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1. Introduction 

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the 
involvement of multiple organ systems with alternating clinical exacerbations and 
remissions.  Circulating immune complexes and autoantibodies can cause tissue damage 
and organ dysfunction with manifestations involving the skin, serosal surfaces, central 
nervous system, and kidneys (Rahman & Isenberg, 2008).   
B cells are believed to play an important role in SLE. B cells can function as APCs, produce 
cytokines and chemokines contributing to lymphoid regulation, and can respond to stimuli 
in the microenvironment at local tissues (Ramanujam & Davidson, 2008). Pathogenic 
autoantibodies produced by autoreactive B cells are believed to play an important role in the 
pathogenesis of SLE.   
CXCL13 has been shown to be a key mediator of organization of lymphoid tissues.  CXCL13 
is a B cell chemoattractant that is expressed by peritoneal macrophages and follicular 
dendritic cells in secondary lymphoid organs, such as the follicles of Peyer’s patches, the 
spleen and lymph nodes. Through interaction with CXCR5, a G-protein coupled receptor, 
CXCL13 attracts B lymphocytes and promotes migration of small numbers of T helper 
follicular cells and macrophages (Gunn et al., 1998).  CXCL13 is critical for B cell homing 
and follicle formation in lymph node and spleen, and it is required for the development of 
lymph nodes and Peyer’s patches (Ansel et al., 2000).  CXCL13 protein level is elevated in 
ectopic B cell follicles formed in the inflamed tissues of multiple chronic diseases, and plays 
an important role in maintaining inflammation by actively recruiting B cells (Carlsen et al., 
2004; Magliozzi et al., 2004; Salolonsson et al., 2002; Shi et al., 2001;).  CXCL13 has been 
shown to have increased expression in the thymus and kidney of aged NZB/W F1 mice, and 
may play a role in breaking immune tolerance in the thymus of autoimmune prone mice 
(Ishikawa et al., 2001).  Treatment with anti-CXCL13 has shown efficacy in animal models of 
RA and EAE (Bagaeva et al. 2006; Zheng et al., 2005). Because of its function and presence in 
various pathological conditions, CXCL13 and CXCL13 dependent pathways are thought to 
be instrumental in the pathogenesis of a variety of diseases where B cells may play a 
significant role, including RA, OA, UC, and SLE, and could be potential targets for 
autoimmune therapy (Table 1). 
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Human Disease Potential role of B cell Reference 

Systemic Lupus 
Erythematosus 

Antibody production, T cell activation, Antigen 
presentation, cytokine production, lymphoid 
neogenesis 

Lipsky, 2001 

Rheumatoid arthritis Cytokine production, lymphoid neogenesis, T 
cell activation 

Panayi, 2005 

Sjogren’s Syndrome Antibody production, lymphoid neogenesis Liang, 2007 

Autoimmune thyroiditis Antibody production, lymphoid neogenesis Yu, 2008 

Multiple Sclerosis Lymphoid neogenesis, T cell activation Hirotani, 2010 

Myasthenia Gravis Lymphoid neogenesis, antibody production Meraouna, 2006 

Table 1. Role of B cells in human autoimmune diseases. 

NZB/W F1 mice develop an autoantibody response against DNA and chromatin antigens, a 
polyclonal hypergammaglobulinemia and ultimately, severe immune complex mediated 
glomerulonephritis (Aringer & Smolen, 2008).  These mice have been widely used as a 
model to study lupus nephritis.  TNFǂ is a pleiotropic cytokine produced by many cell types 
that plays a key role in the pathogenesis of multiple autoimmune disorders, as well as a 
controversial role in SLE (Aringer & Smolen, 2008; Kollias, 1999).  
Although individual therapies with anti-TNFǂ or anti-CXCL13 mAb for additional 
inflammatory diseases have been explored with limited success, there has not been any 
attempt to combine the two mabs for the treatment of any disease (Bagaeva et al., 2006; Dick 
et al., 1996; Ruddle et al., 1990; Zheng et al., 2005).  This study was designed to investigate 

the effect of anti-CXCL13 and anti-TNF mAbs treatment on disease development in 
NZB/W F1 mice.    

