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1. Introduction   

The introduction of modern varieties of staple crop in agriculture seem to lead to an overall 

decrease in genetic diversity, although within the released varieties themselves the data are 

inconsistent and no overall narrowing of the genetic base can be discerned. The situation 

regarding genetic erosion in landraces and crop wild relatives is equally complex. While 

many recent studies have confirmed that diversity in farmers’ fields and protected areas has 

eroded, this is not universally the case.  

Many reports expressed continuing concern over the extent of genetic vulnerability and the 
need for a greater deployment of diversity. However, better techniques and indicators are 
needed to monitor genetic diversity, to establish baselines and monitor trends. 

In recent years, there is evidence of growing public awareness with regard to the importance 

of genetic diversity, both to meet increasing demands for greater dietary diversity, as well as 

to meet future production challenges. The increased environmental variability that is 

expected to result from climate change implies that in the future, farmers and plant breeders 

will need to be able to access an even wider range of plant genetic resources for food and 

agriculture than today. 

The existing ex situ collections of fruit trees germplasm may valuably provide either a source 

of genes potentially useful as raw material in plant breeding, or plants directly valid for a 

sustainable production. With respect to the latter item, we refer to those local varieties that, 

having evolved for a very long period in a location, and having developed adaptative traits, 

well integrated with the environmental, agronomic, cultural and traditional features of the 

site and more or less recently have been replaced with new varieties. The requirements of 

modern agriculture, such as sustainability call for the cultivation of a wider range of diverse 

material that could better respond to the different aspects involved. Specifically, if it is 

necessary to obtain new varieties with a broader genetic base, capable of producing under 

diverse conditions and to respond to different stresses – i.e. pests, drought, low fertility of 

the soil etc.  On the other hand, in some cases, the re-introduction of old local varieties and 
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the safeguard of traditional farming systems and landscapes can be very profitable from an 

economic and socio-economic point of views. In general, the lack of information about plant 

genetic resources conserved have the effect of limiting the use that can be made of large 

existing collections, restricting the value and the usefulness of a collection even within the 

owning institute and among other potential users. Hence, assessing the traits of the 

germplasm conserved in a collection is an essential prerequisite to a proper and wide 

utilization of the plant material conserved and it is the first step toward a further definition 

of the roles that the varieties can play in sustainable production, through the direct use or in 

breeding programmes. 

In the past few years, several studies based on comparative high throughput sequencing of 

plant transcriptomes have, indeed, allowed the identification of new gene functions, 

contaminant sequences from other organisms, alterations of gene expression in response to 

genotype, tissue or physiological changes, as well as large scale discovery of SNPs (Single 

Nucleotide Polymorphisms) in a number of model and non model species, such us maize, 

grapevine and eucalyptus (Costa et al., 2010). 

Among the cultivated plants, olive (Olea europaea L.) is the sixth most important oil crop in 

the world, presently spreading from the Mediterranean region of origin to new production 

areas, due to the beneficial nutritional properties of olive oil and to its high economic value. 

The Mediterranean basin is the traditional area of olive cultivation and has 95% of the olive 

orchards of the world. From the Mediterranean basin, olive cultivation is presently 

expanding into areas of Australia, South and North America (Argentina, Chile, United 

States) and South Africa.  

It belongs to the family of Oleaceae, order of Lamiales, which includes about 10 families for 
a total of about 11,000 species. Members of this order are important sources of fragrances, 
essential oils and phenolics claiming for numerous health benefits, or providing valuable 
commercial products, such as wood or ornamentals. Information on the genome sequence 
and transcript profiles are completely lacking. Olive is a diploid species, predominantly 
allogamous. In spite of its economical importance and metabolic peculiarities, very few data 
are available on gene sequences controlling the main metabolic pathways. 

In spite of its economical importance and metabolic peculiarities, very few data are available 
on gene sequences controlling the main metabolic pathways in olive. With regard to oil, a 
range of biochemical methods to study the traceability of olive oil has to be presented. In 
fact, the analysis of minor and major components present in olive oil represents a valuable 
tool for authentication purposes. 

Food authenticity has become a focal point for producers, consumers and policy markers. 
The DNA based technology is gaining a great attention in the field of food authenticity. 
This technology makes use of molecular markers such as RAPD, AFLP and SSR more 
efficient and constitutes promising approach for variety characterization and oil 
traceability in olives.  

In this contest, the acquisition of additional information on biochemical markers in olive 
represents a fundamental and indispensable step to preserve the main olive varieties and 
also to safeguard the minor genotypes, in order to avoid a loss of genetic diversity and offer 
an important genetic basis for future breeding programs. 
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2. Management of germplasm collection 

Plant genetic resources are essential to a sustainable agriculture and food security. FAO 
estimates humans have used some 10,000 species for food throughout history. However, 
only about 120 cultivated species provide around 90% of food requirements and 4 species 
(Maize, Wheat, Rice and Potatoes) provide about 60% of human dietary energy for the 
world's population. Of the myriad of varieties of these crops developed by farmers over 
millennia, which form an important part of agricultural biodiversity, more than 75% have 
been lost in the past 100 years.  

Some fear that corporate financial interests might prevent safeguarding of livelihoods, 
promotion of food security, biodiversity-rich farming under control of local communities. 

The best way of conserving fruit germplasm collection is their utilization. However, today 
these resources are not only underutilized but also under conserved. The Global Plan of 
Action therefore supports activities improving in situ and ex situ conservation of plant 
collection. Regarding ex situ conservation, millions of accessions are already stored in 
hundreds of germplasm collections around the world for both conservation and utilization 
purposes. Find short descriptions about these germplasm databases and links to their 
websites by searching either by database type or by free text search. 

2.1 The in situ management of germplasm collection 

Awareness of the importance and value of crop wild relatives and of the need to conserve 

them in situ has increased. A global strategy for crop wild relatives preservation and use has 

been drafted, protocols for the in situ conservation of crop wild relatives are now available. 

The number and coverage of protected areas are expanding the last years and this has 

indirectly led to a greater protection of crop wild relatives.  

Important progress has been made in the development of tools and techniques to assess and 
monitor plant genetic resources for food and agriculture within agricultural production 
systems. Countries now report a greater considerate of the amount and distribution of 
genetic diversity in the field, as well as the value of local seed systems in maintaining such 
diversity. More consideration is now being paid in several countries to increasing genetic 
diversity within production systems as a way to reduce risk, particularly in light of changes 
in climate, pests and diseases. The number of on-farm management projects is increased 
somewhat and new legal mechanisms have been put in place in several countries to enable 
farmers to market genetically diverse varieties. There is still a need for more effective 
policies, regulations governing the in situ and on-farm management of plant genetic 
resources for food and agriculture, both inside and outside protected areas, and closer 
collaboration and coordination are needed between the agriculture and environment 
sectors. Many aspects of in situ management still require further research and strengthened 
research capacity is required in such areas as the taxonomy of crop wild relatives and the 
use of molecular tools to conduct inventories and surveys. 

