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1. Introduction 

Inborn errors of metabolism (IEM) are a heterogeneous group of genetic disorders, 
classically caused by enzyme deficiency. They are associated with different pathogenic 
mechanisms from enzyme substract accumulation or product deficiency to formation of an 
abnormal, toxic molecule. Occasionally, the deficient protein has non-enzymatic functions 
such as membrane transport or others, making the boundaries of IEM difficult to establish. 
IEM are individually rare (orphan diseases) but relatively numerous as a group, since more 
than 500 different entities have been identified (Scriver et al., 2001). Overall, their incidence 
is estimated to be 1:1,500 (Raghuveer et al., 2006).  
The age of onset varies. Signs and symptoms of IEM present a considerable overlap among 

the diverse IEM and many other diseases, not allowing the differential diagnosis on a 

clinical basis. There is no correlation between genotype and phenotype, in general. Most 

symptoms are apparent at or soon after birth, but clinical onset may occur prenatally or at 

any age, including adulthood. Multisystem involvement is frequent, with the presence of 

nervous system manifestations in most patients, either at disease onset or during the 

evolution.   

IEM are most probably underdiagnosed. In spite of all contributions from varied fields of 

medical science, etiological diagnosis is not achieved in a significant percentage of suspected 

patients. Despite being frequently difficult, diagnosis may be done selectively based on 

clinical features or pre-symptomatically by neonatal screening and achieved by biochemical, 

enzymatic and/or genetic studies. The diagnosis of IEM is challenging due to their rarity 

and clinical heterogeneity. To address these diagnostic problems, several schemes based on 

clinical, biochemical, neuroradiological, morphologic, enzymatic and genetic criteria have 

been proposed.  
Neuroimaging techniques are essential for assessing brain structures, namely white matter 
and/or gray matter involvement (Barkovich, 2007). They are undoubtedly useful in 
neurologically affected patients’ diagnosis and follow-up. Neuroradiological features of 
many IEM overlap and are stage-dependent. Patients occasionally show distinctive patterns 
of central nervous system involvement in magnetic resonance imaging (MRI). These 
patterns may characterise some disorders, especially during the early stages, or they can 
show guiding characteristics, or reveal non-specific changes. In later phases, the MRI 
findings are similar for most IEM with neurological involvement, often presenting diffuse 
loss of brain tissue and increased water in the remaining tissue. For this reason, it is 
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important to submit the patient to a brain MRI early in the course of the disease, when some 
key features are more evident (Barkovich, 2007). 
Although the majority of patients present non-specific changes on MRI, a systematic pattern 

recognition approach to involved brain structures is useful, as it narrows differential 

diagnosis. It occasionally points to a diagnosis and allows the reduction of the biochemical 

and genetic work-ups. According to brain MRI in early stages, IEM can be classified into 

disorders primarily involving gray matter, diseases primarily involving white matter and 

disorders involving both gray matter and white matter (Barkovich, 2006, 2007). The proton 

magnetic resonance spectroscopy (MRS) may be more sensitive to detect early abnormalities 

in the brain. However, only a few metabolic diseases present with specific MRS findings.   

Other neuroimaging techniques, such as positron emission tomography (PET) and single 

photon emission computed tomography (SPECT), could be useful in the diagnosis and 

follow-up of IEM. Nonetheless, they are not widely available on a routine clinical basis. 

This section will review the most relevant IEM, based on a practical pattern-recognition 

approach to brain MRI and its correlation to clinical, biochemical and genetic features. 

2. Disorders primarily involving gray matter 

IEM primarily involving gray matter, known as poliodystrophies, can affect cortical or deep 

gray matter in the early phases. This differentiation should be made in order to accurately 

discriminate a range of diseases.  

2.1 Disorders primarily involving cortical gray matter 
During an acute phase, neuroimaging reveals sulcal effacement, cortical swelling and 

restricted diffusion when the damage affects primarily the cortical gray matter (Barkovich, 

2005). The imaging findings during a chronic phase are: sulcal volume increasing, cortical 

thinning and cortical low attenuation on computed tomography (CT) scan, and T1 and T2 

prolongation on MRI (Campistol, 1999). Nevertheless, in later phases, lesions can progress 

and spread to other brain structures (including deep gray matter, white matter and the 

cerebellum) (van der Knaap & Valk, 2005), showing non-specific patterns. 

The primary involvement of cortical gray matter is commonly found in neuronal ceroid 

lipofuscinoses, mucolipidosis type I and GM1 gangliosidosis. Generally, findings on 

imaging studies are non-specific in these disorders. 

2.1.1 Neuronal ceroid lipofuscinoses 
The neuronal ceroid lipofuscinoses (NCL) are inherited lysosomal storage diseases 

characterized by the accumulation of autofluorescent ceroid lipopigments in the lysosomes 

of neurons and other cell types. Together, they constitute the commonest group of 

progressive neurodegenerative diseases in children, and are inherited in an autosomal 

recessive mode. The adult form of NCL is rare and demonstrates either an autosomal 

recessive or a dominant mode of inheritance (Haltia, 2003). The main features of these 

diseases include visual failure, seizures, progressive physical and mental decline, and 

premature death. Diagnosis, based on the age of clinical presentation, is made by enzymatic 

or genetic studies. Ultra-structural analysis of white blood cells or skin can be used to 

orientate biochemical and genetic tests in atypical cases (Williams et al., 2006). 
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The major imagiological features in NCL are cerebral and cerebellar atrophy, cortical 
thinning associated with mild hyperintensity of the cerebral white matter and hipointensity 
of the thalami on T2-weighted images (T2-WI) (Incerti, 2000). Infantile and late infantile 
variants show rapid progression of enlargement of ventricles and sulci of the brain. In the 
juvenile and adult forms, however, cerebral atrophy is frequently slight in the course of the 
disease, or may remain totally absent (Autti et al., 1996). Cerebellar atrophy is common and 
may be the earliest finding in late-infantile and juvenile forms of NCL. In late infantile form, 
the first finding is usually a rapid progression of cerebellar atrophy (Fig. 1.), whilst in 
infantile and juvenile forms this progression is slower (Järvelä et al., 1997). T2-WI 
hyperintensity in white matter, which is usually less intense than in leukodystrophies, tends 
to spare the subcortical areas and initially involves the posterior periventricular region. 
Later in the disease, corpus callosum may also become thinner (Incerti, 2000). 
 