2. Materials and methods 

2.1 Antibodies and reagents   
RPMI media, heat-inactivated fetal bovine serum, gentamycin and L-glutamine were 
purchased from Invitrogen (Carlsbad, CA). Neutralizing rat anti-CXCL13 mAb (MAB4701) 
was purchased from R&D Systems (Minneapolis, MN) with an endotoxin level of 1.2 
EU/mg. Anti-TNFǂ was made at Centocor, and had an endotoxin level of 0.262 EU/mg. 

2.2 Animals and experimental protocol 

NZB/W F1 mice aged 10-12 weeks were obtained from Jackson Laboratories (Bar Harbor, 
ME). On day 0, the study animals were randomly assigned to control or treatment groups (n 
= 15/group). An intraperitoneal injection of saline, anti-mCXCL13 mAb (0.5 mg/mouse, 2 
times a week, weeks 16-34), anti-TNFǂ mAb (0.5 mg/mouse, 2 times a week, weeks 16-18, 
then 0.25 mg/mouse, 2 times a week, weeks 19-34) or a combination of anti-CXCL13 plus 
anti-TNFǂ mabs were administered weekly from 16 to 34 weeks of age. Animal were 
monitored weekly. Urine was collected via free catch (once every 3 weeks starting from 12 

weeks of age) and stored at -80. Blood was collected every three weeks starting from 16 
weeks of age, and serum was stored at -80. At the final harvest, spleen, lymph nodes, and 
kidneys were harvested into appropriate storage buffers before further analysis by in vitro 
functional assays. This study protocol was reviewed and approved by Centocor’s 
Institutional Animal Care and use Committee. 
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2.3 Flow cytometry analysis of B cell activation status 

Mice were killed at 34 weeks of age and their spleens were removed. A portion of the spleen 
was placed in cold RPMI-1640 medium supplemented with 10% fetal bovine serum, 10 
mg/ml gentamycin, 2 mM L-glutamine, 0.1 mM 2-mercaptoethanol. Red blood cells were 
lysed in red blood cell lysing buffer (Biowhittaker) on ice for 5 minutes. Splenocytes were 
stained with optimal concentrations of fluorochrome conjugated mAbs (5 x 105 cells in 200 
μl of phosphate buffered saline, 1% bovine serum albumin, 0.1% sodium azide) in U-shaped 
microtiter plates at 4° C for 30 min, and fixed with 1% paraformaldehyde. Samples were 
analyzed on a FACSCalibur Instrument (Becton Dickinson, Mountain View, CA). Anti-
murine CD23 PE (clone B3B4) and anti-murine CD24 FITC (clone M1/69) were purchased 
from BD Biosciences (Chicago, IL) and used for analysis of B cell activation. 

2.4 Autoantibody analysis  

Anti-dsDNA autoantibodies were determined by ELISA. Double stranded-DNA coated 
plates were purchased from DiaSorin (Stillwater, MN). 1:100 diluted serum samples were 
incubated at room temperature for 2 hours on the plates. Alkaline phosphatase conjugated 
anti-murine IgG (Southern Biotechnology Associates, Birmingham, AL) was added to the 
plate for 1 hour followed by incubation with p-nitrophenylphosphate substrate (Sigma, St. 
Louis, MO) for 30 minutes and the plates were read at OD405 nm. OD values from separate 
assays were normalized to a single MRL lpr/lpr MRL/MpJ-Faslpr/J positive control serum. 

2.5 Proliferation assays 

B cell proliferation was assessed using 1 x 106 splenocytes stimulated with 2 μg/ml each of anti 
IgM F(ab’) (Pierce Biotechnology) and 5 μg/ml anti-CD40 (BD Pharmingen, Sacramento CA) 
for 72 hours. Proliferation was assessed using BrDU (Roche Applied Science, Indianapolis, IN) 
and counting luminescence singles on a TopCount (PerkinElmer, Shelton, CT). 

2.6 Urine total protein/creatinine analysis 

Urine samples were collected from mice via free catch and frozen at -80 C for subsequent 
analysis of urine total protein/creatinine ratio determined by Ace Analyzer (Alpha 
Wasserman, West Caldwell, NJ). Urine total protein was measured in undiluted urine and 
creatinine was measured using urine diluted 1:10 in deionized distilled H2O. 