2.2 The ex situ management of germplasm collection 

The total number of varieties conserved ex situ international has reached 7.4 million. While 
new collecting accounted for at least 240,000 varieties, and possibly considerably more, 
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much of the overall increase is the result of exchange. It is estimated that less than 30% of 
the total number of varieties are distinct (FAO, 2010). There is still a need for greater 
rationalization among collections globally. 

The existing ex situ collections of fruit tree germplasm may valuably provide either a source 

of genes potentially useful as raw material in plant breeding, or plants directly valid for a 

sustainable production. With respect to the latter item, we refer to those local varieties that, 

having evolved for a very long period in a location, and having developed adaptative traits 

well integrated with the environmental, agronomic, cultural and traditional features of the 

site and more or less recently have been replaced with new varieties. The needs of modern 

agriculture, such as sustainability call for the cultivation of a wider range of diverse material 

that could better respond to the different aspects involved. Specifically, if it is necessary to 

obtain new varieties with a broader genetic base, capable of producing under diverse 

conditions and to respond to different stresses – i.e. drought, pests, low fertility of the soil 

etc. –, on the other hand, in some cases, the reintroduction of old local varieties and the 

safeguard of traditional farming systems and landscapes, can be very profitable from an 

economic and socio-economic point of views. In general, the lack of information about plant 

genetic resources conserved have the effect of limiting the use that can be made of large 

existing collections, restricting the value and the usefulness of a collection even within the 

owning institute and among other potential users. Hence, assessing the traits of the 

germplasm conserved in a collection is an essential prerequisite to a proper and wide 

utilization of the plant material conserved and it is the first step toward a further definition 

of the roles that the varieties can play in sustainable production, through the direct use or in 

breeding programmes. 

Germplasm collections established and maintained by genebanks provide for the present 

and future utilization of plant genetic resources. In the early stages of collection 

development, the focus was mainly on acquisition per se, and less on optimizing collection 

composition. Many germoplasm collections were started from working collections that had 

been used to support specific purposes, including breeding, crop improvement and 

taxonomic studies. In many cases, germplasm collections expanded their collections 

thereafter by including obsolete varieties, research lines or samples obtained from collecting 

missions to natural distribution areas of crops and their wild relatives. 

There is still a need for greater rationalization among collections globally. Scientific 

understanding of the on-farm management of genetic diversity has increased. While this 

approach to the conservation and use of plant genetic resources for food and agriculture is 

becoming increasingly mainstreamed within national programmes, further efforts are 

needed in this regard. With the development of new molecular techniques, the amount of 

data available on genetic diversity has increased dramatically, leading to an improved 

understanding of issues such as domestication, genetic erosion and genetic vulnerability. 

The largest total numbers of ex situ varieties are of wheat, rice, barley and maize accounting 
for 77% of the total cereal and pseudo-cereal holdings. Other large cereal holdings include 
sorghum (about 235,000 varieties) and pearl millet (more than 65,000 varieties; FAO, 2010). 
In some tropical countries, roots and tubers, including cassava, potato, yam, sweet potato 
and aroids, are more important as staple foods than cereals, but being more difficult to 
conserve, collection sizes tend to be smaller. Centro Internacional de la Papa (CIP, Spain) 
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holds the world’s largest sweet potato collection (more than 6,400 varieties) as well as the 
third largest potato collection (representing about 8% of total world holdings of about 98,000 
varieties) after those of the Institut National de la Recherche Agronomique (INRA, France) 
and N.I. Vavilov All-Russian Scientific Research Institute of Plant Industry (Russian 
Federation).  

Other important collections of olive tree (Olea europaea L. subsp. europaea var. europaea) are 
found at several Mediterranean countries at Aegean Agricultural Research Institute of 
Turkey (AARI, Turkey), Consiglio per la Ricerca e la Sperimentazione in Agricoltura - 
Centro di Ricerca per l’Olivicoltura e l’Industria Olearia (Agricultural Research Council - 
Olive growing and OiL Industry research centre, CRA-OLI, Italy), Horticulture and 
Subtropical Crops Research Institute (HSCRI, Azerbaijan), Junta de Andalucía, Instituto 
Andaluz de Investigación Agroalimentaria y Pesquera, Centro de Investigación y Formación 
Agroalimentaria Córdoba (CIFACOR, Spain), National Plant Gene Bank of Iran was placed 
in the Seed and Plant Improvement Institute (NPGBI-SPII, Iran). The largest olive collection 
(accounting for 17% of the total olive trees with more than 500 varieties) is held by CRA-OLI 
in Italy, followed by the collections of the CIFACOR in Spain. 

The systematic collection of Italian olive varieties for deposit into specific catalogue fields 
began in Italy in the 1980s. A similar international collection was begun in 1997 by CRA-OLI 
of Rende, Italy. Collection entailed the following steps: a survey of the territory, 
individuation, basic characterization, and introduction into the gene bank field. Material 
identified by other international scientific institutions (International Treaty on Plant Genetic 
Resources for Food and Agriculture - Plant Genetic Resources RGV-FAO Projects) was also 
included. To date, roughly 500 varieties have been introduced into the CRA-OLI collection, 
and this list has been published (web site http://apps3.fao.org/wiews/olive/oliv.jsp). 

The olive tree is one of the oldest cultivated plants, and its fruit has been used for 
nourishment for more than 5,000 years in the Mediterranean regions where it originated. 
Over the last few centuries, cultivation of the olive tree has spread to North and South 
America, as well as Japan, South Africa, and Australia. Due to the tree’s need for a warm but 
not excessively hot climate, it can be cultivated in both the northern and southern 
hemispheres between 30 and 45 degrees latitude, with the exception of some equatorial 
regions where olive trees are grown at high altitude. Nowadays, olives are produced in 
more than 40 countries spread across all six inhabited continents, and even in exotic places 
like Hawaii. 

A useful olive germplasm collection also requires an organizational system devoid of 
homonymy, synonymy and mislabelling so that a reliable classification of all varieties can be 
achieved without unnecessary confusion. Recent research has focused on using morphology 
and biochemical and molecular markers to characterize and identify olive varieties. The 
identification of varieties and varieties using molecular markers is a crucial aim of modern 
horticulture, because such a technique would greatly facilitate breeding programmes and 
germplasm collection management. 

3. Olive germplasm characterization  

The genetic patrimony of the Mediterranean Basin’s olive trees are very rich and is 
characterised by and abundance of varieties. Based on estimates by the FAO Plant 
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Production and Protection Division Olive Germplasm (FAO, 2010), the world’s olive 
germplasm contains more than 2,629 different varieties, with many local varieties and 
ecotypes contributing to this richness. 