 
            (a)                                                    (b)                                               (c) 

Fig. 1. Late infantile NCL. (a) Midline sagittal T1-WI demonstrates cerebellar atrophy. Axial 
T2-WI show mild thalamic hypointensity (b) and cortical thinning (c). 

Diffusion-weighted imaging (DWI) can be very useful in detecting variances in 

abnormalities of cerebral water diffusion in the late infantile form, showing increased 

whole-brain apparent diffusion coefficient (ADC) values. It correlates with patient’s age, 

disease severity and duration (Dyke et al., 2007). MRS can give additional hints to the 

diagnosis of infantile and late infantile forms, and be helpful in the differential diagnosis. In 

infantile NCL, MRS spectrum revealed progressive changes, with a complete loss of N-

acetylaspartate (NAA), as well as marked reduction of creatine and choline, and increase in 

myo-inositol and lactate in gray matter and white matter. In late-infantile NCL, MRS 

spectrum revealed reduction of NAA in gray matter and white matter and an increase of 

myo-inositol, creatine and choline in white matter (Brockmann et al., 1996). 

2.2 Disorders primarily involving deep gray matter 
When the damage primarily affects the deep gray matter, neuroimaging reveals many 
different patterns, with involvement of particular structures. Some of them are more specific 
in a group of diseases, allowing for the narrowing in differential diagnosis. CT scan can be 
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normal, or disclose calcifications or hypodensity areas in deep gray matter. MRI sensibility 
is higher, although CT is best suited for calcification detection.   
The list of IEM affecting deep gray matter is extensive. Globus pallidus hyperintensity in T2-
WI can be seen in succinic semialdehyde dehydrogenase deficiency, methylmalonic 
acidemia, urea cycle disorders, guanidinoacetate methyltransferase deficiency, pyruvate 
dehydrogenase deficiency and isovaleric acidemia (Barkovich, 2005, 2007). Additionally, 
globus pallidus hypointensity, with or without central hyperintensity, is highly 
characteristic of Hallervorden-Spatz disease. Striatum hyperintensity in T2-WI can be seen 
in some mitochondrial respiratory chain disorders (MRCD) such as Leigh’s syndrome and 
mitochondrial encephalopathy with lactic acidosis and stroke-like episodes – MELAS, the 
glutaric acidurias, propionic acidemia and molybdenum co-factor deficiency (Barkovich, 
2005, 2007). Many of these IEM can concomitantly involve the white matter so some will be 
discussed later in this chapter.  

2.2.1 Pantothenate kinase-associated neurodegeneration  
Pantothenate kinase-associated neurodegeneration (PKAN), formerly known as 
Hallervorden-Spatz disease is an autosomal recessive disorder characterized by 
neurodegeneration with brain iron accumulation. Many patients have mutations in the 
pantothenate kinase 2 gene (PANK2). Two distinct groups were identified. Classical PKAN 
presents in early childhood, usually before age 6 years, has uniform presentation and is 
characterized by rapid progression of extrapyramidal and pyramidal signs, intellectual 
impairment, pigmentary retinal degeneration and abnormal eye movements. Atypical 
PKAN, which is less common, has a wider clinical spectrum and slower progression. 
PANK2 mutations are associated with all classic PKAN and one third of atypical disease 
cases (Hayflick et al., 2003). PKAN is suggested by typical MRI features, and the diagnosis is 
made by molecular genetic testing (Zhang et al., 2006).  
 

 
    (a)                                                        (b) 

Fig. 2. Pantothenate kinase-associated neurodegeneration (PKAN). (a) and (b) Axial FLAIR 
show hypointensity with a central region of hyperintensity in the globus pallidi. 
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Some patients’ CT scans show low or high density areas in the globus pallidus. Low-

density foci are a sign of tissue destruction, while the high-density foci reflect dystrophic 

calcification (Barkovich, 2005). All patients with PANK2 mutations had the specific 

pattern of T2-WI globus pallidus central hyperintensity (destruction and gliose) with 

surrounding hypointensity (iron deposition), known as the eye-of-the-tiger sign (Fig. 2.). 

This sign was not present in patients without mutations. Patients with PANK2 mutations 

could be distinguished by the occurrence of isolated globus pallidus hyperintensity on 

T2-WI before the hypointensity developed (Hayflick et al., 2006). Patients without 

PANK2 mutations revealed globus pallidus T2-WI hypointensity, without central 

hyperintensity. In the later stage of the disease, it can be seen evidence of iron deposition 

in the substantia nigra pars reticulata, cerebral and cerebellar atrophy. These signs were 

frequently and more severely seen in PANK2 mutation-negative patients (Hayflick et al., 

2006). 

MRS can show markedly decreased NAA/creatine ratio in the globus pallidus and 

substancia nigra, with increased myo-inositol/creatine ratio (Parashari et al., 2010).  

2.2.2 Creatine deficiency syndromes  
Creatine deficiency syndromes (CDS) are a newly described group of IEM affecting creatine 

metabolism. Three disorders have been described: guanidinoacetato methyltransferase 

(GAMT) deficiency, arginine:glycine amidinotransferase (AGAT) deficiency and creatine 

transporter defect (SLC6A8). GAMT e AGAT deficiencies (creatine synthesis pathway) have 

an autosomal recessive inheritance, whereas SLC6A8 defect is an X-linked disorder. All CDS 

can cause developmental delay, intellectual disability, behavioural problems, movement 

disorders, seizures, and severe disturbance of expressive language (Schulze, 2003). These 

clinical manifestations can be partially reversed by oral creatine supplementation and 

dietary manipulation, even in same patients with the creatine transporter defect (Chilosi et 

al., 2008; Mercimek-Mahmutoglu et al., 2010). CDS are suggested by marked reduction or 

complete absent of the creatine peak on MRS. Diagnosis relies on measurement of 

guanidinoacetate, creatine, and creatinine in urine and plasma and molecular genetic testing 

of the gene involved. If molecular test results are inconclusive, AGAT enzyme activity, 

GAMT enzyme activity, or creatine uptake in fibroblasts can be evaluated (Mercimek-

Mahmutoglu & Stöckler-Ipsiroglu, 2009). 

