = min

(

Γk
1, Γk

2

)

∈ [0, 1[.

Therefore, by integrating from tk to tk+1 and using the same arguments as for the interval
[0, t1], the proof of Theorem 1 is completed. �

5. Numerical results

Numerical results are obtained by using a high order finite volume method (see Leveque.
(2002); Toro. (1999)).

5.1 A numerical example for a single reach

In this section, we illustrate the control design method on a canal with the following
parameters. Lenght L = 500m, width l = 1m. The steady state is q̄(x) = 1m3s−1 and
h̄(x) = 1m and the initial condition is h(0, x) = 2m and q(0, x) = 3m3s−1. The spatial step size
is ∆x = 10m and the time step is ∆t = 1s. We also set Hup = 2.2m and Hdown = 0.5m and use
relations (48)-(49) for gates opening.

We have tested a big perturbation in order to investigate the robusness and the flexibility of the
control method. One sees that the bigger the θ’s are, the faster the exponential deacrease is (Fig
5). Increasing θ’s also produces some oscillations of the gates opening with heigh frequencies
(Fig 6). We then notice that for the gates opening, choosing θ’s between 0.5 and 0.7 gives a
quite good behaviour of the gates opening (Fig 7-(b)). Generally, depending on the control
action (gates, pumps etc) used, we can have a wide possibilities of choosing the θ’s.
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Fig. 5. Energy evolution for different values of θ1 and θ2.

(a) Downstream gate opening (b) Upstream gate opening

Fig. 6. Gate openings for different values of θ1 and θ2.
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(a)

(b)

Fig. 7. Evolution of the energy (a) and gates opening (b) for θ1 = θ2 = 0.5.

5.2 A numerical example for the cascade network

We consider two reaches of Lenght L1 = L2 = 1000m, width l = 1m. The steady state is
q̄1(x) = 1.5m3s−1, h̄1(x) = 1.5m and h̄2(x) = 1m and the initial condition is h1(0, x) = 2m,
q1(0, x) = 3m3s−1, h2(0, x) = 1.5m, q2(0, x) = 3m3s−1. The spatial step size is ∆x = 10m and
the time step is ∆t = 1s. We also set Hup = 3m and Hdown = 0.5m. We have noticed as in
the case of one single reach, that the bigger the θs are, the faster the exponential decrease is.
In figure (8), we have plotted the energy decay and the gates opening for θ1 = θ2 = θ3 = 0.7.
Although, the perturbations for reach 1 and 2 are different, the controllers act in such a way
to drive the perturbations to zero simultaneously (Fig (9).

387An Algebraic Approach for Controlling Cascade of Reaches in Irrigation Canals

www.intechopen.com



20 Will-be-set-by-IN-TECH

(a)

(b)

Fig. 8. Energy evolution (a) and gates opening (b) for θ1 = θ2 = θ3 = 0.7.
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(a) (b)

(c) (d)

Fig. 9. Deviation of water height at instants t = 50 (a), t = 500 (b), t = 1000 (c) and t = 2000
(d), for θ1 = θ2 = θ3 = 0.7.
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