The olive tree is a member of the Oleaceae family, which contains the genera Fraxinus, 
Forsythia, Forestiera, Ligustrum, and Syringa, in addition to the genus Olea. The genus Olea of 
the sub-family Oleideae, includes two sub-genera, Olea and Paniculatae. According to recent 
revisions of the Olea europaea taxonomy (Green, 2002), this species is divided into the 
following six sub-species based on morphology and geographical distribution:  

1. subsp. europaea, divided into the two botanical varieties: the wild olive or oleaster (var. 
sylvestris) and the cultivated olive (var. europaea), distributed in the Mediterranean 
Basin;  

2. subsp. cerasiformis, present in Madeira Island; 
3. subsp. cuspidata, distributed from South Africa to southern Egypt and from Arabia to 

northern India and south-west China; 
4. subsp. guanchica, present in the Canary Islands; 
5. subsp. laperrinei, localized to the Sahara region; 
6. subsp. maroccana, present in south-western Morocco. 

Commercial olives are products of Olea europaea subsp. europaea var. europaea, as only this 
species produces edible fruit. The cultivated olive tree can reach heights ranging from just a 
few meters to 20 meters. The trunk is irregular, and the branches bear evergreen, elliptical 
and/or lanceolate leaves whose upper and lower surfaces are green and silvery, 
respectively. The olive tree (photo 1) is a long lived evergreen and some specimens have 
been reported to live for nearly 2,000 years. Its wood can resist decay, and when mechanical 
damage or environmental extremes kill the top of the tree, new growth arises from the root 
system.  

Olive trees were multiplied by using different explants including ovule (spheroblast) and 
subsequently leafy stem cutting and grafting on seedlings or clonal stocks. Vegetative 
reproduction potential varies, which is dependent on genotype, e.g. easy to rooting and 
recalcitrant to root initiation (Hartmann and Kester 1968). Micropropagation of the  
olive variety was successful on OM medium (Rugini, 1984) and subsequently several 
other researchers slightly modified the culture medium by adding different growth 
substances or rooting conditions (Cozza et al., 1997; Mencuccini, 2003). The 
micropropagated materials (photo 2) can be used to screen for resistance to biotic and 
abiotic stress and for genetic improvement activity (Rugini et al., 2000; Sasanelli et al., 
2000; Bartolozzi et al., 2001). 

When propagated by either seed or cuttings, the root system generally is shallow, spreading 
to only 0.9-1.2 meters even in deep soils. The above ground portion of the olive tree is 
recognizable by its dense assembly of limbs, short internodes, and the compact nature of the 
foliage. Light does not readily penetrate into the interior of an olive tree unless the tree is 
pruned to create light channels. If left unkempt, olive trees develop multiple branches with 
cascading limbs. The branches are able to bear large quantities of fruit on their terminal 
twigs, which are pendulous, flexible, and sway with the slightest breeze. 

Olive leaves (photo 3) are thick, leathery, and oppositely arranged. The silvery green leaves 
are oblong in shape, measuring 4–10 centimetres long and 1–3 centimetres wide. Leaves 
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have stomata on their lower surfaces only. Stomata are nestled in peltate trichomes that 
restrict water loss and make the olive tree relatively resistant to drought. Some multicellular 
hairs are present on the leaf surfaces. Each leaf grows over a two year period. Olive leaves 
usually abscise in the spring after they are 2 or 3 years old. As with other evergreens, 
however, leaves older than 3 years are often present. Flower bud inflorescences (photo 4) are 
borne on each leaf’s axil. The small white, feathery flowers, with ten cleft caly x and corolla, 
two stamens and bifid stigma. The bud is usually formed during one season, at which point 
it can remain dormant for more than a year before beginning visible growth during the 
subsequent season. After the buds become viable inflorescences, flowers bloom a season 
later than expected. Each inflorescence contains between 15 and 30 flowers, depending on 
the variety and on the extent of that year’s development.  

 

Photo 1. Calabrian secular olive (Olea europaea subsp. europaea var. europaea) trees 

The olive fruit is a drupe (photo 5), botanically similar to the almond, apricot, cherry, 
nectarine, peach, and plum. The olive fruit consists of an exocarp, a mesocarp and an 
endocarp. The exocarp represents the 1.5-3.5% of the total fruit; it is free of hairs and 
contains stomata. The mesocarp represents the 70-80% of the total fruit; it is the tissue that is 
eaten, and the endocarp is woody and represents the 13-24% of the total fruit and encloses 
the seed (2-4% of the total fruit).  
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Quantitatively, the largest constituents of the drupe are water (40-70%) and oil (6-25%). The 

biochemical composition of olive oil consists of a major portion that includes triacylglycerols 

and that represents more than 98% of the total oil weight and a minor ones, that is present in 

very low amount (about 2% of oil weight), including more than 230 chemical compounds 

such as aliphatic and triterpenic alcohols, sterols, hydrocarbons, volatile compounds and 

antioxidants (tocopherols and phenolic compounds).  

 

Photo 2. In vitro propagation of olive (Olea europaea subsp. europaea var. europaea) trees 
through micro-grafting 

 

Photo 3. Olive (Olea europaea subsp. europaea var. europaea) leaves: top side and under side 

www.intechopen.com



Fruit Germplasm Characterization: Genomics  
Approaches for the Valorisation of Genetic Diversity 

 

63 

 

Photo 4. Olive (Olea europaea subsp. europaea var. europaea) inflorescence (raceme) 

The phenolic compounds have shown their relevance in the production of virgin olive oil, 
typical food of the Mediterranean culture because of their bioactive contribution to sensory 
characteristics, to stability toward autoxidation, and to human health beneficial effects 
(Muzzalupo et al., 2011, Servili et al., 2004). Olive fruit pulp naturally possesses a bitter taste 
due to the presence of the glycoside oleuropein (photo 6), (Bianco et al., 1999, 2001; De Nino 
et al., 2005). 

 

Photo 5. The olive fruit (drupe) at different ripening stages 
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Photo 6. Cytological features of olive fruits. Fruit longitudinal sections stained with  
safranin O/azur II; 

The olive tree and its products can be damaged from many diseases and pests. The most 
dangerous are the bacterium Pseudomonas savastanoi (photo 7), which produce tubercules 
forms on the branches and stems, the fungus Cycloconium oleaginum that damage the leaves 
and fruits and Verticillum dahlie that is destructive for the root apparatus and the growth of 
the plants. Among phytophagous, most harmful are the olive fruit fly (Bactrocera olea 
Gmelin), the olive moth (Prays oleae Bernard) and black scale (Saissetia oleae Olivier). Olive 
fruit fly is the major pest and can cause severe economic damage to olive production, which 
effect oil extraction and table use (photo 8). 

 

Photo 7. Pseudomonas savastanoi olive or tuberculosis 
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Photo 8. Olive fruit fly (Bactrocera olea Gmelin) 

Varieties are predominantly diploid (2n = 2x = 46) (Minelli et al., 2000). The DNA content is 
2.2 pg per 1C nucleus (Bitonti et al., 1999), correspondent to a genome size of 2.2 Gbp (De la 
Rosa et al., 2003). 