MRI and mainly MRS are very important tools to suggest CDS diagnosis and follow therapy 

response (Chilosi et al., 2008). In GAMT deficiency MRI can be normal or reveal T2-WI 

hyperintensity on globus pallidus, mild myelination delay or white matter hyperintensity. 

MRI is normal in AGAT deficiency (Barkovich, 2005); SLC6A8 defect MRI can show brain 

atrophy (Póo-Argüelles et al., 2006).     

MRS shows spectrum changes even without MRI signal abnormally. Markedly reduction 

or absence of creatine peak, which is easily seen on long echo time (TE) spectrum, is the 

classical sign shared by all three disorders, in gray matter and white matter. GAMT 

deficiency reveals a broad guanidinoacetate peak at 3.78 ppm, on short TE sequences, 

which can be reduced (but not normalized) with dietary restriction of arginine associated 

to the supplementation of creatine and ornithine. In GAMT and AGAT deficient patients, 

but not in most of those with SLC6A8 deficiency, the creatine peak slowly increases under 

treatment (Fig. 3.). 
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(a)                                                                     (b) 

Fig. 3. Creatine deficiency due to GAMT deficiency. (a) Multivoxel MRS spectrum (TE =144 ms) 
of the basal ganglia, before therapy, shows a markedly reduced creatine peak, and normal 
choline (Ch) and NAA peaks. (b) Multivoxel MRS spectrum (TE = 144 ms) of the basal 
ganglia, after 6 months therapy, shows a creatine (Cr) peak increasing.  

3. Disorders primarily involving white matter 

When the damage affects primarily the white matter, there is hypodensity on CT scan, and 
T1 and T2 prolongation on MRI. In later phases, the atrophy is the main feature. Knowledge 
of normal brain myelination, its appearance on different MRI sequences and normal 
variations, is crucial to accurately approach the range of disorders primarily involving white 
matter. When the damage affects primarily the white matter, it is important to find out if the 
white matter has never myelinated completely (hypomyelination), or if the myelin has been 
developed and destroyed afterwards (demyelination) (Barkovich, 2007). Since many of these 
IEM can also involve the gray matter, some will be discussed later in this chapter. 

3.1 Hypomyelination diseases  
The hypomyelination is observed in a small number of IEM, like Pelizaeus-Merzbacher 
disease and Salla disease. MRS findings may be useful in their differentiation (Barkovich, 
2005).  

3.1.1 Pelizaeus-Merzbacher disease  
Pelizaeus-Merzbacher disease (PMD) is a recessive X-linked neurological disorder caused by 
a mutation in the proteolipidic protein 1 (PLP1) gene, which results in defective central 
nervous system myelination. The connatal PMD phenotype presents during the neonatal 
period or in the first weeks of life, with nystagmus, stridor, hypotonia, severe spasticity and 
motor deficits, cognitive impairment, seizures and, later on, absence of speech. Death 
usually occurs in the period from infancy to third decade. The classic PMD phenotype 
presents in the first 5 years of life, with nystagmus, hypotonia, titubation, ataxia, slow motor 
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development and extrapyramidal movements, like dystonia and athetosis. Death usually 
occurs between the third and the seventh decades. PMD is suggested by typical neurologic 
findings, X-linked inheritance pattern, and general changes on MRI. Molecular genetic 
testing of PLP1 is also available. 
 

 
               (a)                                                             (b) 

Fig. 4. Pelizaeus-Merzbacher disease. (a) and (b) Axial T2-WI show abnormal high signal 
intensity in cerebral white matter, representing hypomyelination. 

As in most white matter diseases, CT scan changes are non-specific, revealing white matter 

hypodensity and atrophy in later stages. MRI shows discordance of myelin maturation 

caused by a lack of myelination. In the connatal form, a complete absence of myelin in the 

brain is demonstrated (Fig. 4.) (van der Knaap & Valk, 1989). In classical forms in the early 

stages, MRI shows a brain with normal appearance, but more immature than expected. 

During infancy, myelin development of the brain progresses in an orderly and predictable 

fashion. Absence of these predictable patterns should raise the consideration for PMD. In 

late and severe cases, MRI reveals diffusely T2 hyperintensity and generalized volume 

reduction in the white matter with thinned corpus callosum and cortical sulci enlargement 

(Plecko et al., 2003).   

MRS is very useful for evaluating both axonal integrity and myelination. However, reports 

may vary, which might be related to different clinical phenotypes, genotypes, or stages of 

disease progression (Pizzini et al, 2003). The pattern of metabolite abnormalities in 

individuals with PLP1 duplication appears to be distinctive, showing increased levels of 

NAA, creatine, glutamine and myo-inositol, which helps the differentiation of PMD from 

other leukodystrophies (Hanefeld et al., 2005). 

3.2 Demyelination diseases  
MR imaging has become the primary imaging modality in demyelinating diseases, playing 

an essential role in the identification, localization, and characterization of these pathologies. 

Demyelination processes can primarily involve subcortical white matter or periventricular 
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white matter. This differentiation should be made to ensure an effective imagiological 

approach and facilitate differential diagnosis. 

3.2.1 Disorders primarily involving subcortical cerebral white matter 
Early subcortical white matter demyelination can be seen in megalencephalic 
leukoencephalopathy with subcortical cysts, Alexander disease, some organic acidurias, 
Kearns-Sayre syndrome, galactosemia and diverse MRCD.  