2.7 Histologic analysis of kidney pathology 
Kidneys were harvested and immediately immersed in 0.7% periodate lysine 
paraformaldehyde (PLP) buffer, composed of 0.1 M phosphate buffer, 0.7% 
paraformaldehyde, 75 mM L-lysine and 10 mM NaIO4. The kidneys were processed for 
microscopic examination and embedded in paraffin by routine methods after overnight 
fixation in PLP buffer. The 5 μm thick sections were stained with haematoxylin & eosin 
(H&E) for general morphology. Samples were examined and scored for disease severity in a 
blinded fashion. Pathology was assessed using the World Health Organization (WHO) 
classifications (Weening et al., 2004).  

2.8 Immunohistochemical staining 

Spleens were harvested, cut in half along its vertical axis, and one half was suspended in 

OCT and frozen in 2-methyl-butane cooled with dry ice. Spleen sections were prepared, 
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fixed in acetone and incubated in PBS (no azide), then in 0.3% H2O2 to quench endogenous 

peroxidase activity. The sections were blocked using PBS/5% normal goat serum/0.1% 

Tween 20 and stained with biotinylated peanut agglutinin (Vector Labs) and B220 FITC (BD 

Biosciences). Streptavidin-Horseradish peroxidase (HRP, Southen Biotchnologies) and anti-

FITC-alkaline phosphatase (AP, Southern Biotechnologies) were used as secondary 

antibodies. HRP and AP were developed using 3-amino-9-ethyl-carbazole and Fast-Blue BB 

base (Sigma Chemical Co., St. Louis, MO) respectively. Samples were examined in a blinded 

fashion.  

2.9 Chemotaxis of purified B cells 

B cells were purified by negative selection using the B cell isolation kit from Miltenyi 

Biotec (Auburn CA). B cell purity was determined by staining for CD19-positive cells and 

was >95%. Purified murine B cells (4 x 107 cells in 10 ml RPMI/10% FBS) were loaded 

with calcein dye (1 mg/ml in dry DMSO, Molecular Probes, Invitrogen) for one hour at 

37° C. Cells were centrifuged at 1200 rpm for 7 min, then resuspended in PBS/2%FBS to a 

final concentration of 1 x 106 cells/ml. CXCL13 (R&D Systems, Minneapolis, MN) was 

diluted in PBS/2%FBS to a final concentration of 750 ng/ml and aliquoted to a 5 μm 

Neuroprobe (Neuroprobe, Gaithersburg, MD) 96 well chemotaxis apparatus, and 50 μl of 

cells were loaded onto the filter. The chemotaxis plate was incubated for one hour at 37° 

C, then washed and centrifuged briefly to bring the cells to the bottom of the well. 

Fluorescence at the bottom of the well was read on the Tecan (Tecan, Mannedorf, 

Switzerland).  

2.10 Statistical analysis 

Cell surface marker expression, anti-dsDNA levels, B cell proliferation and chemotaxis  were 

expressed as mean ± SE and statistical significance was determined by two tailed analysis of 

variance by standard t test. For statistical analysis on kidney pathologies, the incidence of 

severe disease was compared across groups by Fisher Exact test with a Bonferroni 

adjustment of the nominal type I error to determine the variance among the treatment 

groups. Rank order histological data was analyzed by ANOVA with Dunn’s correction for 

multiple comparisons. p values < 0.05 were accepted as significant. 

3. Results 

3.1 Anti-CXCL13/Anti-TNFα treatment increased follicular B cell and reduced 
transitional B cells in spleen 

We first examined the phenotype of B cells harvested from the treated mice. Spontaneous 

autoreactive B cell development occurs in NZB/W F1 mice with decreasing follicular B cells 

and increasing transitional B cells over time. At 34 weeks, follicular B cells in mice treated 

with anti-CXCL13/anti-TNFǂ mAbs were significantly increased as compared to that in 

mice treated with saline, (Fig. 1), while transitional B cells were significantly decreased (Fig. 