Over the millennia, new varieties have originated by genetic mutation, by spontaneous 
crossing with a subsequent natural dissemination of stones. Also an important factor in the 
development of locally specific varietal populations was sexual reproduction, involving 
populations of local wild Olea and those selected to the criteria of local farmers (Breton et al., 
2006). If agreeable by humans, that new varieties were established by vegetative means. The 
longevity of the olive tree and the selection of a large number of varieties have contributed 
to the conservation of its variability and allowed to pass a large proportion of this genetic 
diversity (Rallo et al., 2000). Another factor that has contributed to increasing the 
biodiversity of this species is the wide genetic variability of olive that has been created and 
distributed freely without any concern for loyalty to a morphologically defined archetype 
because the end product is not the whole fruit, such as for most other fruit trees, but the 
result of squeezing the fruit: the virgin olive oil. This has led, over time, to the formation of 
polyclonal varieties of heterogeneous phenotype (varieties–populations) rather than the 
formation of monoclonal varieties. Intra-varietal polymorphisms in fact, have been reported 
in the literature (Lopes et al., 2004; Muzzalupo et al., 2009b, 2010) in which the observed 
differences within the same variety have been suggested as somatic mutations occurring 
during vegetative propagation.  

The problem of characterizing the olive tree germplasm is complicated not only by the 
richness of its genetic patrimony, but also by the absence of reference standards and a well-
defined system of nomenclature that is free from homonymy and synonymy (Bartolini and 
Petruccelli, 2002). For olive varieties there are still no “standard reference variety” (Roselli 
and Scaramuzzi, 1974) and only recently, some research Italian projects (i.e., “International 
Treaty on Plant Genetic Resources for Food and Agriculture - Plant Genetic Resources RGV-
FAO”, “Improvement and qualification of nursery olive” OLVIVA and “Research and 
Innovation for the South Olive“ RIOM projects) have been raising this issue and are trying 
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to achieve a “standard certificate” for each variety present in different Italian regions. The 
extent of this diversity has important implications for both the adaptation of varieties to 
their local environment and for the optimization of these varieties agronomical performance 
under a given set of environmental conditions. For example, every initiative promoting 
olive cultivation should consider the potential repercussions of such action on any local 
olive varieties. Every region should preserve its own plant material in order to safeguard 
both the adaptation and productivity of the species and the unique characteristics of the 
region’s olive oil. However, the study of intra-varietal polymorphisms is important since 
they may have traits that although not considered important in the past, might be important 
to meet the challenges of modern olive growing (i.e., resistance to low temperatures, salinity 
tolerance, etc.). 

The preliminary work performed in olive tree genomics is currently very far from 
producing results that are useful for selecting new varieties using molecular tools. This 
combined with the general lack of prior knowledge regarding the cultivated and wild olive 
germplasms, has focused attention mainly on the evaluation of the germplasm.  

There is a strong need for a means of reliably identifying different olive tree varieties, partly 
because so many of these varieties are propagated solely via vegetative methods. This 
would also be of substantial benefit to nurserymen and growers, because the cost of plants 
represents the major investment in establishing new orchards. At the same time, it is also 
important to improve the ex situ plant germplasm collection in order to characterize 
adequately all varieties, and to develop future breeding programs.  

Morphological and biological characteristics are widely used for descriptive purposes and 
are commonly used to distinguish olive varieties (Barranco et al., 2000; Cantini et al., 1999; 
Lombardo et al., 2004). Agronomic characterization has also aided in the classification of 
different olive varieties (Barranco and Rallo 2000; Lombardo et al., 2004). Morphological 
characterization of olive varieties is potentially unreliable, because environmental factors 
strongly influence the plants’ morphology. Despite this drawback, the age of trees, their 
training systems, and the phenological stage of the plants continues to be a key preliminary 
step in the description and classification of the olive tree germplasm (Lombardo et al., 2004) 
At the same time, improving ex-situ olive plant germplasm collections remains an important 
objective, which will ultimately prove useful for characterizing all varieties and for 
developing future breeding programs. 

Recently, a multiplicity of molecular markers as been used to characterize and distinguish 
between olive varieties. In light of these efforts, some combination of enzymatic markers 
with distinct morphological, physiological, and agronomic characteristics may ultimately 
provide a method for the reliable and systematic classification of olive tree varieties 
(Ouazzani et al., 1995). Assessments of microsatellite markers, RAPD profiles, AFLPs, and 
RFLPs provide direct genotypic information, which has numerous, valuable applications in 
genetic studies. The main advantages of generating RAPD profiles are the technique’s 
simplicity and low cost (Bogani et al., 1994; Fabbri et al., 1995; Wiesman et al., 1998; Belaj et 
al., 2001; Muzzalupo et al., 2007a). Nevertheless, RAPD experiments demonstrate poor 
reproducibility, which hampers comparison between individual studies. Experiments 
assessing an organism’s AFLP markers are more technically demanding than RAPD but are 
highly effective in detecting DNA polymorphisms (Angiolillo et al., 1999; Baldoni et al., 2000; 
Muzzalupo et al., 2007a; Owen et al., 2005). In contrast to a plant species’ chloroplast DNA 
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(cpDNA), which occasionally can be insufficiently variable for intra-species comparison 
(Wolfe et al., 1987; Amane et al., 1999; Lumaret et al., 2000; Besnard et al., 2002), 
mitochondrial DNA (mtDNA) within a given species varies enormously in terms of 
organization, size, structure, and gene arrangement (Brennicke et al., 1996). As a result, intra-
species mtDNA variation is common in plants, especially in naturally occurring populations 
(Besnard et al., 2002). Taken together, these distinctive features make mtDNA sequencing a 
powerful tool for analysing a given plant population’s genetic structure and phylogenetic 
relationships (Cavallotti et al., 2003). Microsatellite markers are ubiquitous, abundant, and 
highly dispersed in eukaryotic genomes, but are costly to assess experimentally. Once these 
markers have been ascertained, the data can be readily shared among laboratories. Since not 
all microsatellites are identical (Baldoni et al., 2009; Rallo et al., 2000; Sefc et al., 2000; Carriero 
et al., 2002; Cipriani et al., 2002; Muzzalupo et al., 2006, 2009a), however, successful 
utilization of known microsatellite markers requires prior information regarding the 
characteristics of a particular genetic locus (Baldoni et al., 2009). 

Internal transcribed spacer 1 (ITS-1) sequences, RAPD profiles, and inter-SSR (ISSR) markers 
have been employed to evaluate the colonization history of Olea europaea (Hess et al., 2000). 
A number of Olea europaea retroelements have also been identified (Hernandez et al., 2001), 
and their copy number has been estimated (Stergiou et al., 2002). Using previously 
established RAPD profiles (Hernandez et al., 2001; Mekuria et al., 2001) developed SCAR 
markers linked to leaf peacock spot tolerance. Another method to distinguish inter-variety 
variability and to characterize clonal variants using single nucleotide polymorphisms 
(SNPs) in the olive tree genome is also currently under development (Rekik et al., 2011; 
Reale et al., 2006). 