3.2.1.1 Megalencephalic leukoencephalopathy with subcortical cysts  

Megalencephalic leukoencephalopathy with subcortical cysts (MLC), also known as van der 
Knaap disease, is an autosomal recessive disorder caused by mutations in the MLC1 gene. 
This gene encodes a protein mainly expressed in astrocytic endfeet at the blood-brain and 
cerebrospinal fluid-brain barriers (Boor et al., 2007). MLC is characterized by development 
of macrocephaly through the first year of life, generally up to the 98th percentile. Head 
circumference stabilizes afterwards. Initially, the psychomotor development is relatively 
normal or only mildly delayed. Later on, motor development delay, cerebellar ataxia, 
dysarthria, spasticity, and sometimes extrapyramidal signs ensue. Seizures, usually 
responsive to medication, are also observed in some children. MLC diagnosis can be made 
by recognition of typical neurologic signs and symptoms, and its distinguished brain MRI 
features. Molecular genetic testing of MLC1 is available (van der Knaap & Scheper, 2008). 
The MRI is characterized by diffusely abnormal and mildly swollen cerebral white matter, 
showing enlargement of the gyri, and subcortical cysts in posterior frontal and temporal 
lobes (Barkovich, 2005). Central white matter is better preserved, especially the corpus 
callosum, internal capsule and brainstem. The presence of cerebellar white matter T2 
hyperintensity is mild. Follow-up MRI reveals cerebral atrophy, and subcortical cyst growth 
can be present in some cases (van der Knaap et al, 1995). 
Abnormal white matter shows increased diffusivity on DWI (Gelal, 2002). MRS reveals 
reduced NAA in T2 hyperintensity areas (Morita et al., 2006). 
Tc-99m-ethyl cysteinate dimer SPECT reveals hypoperfusion in the abnormal cerebral white 
matter seen on MRI (Kiriyama et al., 2007).  

3.2.1.2 Alexander disease  

Alexander disease, or fibrinoid leukodystrophy, is caused by a gene mutation encoding glial 

fibrillary acidic protein (GFAP), leading to profound cellular dysfunction (Cecil & Kos, 

2006). The pathological hallmark is the accumulation of ubiquitinated intracytoplasmic 

inclusions in astrocytes, called Rosenthal fibers. The infantile form, the most frequent, is 

present in the first 2 years of life, typically with macrocephaly and frontal bossing, 

psychomotor retardation, seizures, pyramidal signs and ataxia. Patients survive weeks to 

several years. Diagnosis is based on MRI features. Molecular genetic testing, for GFAP gene, 

is available (Gorospe, 2010).  

CT scan shows low attenuation in frontal white matter with posterior progression to involve 

parietal region, internal capsules, and sometimes caudate heads. Frequently the tips of 

frontal horns show contrast-enhancement. There are 5 criteria on MRI to diagnose 

Alexander disease, according to van der Knaap: (1) extensive cerebral white matter changes 

with frontal predominance; (2) a periventricular rim with high signal on T1-WI and low 

signal on T2-WI; (3) signal abnormalities with swelling or volume loss in the basal ganglia 

and thalami; (4) brainstem signal abnormalities; and (5) contrast enhancement of one or 
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more of the following structures: ventricular lining, periventricular rim tissue, white 

matter of the frontal lobes, optic chiasm, fornix, basal ganglia, thalamus, dentate nucleus, 

or brainstem structures. The association of 4 or more criteria is relatively specific for 

Alexander disease. The imagiological pattern of enhancement provides specific 

information that can lead to correct diagnosis. Subcortical white matter is affected early in 

the course of the disease. The frontal changes correspond to prolonged T1 and T2 

relaxation times, and tend to involve the parietal white matter and the internal and 

external capsules (van der Knaap et al., 2001). The progression of disease can lead to 

cavitations in the white matter (Vargas, 2009). 
DWI reveals increased diffusion in the affected regions (Barkovich, 2005). MRS shows 
elevated myo-inositol and decreased NAA in the lesions (Cecil & Kos, 2006). 

3.2.2 Disorders primarily involving periventricular cerebral white matter 
Early periventricular white matter lesions can be seen in Krabbe disease, GM2 
gangliosidoses, metachromatic leukodystrophy, X-linked adrenoleukodystrophy, vanishing 
white matter disease, phenylketonuria, maple syrup urine disease, Lowe syndrome, 
Sjögren-Larsson syndrome and mucolipidosis type IV.  

3.2.2.1 Metachromatic leukodystrophy 

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by decreased 
activity of arylsulfatase A, resulting in failure of myelin breakdown and reutilization in the 
central and peripheral nervous systems. There are three clinical forms: late infantile MLD (50-
60% of the cases), juvenile MLD (20-30%), and adult MLD (15-20%) (Fluharty, 2008). The late 
infantile MLD presents before age 2 years with weakness, hypotonia, delayed psychomotor 
development, impairment of speech, spasticity, seizures and compromised vision and hearing. 
Death usually occurs before age 5. MLD is suspected by neurodegeneration and evidence 
 

 
             (a)                                                              (b) 

Fig. 5. Metachromatic leukodystrophy. Axial (a) and coronal (b) T2-WI show abnormal 
hyperintensity in the periventricular white matter, predominantly around the posterior 
body and trigones of the lateral ventricles, sparing subcortical U fibers.   
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of leukodystrophy on MRI. Diagnosis is suggested by increased urinary excretion of 
sulfatides and/or decreased arylsulfatase A activity, and is confirmed by genetic testing. 
Metachromatic lipids deposits can be seen in the nervous system tissue (Fluharty, 2008). 
CT scan shows confluent attenuation of periventricular white matter density. MRI reveals 
progressive symmetrical prolongation of T1 and T2 relaxation times in periventricular white 
matter. The cerebral white matter located around the posterior body and trigones of lateral 
ventricles is involved earlier in late infantile MLD (Fig. 5.), whereas frontal white matter is 
involved in cases of late onset. Subcortical U fibers are spared early but not in the later 
stages of the disease course. No enhancement has been reported. Later signs include 
cerebral atrophy. Higher resolution images reveal leopard skin pattern or tigroid pattern in 
the centrum semiovale that correspond to areas combining demyelination and normal 
regions. The progression of disease leads to involvement of the internal capsule, corpus 
callosum and corticospinal tracts. 
DWI reveals restricted diffusion in affected areas (Sener, 2002). MRS shows decreased levels 
of NAA and increased levels of myo-inositol and choline (Cecil & Kos, 2006). 