2) by treatment with anti-CXCL13/anti-TNF mAbs. These observations suggested that 

anti-CXCL13/anti-TNFǂ mAbs treatment helps to maintain a relatively normal B cell 

repertoire in NZB/W F1 mice, potentially interfering with the spontaneous autoreactive B 

cell development. 
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Fig. 1. Anti-CXCL13/anti-TNFǂ mAbs treatment increased the number of follicular B cells. 
Total splenocytes were gated on CD19+ B cells and were analyzed with anti-CD23 and anti-
CD24 antibodies by flow cytometry to determine the population of CD23+CD24- follicular B 
cells at 34 weeks of age.. * indicates p<0.05 vs saline treated control. 
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Fig. 2. Anti-CXCL13/anti-TNFǂ mAbs treatment decreased the number of transitional B 

cells. Total splenocytes were gated on CD19+ B cells and were analyzed with anti-CD23 and 

anti-CD24 antibodies by flow cytometry to determine the population of CD23-CD24+ 

transitional B cells (b) at 34 weeks of age. * indicates p<0.05 vs saline treated control. 
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3.2 Anti-CXCL13/Anti-TNFα mAb treatment inhibited anti-dsDNA autoantibody 
production in the serum 

Since the presence of autoantibodies against dsDNA is a marker of SLE, the effect of anti-

CXCL13/anti-TNFǂ mAbs treatment on anti-dsDNA autoantibody production was 

examined in the serum samples (Fig. 3). Serum anti-dsDNA autoantibody levels increased 

over the course of the study, and anti-TNFǂ or anti-CXCL13 mAb treatment alone did not 

significantly affect the overall anti-dsDNA production as compared to the control treatment 

with saline. However, anti-dsDNA production in the animals receiving the combination of 

anti-CXCL13/anti-TNFǂ mAbs was significantly decreased as compared to the anti-TNFǂ 

treatment group (Fig. 3).  
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Fig. 3. Anti-CXCL13/anti-TNFǂ mAbs treatment significantly inhibited serum anti-dsDNA 

autoantibody as compared to anti-TNFǂ treatment. Serum samples were analyzed for anti-

dsDNA autoantibody levels by ELISA at 34 weeks of age. O.D. index values represent 

individual data point normalized throughout the studies to a single positive control serum 

with anti dsDNA. * indicates p< 0.05 vs. anti-TNFǂ mAb treated group. 

3.3 Anti-CXCL13/Anti-TNFα mAb treatment decreased B cell proliferation 

To further investigate whether anti-CXCL13/anti-TNFǂ mAbs treatment affects the 

functions of B cells, antibody induced in vitro proliferation was performed to determine B- 

cell responses using splenocytes isolated from various treatment groups. Ex vivo B-cell 

proliferation stimulated with anti-CD40/anti-IgM mAbs was significantly depressed by in 

vivo anti-CXCL13/anti-TNFǂ mAbs treatment as compared to the saline and single anti-

TNFǂ or anti-CXCL13 antibody treatments when mice were 34 weeks old (Fig. 4). These 
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data demonstrated that B cells from animals treated with anti-CXCL13/anti-TNFǂ mAbs 

were more resistant to ex vivo stimulation and activation. 
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Fig. 4. B cell proliferation is decreased in NZB/W mice treated with anti-CXCL13/anti-
TNFǂ mAbs. Cell Proliferation ELISA using BrDU was performed to determine B cell 
proliferation and results are expressed as counts per second. * indicates p<0.05 vs saline 
control treated groups. 

3.4 Anti-CXCL13/Anti-TNFα mAb treatment suppressed kidney pathology 

Glomerulonephritis is another feature of SLE. To determine the effects of anti-CXCL13/anti-

TNFǂ mAbs treatment on kidney function and pathology, we examined urine total 

protein/creatinine ratios and renal histopathology. Treatment with anti-CXCL13/anti-TNFǂ 

mAbs significantly decreased urine total protein/creatinine ratios compared to the anti-

TNFǂ, anti-CXCL13, or saline treatment groups (Fig.5).  

At 34 weeks of age, periarterial lymphocytic infiltration at the hilus and along the major 

branches of the renal artery was observed in the PBS control group. There was also evidence 

of glomerular disease characterized by an increase in mesangial cellularity, collapse of 

capillary lumina, thickened basement membranes and the presence of amorphous hyaline 

deposits. These histological changes were associated with an increase in urinary total 

protein/creatinine ratio (Fig. 5).  