All the aforementioned genetic techniques provide useful information regarding the level of 
olive tree polymorphism and diversity, which demonstrates their utility for the 
characterization of germplasm varieties (Belaj et al., 2003).  

3.1 Molecular approaches for olive oil quality control 

The food crisis situation seen in last years and the controversy about genetically modified 
organisms (GMO), with a sharp increase in basic food prices, highlights the extreme 
susceptibility of the current agricultural and food model and the need for more strict food 
quality control, which should include determination of the origin of the product and the raw 
materials used in it. That’s why a well documented traceability system has become a 
requirement for quality control in the food chain. The definition of traceability according to 
the European Council Regulation EEC 178/2002 is the ability to identify and trace a product 
or a batch of products at all stages of production and marketing. Traceability is important 
for commercial reasons and plays a considerable role in the assurance of public health. 

Olive oil extraction is the process of extracting the oil present in the olive drupes for food 
use. The oil is produced in the mesocarp cells, and stored in a particular type of vacuole 
called a lipovacuole (photo 9). Olive oil extraction is the process of separating the oil from 
the other fruit contents. It is possible to attain this separation by physical means alone, i.e. oil 
and water do not mix, so they are relatively easy to separate.  

The modern method of olive oil extraction uses an industrial decanter to separate all the 
phases by centrifugation. In this method the olives are crushed to a fine paste. This can be 
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done by a hammer crusher, disc crusher, depicting machine or knife crusher. This paste is 
then malaxed for 15 to 45 minutes in order to allow the small olive droplets to agglomerate. 
The aromas are created in these two steps through the action of fruit enzymes. Afterwards 
the paste is pumped in to an industrial decanter where the phases will be separated.  

 

Photo 9. Lipovacuole from olive mesocarp cells stained with sudan IV 

The olive oil chemical components are divided, into major and minor compounds that are 
briefly described below. Major components: glycerids correspond to more than 98% of the 
total weight. Abundance of oleic acid (C18:1 n−9), is a monounsaturated fatty acid and 
present in concentrations between 56 to 84% of total fatty acids, while the most essential 
polyunsaturated fatty acid in our diet is the linoleic acid (C18:2 n−6), ranges from 3 to 21% 
(Caravita et al., 2007). Minor components: amounting to about 2% of the total oil weight, 
include compounds that are not related to lipids from a chemical viewpoint (tocopherols, 
polyphenols, chlorophylls, etc.) and compounds from unsaponifiable matter derived from 
lipids (sterols, phospholipids, waxes, ect.) (Servili et al., 2004). 

Almost 84% from the total olive oil production derives from the European Union, especially 
from Spain, Italy and Greece. The olive oil is a main constituent of the Mediterranean diet. 
However there has recently been an increase in olive oil consumption internationally, due to 
greater availability and the current consideration of ist high nutritive and health benefits, 
including a qualified health claim from Food and Drug Administration (FDA, USA). 

Some varieties of olive oil are recognized as being of higher quality because they derive 
from well-defined geographical areas, command better prices and generally are legally 
protected. Indeed, the aim of Protected Designations of Origin (PDO), Protected 
Geographical Indication (PGI) and Traditional Specialty Guaranteed (TSG) is to add value to 
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certain specific high quality products from a particular origin. Chemical techniques have 
been employed for the authenticity of olive oils using a high number of variables such as 
glycerid composition, phenolic fraction, unsaponifiable components monitoring by 
statistical and mathematical analyses in order to ability the evaluation of the results. 
Molecular markers allow the detection of DNA polymorphisms and enable to effectively 
distinguish different varieties in an effective way, without any environmental influence. 

When we blend olive oils of the same category, but from different provenances, most 

chemical analyses are of limited significance. Due to their high variability according to 

environmental conditions, neither morphological characteristics of different groups, nor the 

analyses of chemical composition of fatty acid and secondary metabolites can provide 

reliable results for oil traceability (Ben Ayed et al., 2010; De Nino et al., 2005; Papadia et al., 

2011). For this reason, genetic identity seems to be the most appropriate method for 

identifying the variety from which the olive oil under study derives. In fact, DNA in oil is 

not affected by the environment and is identical to the mother tree DNA since the oil 

containing tissues are formed by diploid somatic cells of the tree (Muzzalupo et al., 2007b). 

However, depending on the molecular markers used correctly, extra alleles can be detected 

in the oil that do not correspond to the mother tree allele but to the pollinator alleles 

contained in the embryo, itself located inside the seed (Muzzalupo and Perri, 2002; Ben 

Ayed et al., 2010). The use of DNA based technology in the field of food authenticity is 

gaining increasing attention. This technique makes use of molecular markers that mostly use 

polymerase chain reaction (PCR) and are thus easy to genotype. Even in a complex matrix 

such as olive oil, molecular marker techniques such as RAPDs (random amplified 

polymorphic DNA), AFLPs (amplified fragment length polymorphism) and SSRs (simple 

sequence repeat) are very useful in the study of the traceability of olive oil. SNP markers 

have been recently developed in olive and utilized to study the genetic diversity of olive 

trees (Reale et al., 2006; Rekik et al., 2010). 

A recent report by Papadia et al., 2011 reported a systematic effort to obtain genetic 
characterization by SSR amplification, soil analyses, and 1H-NMR spectra, is carried out in 
order to make a direct connection between the olive tree variety (genetic information) and 
the NMR spectra (chemical information) of the extra virgin olive oil produced. The results 
reported show that a multidisciplinary approach, through the application of multivariate 
statistical analysis, could be used to set up a method for variety and/or geographic origin 
certification, based on the construction of a suitable database. Further research will be 
directed to the growth of an organic genetic/NMR/soil database, in order to improve the 
prediction ability of the LDA, and furthermore to develop a way to correlate 1H-NMR 
spectra of commercial extra virgin olive oils with their geographical and genetic origin. 

In the following subsections we will discuss the potential of these classes of markers in the 
oil traceability and in characterization of olive germplasms.  