3.2.2.2 Krabbe disease 

Krabbe disease, or globoid cell leukodystrophy, is an autosomal recessive 
neurodegenerative disorder, caused by a deficiency of the lysosomal enzyme 
galactocerebrosidase, a key enzyme in metabolic pathways of myelin turnover and 
breakdown. Its deficiency results in galactosylsphingosine accumulation, a central and 
peripheral nervous system neurotoxin. The most frequent (85-90%) form of Krabbe disease 
has an infantile onset (Wenger, 2008). It presents with irritability between 3 and 6 months 
after birth and progresses with motor deterioration, feeding problems and atypical seizures. 
Eventually, the child develops decerebrate posture (Cecil & Kos, 2006) and dies before age 2 
years. Diagnosis is made by measuring the activity of galactocerebrosidade in leukocytes or 
in cultured skin fibroblasts and can be confirmed by genetic studies. A molecular genetic 
test is available for carrier detection. 
CT features during the initial stage of the disease may show symmetric high-attenuation in 
the thalami, caudate nuclei, corona radiate, posterior limbs of the internal capsule, 
brainstem and cerebellar dentate nuclei. Early in the course of the disease, MRI shows T1 
and T2 prolongation in the cerebellar nuclei, posterior limbs of the internal capsules and 
cerebellar white matter. The subcortical U fibers are spared until late in Krabbe disease (Fig. 
6.). Symmetric enlargement of the optic nerves may be seen (Cecil & Kos, 2006).  
Enhancement in junction between deep white matter and subcortical U fibers is rare (Vargas 

et al., 2009), but may be a common feature for cranial nerves and the cauda equina (Given et 

al., 2001). Thalami can be normal in the early stages, or reveal decreased T1 and T2 

relaxation times due to calcium deposition (Cecil & Kos, 2006). Later in the disease course, 

hyperintensity predominantly involves the parietal lobes, with extension to the callosal 

splenium, and severe, progressive atrophy.  
DWI reveals restriction diffusion in the early phases of the disease, mainly in the subcortical 
white matter, caudate head, and anterior limb of internal capsule; in later stages it shows 
increased diffusion in the white matter (Engelbrecht et al., 2002). Elevated choline and myo-
inositol, and reduced NAA have been found in the white matter MRS of infantile onset. 
Lactate elevation has also been reported (Zarifi et al., 2001). On the other hand, in an adult 
onset case, white matter spectrum changes were much less marked, and revealed only a 
mild elevation of creatine (Farina et al, 2000). 
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       (a)                                                (b)                                                    (c) 

Fig. 6. Krabbe disease. Axial T2-WI show high signal intensity in the cerebellar white matter 
(a), cerebellar dentate nuclei (b), and periventricular white matter with sparing of the 
subcortical white matter (c).   

3.2.2.3 X-linked adrenoleukodystrophy 

X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder affecting the central 

nervous system, adrenal cortex, and testicles. It is caused by mutations in the ALD gene that 

encodes for a peroxisomal membrane protein. It is associated to accumulation of very long 

chain of fatty acids in different tissues and in plasma. Several different forms of ALD have 

been reported. The childhood cerebral form, the most common, with a clinical onset 

between ages 4 and 8 years, manifests with behavioural and school performance problems, 

progressive impairment of cognition, vision, hearing and motor function. Within 2 years, it 

leads to total disability, and to death within 5 to 8 years (Cecil & Kos, 2006). The 

adrenomyeloneuropathy (AMN) generally manifests in the late twenties and progresses 

over decades with paraparesis and sphincter and sexual dysfunction. Clinical manifestations 

associated to MRI features may lead to diagnosis. High concentration of very long chain 

fatty acids in plasma and/or cultured skin fibroblasts reinforces it. Molecular genetic testing 

is clinically available. 
Three distinct zones have been described in white matter lesions, with direct influence in 
imagiologic features. An inner zone (Zone A) of astrogliosis and scarring; an intermediate 
zone (Zone B) of active inflammation and demyelination, with axons spared; and an outer 
zone (Zone C) of ongoing demyelination in absence of inflammation. A Zone D has been 
referred, which is peripheral to Zone C and characterized by impending demyelination 
(Eichler et al., 2002). In early stages, ALD CT scan and MRI have a typical appearance. 
Symmetric white matter changes occur predominantly in the peritrigonal regions and across 
the corpus callosum splenium with relative preservation of the subcortical U fibers. Spread 
progression occurs outwardly and cephalad as a confluent lesion, until most of the white 
matter is involved. CT shows symmetric low attenuation in a butterfly distribution, across 
the corpus callosum splenium, surrounded by an enhancing zone peripherally, due to 
inflammation. In the earliest stage, the lesion may be restricted to the splenium (Barkovich, 
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2005). On MRI the Zone A reveals T1 and T2 prolongation; the Zone B appears isointense on 
T1-WI and isointense or slightly hypointense on T2-WI, showing enhancement if 
paramagnetic contrast is administered; and the Zone C reveals minimally hypointense on 
T1-WI and hyperintense on T2-WI, without enhancement (Melhem et al., 2000). Symmetric 
abnormal T2 hyperintensity along the corticopontine and corticospinal tracts, and auditory 
pathways are common (Fig. 7.). Cases of predominantly frontal lobe involvement may occur 
with lesion of corpus callosum genu, anterior limbs and genu of the internal capsules, 
sporadically with lesion of cerebellar white matter. Atypical cases with unilateral 
involvement have also been reported, as well as calcifications in parieto-occipital region 
(Barkovich, 2005). MRI in AMN, compared to ALD, shows more frequently an involvement 
of cerebellar white matter and brainstem corticospinal tract and less commonly, cerebral 
lesion (Barkovich, 2005).  
 

 
           (a)                                                  (b)                                                  (c) 

Fig. 7. X-linked adrenoleukodistrophy. (a) Axial T2-WI shows hyperintensity in the occipital 
white matter and corpus callosum splenium. (b) Axial T1-WI postcontrast shows 
enhancement leading edge of inflammation. (c) Axial T2-WI shows hyperintensity in the 
corticospinal tracts within the pons.  

DWI shows an increased apparent diffusion coefficient (ADC) in Zone A (Schneider et al., 
2003). MRS reveals abnormal spectrum within regions of abnormal imaging, as well as 
normal appearing white matter. Spectrum profile in normal appearing white matter 
discloses elevated choline levels. Raised choline and myo-inositol levels reflect the onset of 
demyelination. An increase in choline, myo-inositol and glutamine levels suggests active 
demyelination and glial proliferation. Decreased NAA and glutamine levels reflect neuronal 
loss and injury. High lactate peak is consistent with inflammation (Cecil & Kos, 2006). 
Detection of MRS abnormalities in asymptomatic patients or in those with stable MRI can 
predict disease progression.  