Anti-TNFǂ or anti-CXCL13 mAb treatment alone did not significantly affect the glomerular 
disease development at week 34 as compared to the control treatment with saline. The 
beneficial effect of anti-CXCL13/anti-TNFǂ mAbs treatment on decreasing renal disease 
severity was reflected by the rank score of disease severity across the groups for glomerular 
disease (Fig. 6). 
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Fig. 5. Anti-CXCL13/anti-TNFǂ mAbs treatment significantly inhibited urine total 
protein/creatinine ratios. Urine total protein/creatinine ratios were determined at 34 weeks. 
* indicates p<0.05 vs. saline control treated group. 
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Fig. 6. Anti-CXCL13/anti-TNFǂ mAbs treatment reduced kidney disease in NZB/W F1 
mice. Samples were examined and scored for disease severity in a blinded fashion. 
Pathology was assessed using the WHO Classifications. * indicates p<0.05 vs. saline control 
treated group.  
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3.5 Anti-CXCL13/Anti-TNFα mAb treatment decreased germinal center formation 

In the splenic germinal center, B cell activation is triggered by ligation with sufficient 
antigen that has been captured by follicular dendritic cells in a complement and antibody-
dependent process. B cell activation leads to migration of B cells towards the T cell zone. B 
cells then receive help from primed T-helper cells also expressing CXCR5 to form follicles 
and propagate GCs (Fazilleau et al., 2009). In the GCs, immunoglobulin class switching and 
somatic hypermutation as well as subsequent selection of centrocytes expressing BCR of 
increased affinity and specificity for the antigen result in the generation of affinity matured, 
long-lived plasma cells and memory cells.  
To investigate the mechanism by which anti-CXCL13/anti-TNFǂ mAbs treatment has 
suppressed autoimmune responses in murine SLE, we examined the spleens for germinal 
center formation. Immunohistochemical staining for germinal center formation reveals 
that NZB/W mice treated with anti-CXCL13/anti-TNFǂ mAbs have decreased germinal 
center formation (Fig. 7). The reduction of the germinal center formation most likely 
resulted in a decrease of B cell stimulation and activation which subsequently led to 
suppressed anti-dsDNA autoAb production and glomerular disease development in 
mice treated with the anti-CXCL13/anti-TNFǂ mAbs. Mice treated with either mAb 
alone had germinal center formation similar to that of the saline treated mice in both 
number and size.  
 

 

Fig. 7. Anti-CXCL13/anti-TNFǂ mAbs treatment decreased germinal center formation in 

NZB/W mouse spleen. (a) Saline or (b) Anti-CXCL13/anti-TNFǂ mAb treated spleen 

sections were stained with peanut agglutinin (blue) and anti-B220 (red) to identify germinal 

center and B cell zones. (Original magnification 20X).  

3.6 Anti-CXCL13/Anti-TNFα treatment increased chemotactic activity of naive B cells 

By treating NZB/W F1 mice with anti-CXCL13/anti-TNFǂ mAbs, we were able to inhibit 
autoimmune disease progression in NZB/W F1 mice. CXCL13 has been shown to be a very 
specific mature B cell chemoattractant. Expression of CXCR5 in mature naïve B cells is high, 
but after activation and differentiation, B cells lose CXCR5 expression (Hargreaves et al., 
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2001). Thus naïve mature B cells would be more responsive to chemotatic migration induced 
by CXCL13. We investigated the effect of antibody treatment on B cell chemotaxis in our 
study. After treatment with anti-TNFǂ alone or the combination treatment of  anti-
CXCL13/anti-TNFǂ mAbs, the B cells purified from splenocytes were significantly more 
responsive to in vitro chemotactic stimulation induced by CXCL13 as compared to the B 
cells from animals treated with saline, or anti-CXCL13 mAb alone (Fig. 8).  
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Fig. 8. Anti-CXCL13/anti-TNFǂ or anti-TNFǂ mAbs treatment significantly increased 
chemotaxis of B cells. B cells purified by negative selection over an AutoMacs column were 
loaded onto a 5 μM 96 well chemotaxis apparatus and exposed to 750 ng/ml CXCL13 for 
one hour. The cells in the bottom well were counted and expressed as a fraction of the cells 
loaded onto the apparatus. * and #  indicates p<0.05 vs saline treated control.  