3.1.1 RAPDs (Random Amplified Polymorphic DNA) 

In this technique, a PCR amplification of genomic DNA is performed using a set of arbitrary 
primers (Williams et al., 1990). For each primer a large number of bands are generated and 
each DNA has the presence/absence of a band can distinguish between individuals and 
each individual is expected to have a specific fingerprint of bands. This molecular technique 
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has several advantages. It is simple, cheap, it requires small amounts of DNA (Fritsch and 
Rieseberg, 1996), and it can be applied without prior genetic information about the 
organism. Besides, it is fast, and does not require radioactivity. However, this analysis has 
several limitations including dominance, sensitivity to the reaction conditions, uncertain 
locus homology and the lack of good reproducibility. RAPDs thus combine the advantages 
of low technical input with almost an unlimited numbers of markers. They have proven to 
be very useful in the characterization of genetic diversity of plants for which few genomic 
data are available (Qian et al., 2001; Bandelj et al., 2002). RAPD markers were the first ones to 
be implemented to study diversity of the species Olea europaea (Belaj et al., 2001), to 
discriminate olive varieties (Khadari et al., 2003; Muzzalupo et al., 2007a), to study inter or 
intra-variety genetic diversity (Wiesman et al., 1998; Mekuria et al., 2001, Muzzalupo and 
Perri, 2009; Belaj et al., 2002, 2003; Gemas et al., 2004), to establish genetic relationships 
between varieties (Belaj et al., 2002, 2003; Besnard et al., 2002; Khadari et al., 2003; Muzzalupo 
et al., 2007a), and to study genetic differentiation in the olive complex (Besnard et al., 2001; 
Martins-Lopes et al., 2008). As early as their use in genetic studies RAPD markers has been 
used for the authentication and traceability of olive oil (Pasqualone et al., 2001; Muzzalupo 
and Perri, 2002). However, numerous authors (Pasqualone et al., 2001; Sanz-Cortés et  
al., 2001) concluded the non-reproducibility of RAPD markers in the authentication of olive 
oil, which resulted in inconsistent electrophoretic patterns. These unsuccessful attempts are 
due to the bad quality of DNA extracted from oil (Pasqualone et al., 2001; Muzzalupo and 
Perri, 2002). 

3.1.2 AFLPs (Amplified Fragment Length Polymorphism) 

AFLP was described by Vos et al., (1995) as a more reproducible alternative to RAPD for the 
genetic identification of crop plants. This technique is based on the selective PCR 
amplification of restriction fragments from total digests of genomic DNA. In olive, AFLP 
markers have been used for genetic diversity studies and variety identification. In fact, 
amplified fragment length polymorphism technology has been used by Angiolillo et al., 
(1999) to obtain a large number of markers for olive. This has been used in addressing 
genetic relationships among wild and cultivated varieties, as well as among Olea europaea L. 
and other species from the genus (within the Olea complex). This technique has also been 
used to study the genetic diversity within and among a range of Spanish and Italian olive 
varieties (Sanz-Corte´s et al., 2003). Owen et al., (2005) used AFLP markers to evaluate the 
structure of genetic diversity among common olive varieties cultivated in the Eastern 
Mediterranean. Additionally, AFLP analysis, as previously described and has been used in 
genetic variability studies for about 29 varieties (including oil and table olive varieties 
originating from Tunisia and other Mediterranean countries) of the genus Olea using nine 
AFLP primer combinations (Grati-Kamoun et al., 2006). Different studies (Busconi et al., 
2003, Pafundo et al., 2005) have reported that it is possible to use AFLP markers for 
genotyping olive species. As far as oil traceability is concerned, Busconi et al., (2003) 
reported that the AFLP fingerprint of olive oil was only partially super imposable with that 
of the variety from which the oil was made. However, in more recent studies, Pafundo et al., 
(2005) and Montemurro et al., (2007) concluded that AFLP profiles of DNA purified from 
leaves and the monovarietal oil of the same variety were comparable. These latter evaluated 
the possibility of identifying virgin olive oil from ten different varieties by the analysis of 
AFLP markers using six AFLP primer combinations. For the AFLP as well as for RAPDs, the 
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quality of DNA isolated from olive oil seems again to be the problem (very low quantity, a 
high degradation and the richness in polysaccharides and phenolic compounds). Poor 
quality of DNA is responsible for inconsistent results and low reliability of AFLP profiles 
due to the inhibition of the restriction enzymes and the DNA polymerase activity. 

3.1.3 SSRs (Simple Sequence Repeats) 

SSRs are a class of DNA markers that consist of short tandem repeat sequences (2–6 bp), 

which have become one of the most successful and the most interesting markers for 

genotype identification due to their good properties; in addition to their high specificity, 

they are highly polymorphic, codominant, locus specific, ubiquitous, widely distributed 

throughout the genome and easily amenable to automated PCR-based analysis. At present, 

they are the most reliable DNA profiling methods in forensic investigation (Jobling and Gill, 

2004). SSRs also are highly informative and reproducible tools because they use longer 

primer sequences (Vos, 1995). 

In olive SSRs have shown high potential for resolving issues of synonymies, homonymies 
and misnamings. Many SSRs have been developed in olive and applied with success (Sefc et 

al., 2000; Carriero et al., 2002; Cipriani et al., 2002; De la Rosa et al., 2003; Sabino Gil et al., 
2006). All these characteristics make them ideal markers for applications in analysis of 
intravariety variability issues (Cipriani et al., 2002; Lopes et al., 2004; Muzzalupo et al., 2009b, 
2010), linkage mapping (Wu et al., 2004) and for characterizing olive germplasm resources 
(Belaj et al., 2004; Montemurro et al., 2007; Muzzalupo and Perri, 2009). Sarri et al., (2006) 
confirmed the power of SSR markers in the identification of 118 varieties from different 
Mediterranean countries to study the genetic diversities of olive varieties. A recent report by 
Muzzalupo et al., (2009a) characterized 211 Italian olive varieties by using 11 loci 
microsatellite in order to study and to establish relationships of geographically-related 
olive-tree varieties. Microsatellites are also very useful markers for paternity analysis (Rallo 
et al., 2000; Diaz et al., 2007; Rekik et al., 2008). Recently microsatellites have become 
available and reliable molecular markers for the traceability issues to define the olive oil 
origin and to detect the presence of prohibited varieties (Muzzalupo et al., 2007b; Ben Ayed 
et al., 2009). Most these publications addressed the optimization of the extraction of high 
quality DNA from olive oils and to identify the most interesting SSRs markers in variety 
discrimination. All the studies published so far, showed that the reliability and 
reproducibility of SSRs profiles is determined by the quality of the DNA extracted from oil 
(Muzzalupo et al., 2007b; Breton et al., 2004; Bracci et al., 2011; Ben Ayed et al., 2009). In fact, 
the amount of DNA isolated from olive oil is low and highly degraded by the nuclease 
present in olive oil (Muzzalupo and Perri, 2002; De la Torre et al., 2004). For this reason, the 
extraction of DNA from olive oil is a difficult task. Several techniques of DNA preparation 
and immobilization for subsequent sample analysis have been developed. These methods, 
utilize such supports as silica, hydroxyapatite, magnetic beads, and spin columns. These 
supports enable the DNA to be amplified and analyzed using various quantities of oil. In 
particular, magnetic beads in conjunction with additional processing have proved useful. 
However, the defined procedure needs 2 x 40 mL of virgin olive oil, and the preparation of 
DNA regularly necessitates 5 h (Breton et al., 2004). Besides, other authors tried various 
protocols of DNA extraction from olive oil such as: Wizard kit, CTAB protocol extraction, 
QIAamp DNA stool extraction Kit. They concluded that the most reproducible results were 
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obtained when the template DNA was recovered from the olive oil using QIAamp DNA 
stool extraction Kit (Qiagen) (Muzzalupo et al., 2007b; Testolin and Lain, 2005). 