3.2.2.4 Vanishing white matter disease 

Vanishing White Matter (VWM), or childhood ataxia with central nervous system 
hypomyelination, is an autosomal recessive disease caused by mutation in one of the five 
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genes involved in eukaryotic translation initiation 2B. It may result in impairment of the 
ability of cells to regulate protein synthesis in response to stress (Pronk et al., 2006). Its 
phenotype varies widely from antenatal onset with early death, to adult onset with 
slowly progressive disease. In late onset cases, motor and mental development is 
normally or mildly delayed at first. Chronic progressive or subacute neurological 
deterioration, with cerebellar ataxia, spasticity, and variable optic atrophy frequently 
occurs between the ages of 2 and 6 years. Epilepsy is not a major sign of the disease, and, 
unlike motor abilities, mental capacities are relatively preserved. Episodes of rapid 
deterioration can occur after minor trauma or infection, ending in unexpected coma. 
Death happens a few years after onset (van der Knaap et al., 1998). Diagnosis is based on 
clinical manifestations, MRI features, and mutation identification in one of the five 
mentioned genes (Schiffmann et al., 2010).   
CT scan reveals symmetric and diffuse white matter low density in the cerebral 
hemispheres. MRI is typical, showing symmetric and diffuse white matter anomalies. 
Subcortical involvement occurs during early stages of disease, with swelling and 
enlargement of gyri. On the later stages, white matter reveals signal intensity which is close 
to, or similar to cerebrospinal fluid in every sequence (Fig. 8.). On FLAIR and T1-WI there is 
a radiating, stripe-like pattern, on sagittal and coronal images; and a dot-like pattern in the 
centrum semiovale, on the axial images, which corresponds to remain tissue strands. 
Overtime, cystic lesions develop. Cerebellar atrophy may be seen, mainly involving the 
vermis. Dorsal pons hyperintensity is seen at the beginning; in later stages, involvement of 
the ventral pons also occurs (van der Knaap et al., 2006). 
 
 

 
            (a)                                                 (b)                                                 (c) 
 

Fig. 8. Vanishing white matter disease. (a) Sagittal T1-WI shows abnormal cerebral white 
matter hypointensity. T2-WI shows hyperintensity involving central tegmental tract in the 
dorsal pons (b) and cerebral white matter (c).  

MRS in the white matter shows marked decrease in NAA, creatine and choline peaks, or 

even virtual absence of all parenchymal metabolites, with presence of lactate and glucose. 

Gray matter spectrum is nearly normal, with a small increase in lactate and glucose, and a 

decrease in NAA peaks (van der Knaap et al., 1998).  
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4. Disorders involving both gray and white matter 

When the damage affects the gray matter and white matter, it is important to recognize if 
the lesions involve deep gray matter, or if, in addition to the white matter, the cortical gray 
matter is the only one to be affected (Barkovich, 2005, 2007). 

4.1 Disorders involving white matter and cortical gray matter 
This group of IEM includes peroxisomal disorders such as Zellweger syndrome, Alpers 
disease, Menkes disease, mucopolysaccharidoses and mucolipidoses (Barkovich, 2005). 

4.2 Disorders involving white matter and deep gray matter  
The list of IEM with white matter and deep gray matter involvement is wide, but the 

identification of the nuclei that is early affected can help narrowing the differential 

diagnosis. The involvement of thalami is present in GM1 and GM2 gangliosidoses, Krabbe 

disease, and Wilson’s disease. The lesion of globi pallidi is present in Canavan disease, 

methylmalonic acidemia, MSUD, Kearns-Sayre syndrome, L-2-hydroxyglutaric aciduria, 

and urea cycle disorders (Barkovich, 2005). When the involvement is seen in striata, the 

differential diagnosis should include glutaric aciduria type I, propionic acidemia, 

ethylmalonic acidemia, Wilson’s disease, MELAS and Leigh syndrome. 

4.2.1 Canavan disease 
Canavan disease, or spongiform leukodystrophy, is an autosomal recessive disorder, 

characterized by deficiency of N-acetylaspartylase resulting in abnormal accumulation of N-

acetylaspartic acid. Three clinical forms - neonatal, infantile, and late onset - are recognized 

(Traeger & Rapin, 1998). Most commonly, Canavan disease presents within the first 6 

months of life with hypotonia, lack of head control, macrocephaly, irritability and 

development delay. Later on, spasticity, optic atrophy and seizures ensue (Cecil & Kos, 

2006). Death occurs within the teens. Suspicion of diagnosis is based on clinical 

manifestation and MRI features. Diagnosis is confirmed by demonstration of high 

concentration of N-acetylaspartic acid in the urine. Molecular genetic testing is clinically 

available (Matalon & Bhatia, 2009). 
CT scan shows diffuse hypodensity in the cerebral and cerebellar white matter (Barkovich, 
2005). MRI shows symmetric areas of diffuse confluent white matter areas of T1 and T2 
prolongation. The subcortical U fibers are preferentially affected in the beginning of the 
disease. Globi pallidi are frequently involved, as well as thalami. In some cases internal and 
external capsules (Cheon et al, 2002), cerebellar white matter and brain stem can also be 
affected (Matalon & Bhatia, 2009). In the later stages, there is a diffuse atrophy of white 
matter.  
MRS in white matter shows marked elevation of the NAA peak, which is classically 

assumed to be exclusive for Canavan disease, although it can also be seen some times in 

Salla disease and PMD (Varho et al, 1999).  

4.2.2 Maple syrup urine disease 
Maple syrup urine disease (MSUD), an autosomal recessive disorder, is caused by 

deficiency of the branched-chain alpha-ketoacid dehydrogenase (BCKAD) complex, leading 

to accumulation of the branched-chain amino acids (BCAAs), allo-isoleucine and branched-
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chain ketoacids (BCKAs) in tissues and plasma (Strauss et al., 2009). MSUD manifests as 

heterogeneous clinical and molecular phenotypes. Several clinical forms have been 

described with manifestations from early acute neonatal to chronic intermittent forms 

diagnosed in adolescents. Classic MSUD causes maple syrup odor in urine and cerumen, 

soon after birth. At age 2-3 days newborns present with irritability, poor feeding and 

ketonuria. At age 4-5 days lethargy, apneia, opisthotonus and stereotyped movements 

occur; followed by coma and central respiratory failure at age 7-10 days. High protein 

ingestion or any cause of enhanced catabolism like infection, injury or surgery, can lead to 

acute leucine intoxication with cerebral oedema and neurological impairment (Morton et al., 

2002). In less severe cases, patients reveal normal or moderately retarded 

neurodevelopment, later presenting with metabolic crises similar to classic MSUD. 

Suspicion of diagnosis, based on clinical manifestations (and eventually MRI features in late 

onset cases), can be confirmed by elevation of BCAAs, allo-isoleucine and BCKAs in tissues 

and plasma. Molecular genetic testing is also clinically available (Strauss et al., 2009). In 

Portugal, extended newborn screening detects MSUD, frequently in a pre-symptomatic 

stage. 

Cranial ultrasonography can be useful in symptomatic neonates, showing symmetric 
hyperechogenicity of periventricular white matter, basal ganglia (mainly globi pallidi) and 
thalami (Fariello et al., 1996).  
 

 
      (a)                                                      (b) 

Fig. 9. Maple syrup urine disease. Axial T2-WI show hyperintensity in the brainstem and 
cerebellar white matter (a), globus pallidi and thalami (b). 

Acute classic MSUD form shows signs of diffuse oedema, characterized by hypodensity on 
CT scan, and T1 and T2 prolongation on MRI. Severe localized oedema (MSUD oedema) is 
seen in myelinated areas at birth, namely deep cerebellar white matter, posterior brain stem, 
cerebral peduncles, thalami, posterior limb of internal capsule, posterior centrum semiovale, 
and globi pallidi (Fig. 9.) (Brismar et al., 1990). Forms with later onset reveal lack of 
myelination superimposed upon lesions located at the same regions affected by MSUD 
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oedema in acute classic form. Brain sequel depends on the time it takes to reverse metabolic 
decompensation (Barkovich, 2005). 
DWI is very important, as the oedema may be hard to identify in T2-WI due to 

nonmyelinated brain hyperintensity. Regions with acute MSUD oedema show restricted 

diffusion with decreased ADC value. Diffusion-tensor imaging (DTI) reveals decreased 

anisotropy in the same areas (Parmar et al., 2004). In acute phase, MRS with long TE reveals 

elevated levels of lactate and presence of an abnormal BCAAs and BCKAs peak at 0.9 ppm. 

These changes can reverse completely after metabolic correction (Jan et al., 2003).   

4.2.3 L-2-hydroxyglutaric aciduria 
L-2-hydroxyglutaric aciduria is an autosomal recessive disease caused by mutations in L-2-

hydroxyglutarate dehydrogenase gene, with accumulation of L-2-hydroxyglutac acid in 

urine, cerebrospinal fluid and plasma. It is characterized by slowly progressive neurological 

dysfunction with cerebellar ataxia, psychomotor retardation, seizures, macrocephaly, and 

extrapyramidal and pyramidal signs (Steenweg et al., 2010).  It presents in childhood, 

frequently after a period of normal psychomotor development. Diagnosis is suggested by 

typical MRI features and by measurement of L-2-hydroxyglutaric acid in urine, 

cerebrospinal fluid or serum. Molecular genetic testing is clinically available (Seashore, 

2009). 

 

 
            (a)                                                  (b)                                                (c) 

Fig. 10. L-2-hydroxyglutaric aciduria. Axial T2-WI show hyperintensity of the subcortical 
WM and globus pallidi (a), dentate nuclei (b), putamina and caudate nuclei (c). 

CT scan shows symmetrical hypodensity in subcortical white matter, globi pallidi, and 

frequently dentate nuclei (Topçu et al., 1996). MRI reveals hyperintensity in the same 

locations listed above, with a preferential involvement of the frontal over the occipital white 

matter. The periventricular white matter is spared, as well as internal capsule, corpus 

callosum, cerebellar white matter, and brainstem. Sometimes involvement of putamina and 

caudate nuclei are seen (Fig. 10.). Globi pallidi, and sometimes cerebellar vermis and 
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hemisphere, reveal atrophy. Swelling of the cerebral white matter with broadening of gyri, 

rarefaction of the subcortical white matter and atrophy of cerebral white matter were also 

reported (Steenweg et al., 2009). 
DWI shows increased diffusion in the white matter lesions. MRS is usually normal, but it 
can reveal a slight decrease of NAA peak, in short TE (Aydin et al, 2003). 

4.2.4 Glutaric aciduria type I 
Glutaric aciduria type I is an autosomal recessive disorder resulting from a deficiency in 
glutaryl-CoA dehydrogenase with accumulation of glutaric, 3-hydroxyglutaric and 
glutaconic acids and secondary carnitine deficiency. Typically the disorder presents with an 
acute encephalopathy between 6 and 18 months of age, in a previously healthy or mildly 
motor retarded, macrocephalic child. In some cases, a slowly progressive course with 
mental retardation, hypotonia, dystonia, choreoathetosis, spastic quadriplegia and 
macrocephaly is seen (Hoffmann & Zschocke, 1999). Diagnosis is suggested by classical MRI 
features that are highly typical, and made by measurement of glutaric, 3-hydroxyglutaric 
and glutaconic acids in urine. Molecular genetic testing is clinically available (Seashore, 
2009). In Portugal, broad neonatal screening detects glutaric aciduria type I in a pre-
symptomatic phase. 
CT scan shows diffuse white matter hypodensity and/or cerebral atrophy, most prominent 
in the frontal and temporal regions (Yager et al., 1988). MRI reveals symmetric widening of 
the Sylvian fissure, frontotemporal volume loss, and delayed myelination. Putamen T2 
hyperintensity is predominantly seen, either alone or in combination with the caudate 
nucleus. Globus pallidus is less affected. Later in the course of disease, periventricular white 
matter T2 hyperintensity, basal ganglia and cerebral atrophy are seen. Sometimes 
imagiological studies reveal acute or chronic subdural haematomas (Fig. 11.), implying 
differential diagnosis with nonaccidental trauma (Neumaier-Probst et al., 2004). 
 

 
           (a)                                                (b)                                                   (c) 

Fig. 11. Glutaric aciduria type I. Axial T2-WI show putamina and globi pallidi 
hyperintensity (a), expansion of pericerebral fluid spaces anterior to the temporal lobes (b), 
periventricular white matter hyperintensity, cerebral atrophy and left frontoparietal 
subdural hematoma (c).   
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DWI shows restricted diffusion in acute basal ganglia lesions. MRS shows decreased 
NAA/creatine ratio at the basal ganglia in encephalopathic patients (Pérez-Dueñas at al., 
2009). 
Fluoro-2-deoxyglucose PET reveals decreased glucose uptake in the cerebral cortex, basal 
ganglia and thalami (Al-Essa et al., 1998). 