3.1.4 SNP (Simple Nucleotide Polymorphism) and qRT-PCR (Quantitative  
Real-Time PCR) 

SNP detection can be delivered in a number of ways, but the simultaneous detection of 
multiple SNPs from a single DNA sample is of particular interest. The “ligation detection 
reaction-universal array” (LDR-UA), was adopted by , to successfully genotype a panel of 49 
varieties with respect to 17 SNPs. Out of the 13 amplicons containing these SNPs, 12 were 
successfully amplified from oil-derived template, and the resulting profiles were fully 
consistent with those obtained from leaf-derived DNA (Consolandi et al., 2008). qRT-PCR 
continues to be extensively used for quantifying the amount of a specific sequence in food, 
with particular interest for GMOs (Marmiroli et al., 2009). PDO oils are typically not 
monovarietal, so a method for quantifying the components of the mixture is essential if 
conformity with certification depends on a prescribed proportion of varietal types. So far, 
application of Real-Time as a tool for olive oil authentication has been explored by Giménez 
et al., (2010). The authors evidenced that Real-Time PCR is useful to quantify DNA extracted 
from oil, and thus to assess the yields of different methods of extraction. But the size of 
amplicon, is critical for the success of analysis. A possibility of utilising qRT-PCR to quantify 
varieties in PDO oils rests on the use of taqMan probes designed on SNPs specific of 
varieties entering in the oil composition (Marmiroli et al., 2009). 

3.2 Genomics approaches for olive valorisation 

The complete sequencing of the genome of Arabidopsis in 2000 by the Arabidopsis Genome 

Initiative (AGI) (Samir et al., 2000) and the emerging sequence information for several other 

plant genomes, such as rice, Populus, Medicago, lotus, Lycopersicon esculenum and Zea mays, 

represent a valuable tool to determine the function of many genes (Rensink and Buell, 2005; 

Vij et al., 2006). In the wake of these sequencing approach, plant research enters an exciting 

period in which genome-wide approaches are becoming an integral part of plant biology, 

with potentially highly rewarding but as yet unpredictable biotechnological applications. 

This is reflected in the growing interest of new farms that invest in the development of tools 

to enhance and expand this wealth of information. 

Functional genomics employs multiple parallel approaches, including global transcript 

profiling coupled with the use of mutants and transgenics, to study genes function in a high 

throughput mode. The aim of these genome-wide efforts is to link the genome sequences to 

the phenotypic characters. 

The availability of a large volume of genomic data has provided information about the 
genes content of plants. Partial or complete sequences of cDNAs often provide a firm basis 
of the dimension of the transcriptome. The all plant expression sequence tags (ESTs) 
available are organized together with well characterized genes, into non-redundant gene 
clusters in three main databases (National Center for Biotechnology Information, NCBI; 
Unigenes, http://www.ncbi.nlm.nih.gov/; The Institute for Genomic Research, TIGR; Gene 
Indices, www.tigr.org; and Sputnik, http://mips.gsf.de/proj/sputnik) accessible via the 
Internet. It is worth noting that several companies possess large private EST databases for 
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various crop plants such as Zea mays and soybean; in this case the access can be negotiated 
on a case by-case basis. 

The ESTs are single-pass sequences of 300 to 500 bp determined from one or both ends of 
randomly chosen cDNA expressed genes. The sequences are sufficiently accurate to 
unambiguously identify the corresponding gene in most cases. Thousands of sequences can 
thus be determined with a limited investment. EST information present in public databases 
is available for a variety of species, including a number of plants (Cooke et al., 1996; 
Yamamoto and Sasaki, 1997). 

ESTs are important for the accurate genome annotation and provide information about gene 
structure, alternative splicing, expression patterns and transcript abundance (Umezawa et 
al., 2004). Recent progress in DNA sequencing technology, the rapid growth of EST and 
cDNA sequence resources and the large amount of genetic variation at the nucleotide level 
can be exploited to generate various types of molecular markers for variation analysis, 
marker-assisted selection (MAS) and quantitative trait locus analysis (QTL) for desirable 
traits and to identify genetic loci involved in phenotypic changes of model and non-model 
plant species (Lee et al., 2007).  

In the absence of the complete genome sequence, EST databases are a good resource for 
finding genes and for interspecies sequence comparison, and have provided markers for 
genetic and physical mapping and clones for expression analyses. The relative abundance of 
ESTs in libraries prepared from different organs and plants in different physiological 
conditions also provides preliminary information on expression patterns for the more 
abundant transcripts.  

Limitations at the EST approach are represented by the rare transcripts that are induced 
only under specific condition and consequently they are not present in EST database. In this 
case the only sure way to gain access to the entire set of genes is to determine the complete 
genomic sequence. The genomic sequence also provides information on the global structure 
of the genome, including the relative order of genes on the chromosomes, which is 
extremely valuable for positional cloning strategies. The major problem with genomic 
sequences is how to distinguish coding regions from noncoding intergenic sequences and 
introns. In this case, the comparisons between genomic sequences, ESTs and cDNA 
sequences can help to assign intron positions for many genes. However, for the genes that 
do not match sequences in the databases, the coding sequences need to be predicted from 
the genomic sequence. Therefore, sequencing technology applied to crop species represent 
the first step to identify the genes involved in the control of important agronomic traits. Rice 
was the first crop genome to be sequenced (Yu et al., 2002; Matsumoto et al., 2005), after the 
sequencing of the first model plant genome, Arabidopsis thaliana (Arabidopsis Genome, 
2000). Current crop genome sequencing projects are rapidly changing pace with the new 
technology and researchers are quickly adopting second generation sequencing to gain 
insight into their favourite genome. Roche 454 technology is being used to sequence the 430 
Mbp genome of Theobroma cacao (Scheffler et al., 2009), while a combination of Sanger (old 
school sequencing) and Roche 454 one of the “2nd generation” technologies of sequencing is 
being used for the apple genome (Velasco et al., 2009). A similar approach is being applied to 
develop a draft consensus sequence for the 504 Mbp of grape genome (Velasco et al., 2007) A 
combined Illumina Solexa and Roche 454 sequencing approach has been used to 
characterize the genome of cotton (Wilkins et al., 2009). Roche 454 sequencing has been used 
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to survey the genome of Miscanthus (Swaminathan et al., 2009), while Sanger, Illumina 
Solexa and Roche 454 sequencing are being used to characterize the genome of banana 
(Hribova et al., 2009).  

3.2.2 Gene identification in crop species 

The sequencing and assembly of large and complex crop genomes remains a valuable goal, 
but at the moment, a significant amount of knowledge can be gained from low coverage 
shotgun sequencing of these genomes. In this contest, the second generation technologies of 
sequencing are particularly suitable to know genes and gene promoters in crop plants that 
are homologous to related species. Therefore, designing polymerase chain reaction (PCR) 
primers to the read pairs enables the amplification and sequencing of the gene and 
corresponding genomic region in the target species. This approach to gene discovery offers 
the potential to identify genes, gene promoters and polymorphisms in a wide range of 
agronomically important crop species (Bracci et al., 2011). 

Microarray represents functional genomic approaches that have revolutionized global gene 
expression profiling. In fact they allow studying the entire gene complement of the genome 
in a single experiment (Duggan et al., 1999; Li et al., 2005). At the moment, cDNA and 
oligonucleotide microarrays have been widely used in plants, such as Arabidopsis, rice, 
maize, strawberry, petunia, ice plants and lima bean, to study and compare global gene 
expression levels in specific organs and/or tissues under controlled physiological 
conditions. 

In olive, the genomics information present on the international database NCBI, concerning 

the identification and characterization of functional genes are prevalently based on EST 

identification and they are predominantly related to pollen allergens and characteristics of 

olive fruit. 

Olea europaea trees are widely distributed throughout the Mediterranean basin and therefore 
their pollen is one of the most prevalent causes of respiratory allergy such as allergic rhinitis 
and allergic asthma in the Mediterranean region and some other countries between late 
April and early June (Kalyoncu et al., 1995). Olive pollen is also responible of allergic 
inflammation of the upper and/or lower airways that may persist after the pollination 
season is over (Quiralte et al., 2005).  

 

Allergenic proteins name Molecular mass (kDalton) Family 

Ole e 1 ~ 19 Unknown 
Ole e 2 ~ 15 Profiling 
Ole e 3 ~ 9 Polcalcin 
Ole e 4 ~ 32 Unknown 
Ole e 5 ~ 16 Cu/Zn superoxide dismutase 
Ole e 6 ~ 6 Unknown 
Ole e 7 ~ 10 Lipid transfer protein 
Ole e 8 ~ 19 Ca++ binging protein 
Ole e 9 ~ 46 1,3 β glucanase 

Ole e 10 ~ 10 Carbohydrate binding protein 

Table 1. The olive pollen allergens (from Villalba et al., 2007) 
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At the moment 10 olive pollen allergens have been purified and characterized from Olea 

europaea pollen extract (Table 1). Several of these allergenic proteins, eg, Ole e 6, fail to show 

any homology to known protein sequences and, therefore, the biochemical function of these 

gene products remains unknown. Many other allergens belong to well-known families of 

proteins, such as profilin (Ole e 2), superoxide dismutase (Ole e 5), calciumbinding proteins 

(Ole e 3 and Ole e 8), lipid transfer proteins (Ole e 7) and 1,3-β-glucanases (Ole e 9) (Villalba 

et al., 2007). 

 

Photo 10. Cross sections of mesocarp olive fruit at level of insect injury (Bactrocera oleae, 
right: sections stained with safranin O/ azur II; left: localization of OeCHLP transcripts by in 
situ hybridization with dig-labelled OeCHLP antisense probe). 

The biochemical composition of olive fruit is variable because it depends on olive variety, 

soil, climate, and cultivation. The virgin olive oil is overwhelmingly composed of 

triglycerides (>98%), along with traces of other compounds. The dominant triglyceride fatty 

acid species are the oleic acids (57-78%) such as palmitic, stearic, linoleic and linolenic acids 

(Caravita et al., 2007). The other minor constituents such as alcohols, polyphenols, 

chlorophyll, carotenoids, sterols, tocopherols and flavonoids, contribute to the olive’s 

organoleptic qualities, taste, flavour, and nutritional value (Perri et al., 2002; Servili et al., 

2004). These constituents may also serve to distinguish olive oils originating from different 

regions. Olive oil, especially extra-virgin oil also contains small amounts of hydroxytyrosol, 

secoiridoids, lignans (Bianco et al., 1999, 2001; De Nino et al., 2005) and other compounds 

thought to possess anticancer properties (i.e., squalene and terpenoids) (Fabiani et al., 2002; 
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Owen et al., 2004). In spite of its economical importance and metabolic peculiarities, very 

few data are available on gene sequences controlling the main metabolic pathways. 

Particular attention has been paid to the genes encoding the key enzymes involved in fatty 

acid biosynthesis, fatty acid modification, triacylglycerol synthesis, and fat storage 

(Hatzopoulos et al., 2002; De la Rosa et al., 2003; Banilas et al., 2005). 

In recent years, much attention has turned to the olive fruit. In this contest, the parallel 
sequencing of different fruit cDNA collections has provided large scale information about 
the structure and putative function of gene transcripts accumulated during fruit 
development (Alagna et al., 2009). 

A nuclear gene, named OeCHLP (Olea europaea GERANYLGERANYL REDUCTASE was isolated 
and characterizated by Bruno et al., (2009). This gene encodes a chloroplastic enzyme 
involved in the formation of phytolic side chain of tocopherols chlorophyll, and 
plastoquinones. In olive fruits OeCHLP gene expression was enhanced in dark fruit very 
likely in relation to the increase in mature fruits of the level of total tocopherols suggesting a 
role in the synthesis of the antioxidant. It is noteworthy that the variations in gene transcript 
levels that occurred during the ripening of olive fruits depend on the genotype analyzed 
(Muzzalupo et al., 2011). In this contest, in olive fruits tocopherols  confer not only 
nutritional value (Valk and Hornstra, 2000), but also contribute to product stability and post 
harvesting shelf life (Goffman and Bohme, 2001) by protecting storage oil from oxidative 
damage (Sattler et al., 2004). OeCHLP was also detected in fruits attacked by Bactrocera oleae 
pathogen as well as in fruits wounded by needle suggesting a role in protection mechanisms 
related to cell damage and oxidative burst induced by pathogen (photo 8 and 10) (Ebel, 
1998; Klessig et al., 2000; Bruno et al., 2009). 

4. Conclusion 

Although many efforts have been made in the last years, genome studies in Olea europaea L. 
are currently behind those of other crops. Several groups have started to work on the olive 
genome sequencing and, thanks to the rapid development of the new sequencing 
technologies; hopefully soon the complete sequence of olive genome will be available. 
Identification of all genes within a species permits an understanding of how important 
agronomic traits are controlled, knowledge of which can be directly translated into crop 
improvement. 

The availability of reliable genotype data of olive varieties and oils deriving from them, in 
publicly accessible curate and regularly update databases will be the challenge for the next 
few years. Recent advances in DNA sequencing technology are radically changing biological 
and biomedical research and will have a major impact on crop improvement. The new 
information on genome sequence will be very useful to identify genes involved in 
agronomical traits that could be used to improve the nutritional characteristics and the 
productivity of this crop. A possible application could be, for example, the studies of 
molecular mechanisms of drought and salinity tolerance of olive, in order to improve the 
cultivation of this important fruit crop also in the most arid and semiarid areas of the world. 
The knowledge of genome nucleotide sequences also could be useful to identify new 
sequence polymorphisms, which will be very useful in the development of many new 
variety-specific molecular markers and in the implementation of more efficient protocols for 
tracking and protect olive oil origin. 
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