4.2.5 Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes 
(MELAS) 
MELAS is a multisystem mitochondrial disorder, with early normal psychomotor 
development and onset typically between the ages 2 and 10 years. It is characterised by 
neurological manifestations including seizures, encephalopathy, recurrent headaches and 
stroke-like episodes (hemiparesis and hemianopsia). Diagnosis is based on an association of 
clinical findings, MRI features and molecular genetic testing. Mitochondrial DNA mutation 
A3243G is found in 80% of MELAS patients. Sometimes, pathogenic mutations may be 
undetectable in mtDNA from leukocytes, and it is necessary to resort to other tissues, such 
as skeletal muscle, which is the most reliable for diagnosis (DiMauro & Hirano, 2010).  
Stroke-like lesions are often transient, affecting mainly the gray matter and are not restricted 
to specific vascular territories, unlike embolic and thrombotic infarction (Barkovick, 2005). 
They are usually fluctuating. Acute ischemic episodes show swelling and hypodensity on 
CT scan, and T1 and T2 prolongation on MRI, commonly involving the temporo-parieto-
occipital lobes and basal ganglia (Fig. 12.).  
With regard to DWI findings, reports are discordant. Some early reports demonstrate an 
increased diffusion in stroke-like lesions. However the number of reports revealing a 
decreased diffusion in these areas has increased. Thus, the absence of vasogenic oedema 
should not weaken the possibility of MELAS in favour of ischemic stroke. MRS shows a 
decrease in NAA and an increase in lactate in stroke-like lesions (Fig. 12.) (Tzoulis & 
Bindoff, 2009). An increase in lactate is also seen in embolic and thrombotic infarction, so 
this finding is not specific of MELAS.   
   

 
          (a)                                                   (b)                                                  (c) 

Fig. 12. MELAS. (a) Axial FLAIR shows hyperintensity in left temporal lobe. (b) Axial DWI 
(b=1000) shows restriction diffusion of the lesion. (c) Single voxel proton MRS (TE = 135 ms) 
of the lesion shows a lactate doublet (Lac). (This case is a courtesy of Dr. Fernando Matias) 
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SPECT shows hyperperfusion in the acute stage of stroke-like episodes, and hypoperfusion 
in the chronic stage (Tzoulis & Bindoff, 2009). PET and xenon reveal increased blood flow 
and decreased glucose uptake and oxygen extraction fraction in the lesion areas (Barkovich, 
2005). 

4.2.6 Leigh syndrome 
Leigh syndrome, or subacute necrotizing encephalomyelopathy, is caused, in the majority of 
the cases, by a dysfunction of the mitochondrial respiratory chain (particularly complexes I, 
II, IV or V), the coenzyme Q, or the pyruvate dehydrogenase complex (Finsterer, 2008). Most 
children are normal at birth and manifested usually by the end of the first year of life. The 
onset is commonly insidious, and the course may be intermittently progressive for some 
years. Clinical presentation can be highly variable, and includes psychomotor retardation, 
feeding difficulties, recurrent episodes of vomiting, failure thrive, signs of brainstem, 
cerebellar and basal ganglia dysfunction, and lactic acidosis (Medina et al., 1990). Diagnosis 
is suggested by clinical criteria and MRI features. Molecular genetic testing allows for a 
specific etiological diagnosis. 
Neuroradiological findings in Leigh syndrome are symmetrical hypodensities on CT, and T1 

and T2 prolongation on MRI, in the basal ganglia and thalami. Lesions can involve the 

substantia nigra, periaqueductal gray matter within the midbrain, inferior colliculus, 

inferior olivary nuclei, inferior cerebellar peduncles, medulla, solitary tract in the medulla, 

central tegmental tract and reticular formation in the dorsal pons (Barkovich 2005). Less 

commonly, the red nuclei and cerebellar dentate nuclei are involved. Basal ganglia are often 

affected before the brainstem, but in some patients, brainstem lesions appear without basal 

ganglia alterations (Fig. 13.). Sometimes, MRI reveals delayed myelination. In most patients,  

 

 
         (a)                                                    (b)                                                   (c) 

Fig. 13. Leigh syndrome. Axial T2-WI show hyperintensity in the striata (a), dorsal midbrain 
and cerebral peduncles (b). (c) Multivoxel proton MRS (TE = 144 ms) of the basal ganglia 
shows a decreased of NAA peak and a lactate doublet (Lac).  
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cerebral white matter is generally involved in the later stages of disease (Arii & Tanabe, 
2000). In some cases, a marked global atrophy can be seen, over time. Some MRI patterns 
may suggest an implicated mutation. In SURF-1 mutation, associated to complex IV 
deficiency, basal ganglia are less involved, and the brainstem, subthalamic nuclei, cerebellar 
nuclei and cerebellar peduncles are commonly involved. ATPase 6 mutation, which is 
associated to maternally inherited Leigh syndrome (MILS), shows anterior putamina, globi 
pallidi and dorsal mesencephalon and pons lesions. In the absence of hypoxia, ischemia or 
infection, symmetric involvement of deep gray matter is very suspicious of a mitochondrial 
defect (Saneto et al., 2008). 
DWI shows reduced diffusion in acute lesions and increased diffusion in chronic ones. MRS 
reveals increase in lactate and a small decrease of NAA in lesions, and alongside the 
imagiological features of conventional MR it supports the diagnosis of Leigh syndrome 
(Barkovich, 2005). 

5. Conclusion 

MRI plays an essential role in the diagnosis of IEM. It shows high sensitivity in the detection 
of some of these disorders and evaluation of their severity. Despite of the nonspecificity of 
many features, a systematic pattern recognition approach to brain structures involved is 
useful, as it narrows differential diagnosis. MRS can help in this process and may disclose 
anomalies, even if there are no lesions detectable with conventional MRI. Further 
investigation and accurate characterization of neuroradiological features are needed in order 
to gather a wider range of specific patterns. These would allow more patients to be 
adequately classified. 
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