A logical explanation for this observation is that in the saline or anti-CXCL13 mAb treated 
mice, there are an increased number of activated and differentiated B cells and decreased 
number of naïve B cells. Activated or differentiated B cells express fewer CXCR5 receptors 
and thus responded poorly in the chemotaxis assay. In contrast, there are more naïve B cells, 
which have normal expression of CXCR5 receptors, in the anti-TNFǂ and anti-
CXCL13/anti-TNFǂ mAbs treated mice. This result is highly consistent with the B cell 
phenotype described earlier.  

4. Discussion and conclusion 

Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by 
hyperactivity of autoreactive T and B cell responses against a variety of organs and can have 
widely varying degrees of severity(Ardoin & Pisetsky, 2008). Traditional therapies include 
steroids, mycophenolate, azathioprine, cyclophosphamide and hydroxychloroquine, which 
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utilize various mechanisms of action resulting in global immune suppression and significant 
side effects (Wallace & Hahn, 2007).  
There is a pressing need in the lupus field to find efficacious drugs with more specific 
immunosuppression. It has been shown by many investigators that various chemokines and 
cytokines play a role in the progression and pathogenesis of this complex disease (Dorner et 
al., 2009). It is generally accepted that treatments that would inhibit specific immune cell 
functions that are responsible for development of SLE may be beneficial for patients. The 
current study was designed to investigate the effect and mechanism of simultaneous 
application of two antibodies specific for B cells and inflammation in the inhibition of 
disease development in a murine model of lupus. 
This study shows novel findings that can have applications for potential treatment of 
autoimmune disease. TNFǂ is increased in the blood and inflamed kidneys of SLE patients 
and correlates with disease activity (Ernandez & Mayadas, 2009; Studnicka-Bencke et al., 
1996). TNF expression was also shown to be increased in aged NZB/W mice (Shiffer et al., 
2008; Studnicka-Bencke et al., 1996). However, other literature addressing the role of TNFǂ 
in SLE suggests that it has a complex function. Administration of TNFǂ reduces incidence of 

SLE in young NZB/W F1 mice (Jacob et al., 1991). In NZB/W F1 mice, TNF deficiency 
accelerates autoimmune disease and the mice develop severe lupus-like disease including 
autoantibodies to dsDNA and immune complex glomerulonephritis (Aringer & Smolen, 

2008). TNF seems to check autoimmunity in some paradigms, and foster inflammation in 
others, suggesting that other factors not yet identified may contribute to the role played by 

TNF in SLE. This actually in part accounts for why we did not observe significant 
inhibition of autoimmune responses by anti-TNFǂ treatment alone in the current study. 
Anti-dsDNA autoantibody levels in the serum were sometimes associated with disease 
activity and immune complex formation as well as glomerulonephritis in patients and mice. 
In our study, treatment with anti-CXCL13/anti-TNFǂ mAbs resulted in decreased anti-
dsDNA autoantibody levels in the serum of NZB/W F1 mice, as compared with that of the 
TNFǂ alone treated mice (Fig 3). This result showed that blocking TNFǂ alone is not enough 
to suppress the autoimmune responses in this model as it did in other models. The likely 
reason could be the heavy involvement of B cells in such responses. The combination 
therapy with blockade of both TNFǂ and CXCL13 is superior to just the TNFǂ blockade 
alone due probably to the simultaneous suppression of both autoreactive B cells and TNFǂ. 
CXCL13 participates in the follicular compartmentalization of B cells in GC and the 

induction of lymphotoxin (LTǂ1ǃ2) expression on B cells (Ansel et al., 2000). GCs support the 

differentiation of memory B cells and long-lived antibody secreting plasma cells. CXCL13 

plays an important role in attracting naïve B cells to form germinal centers and can initiate 

lymphoid neogenesis when expressed aberrantly in mice (Cyster, 1999; Melchers et al., 1999; 

Takemura et al., 2001). Ectopic CXCL13 was expressed in aged NZB/w mice developing 

lupus nephritis (Ito et al., 2004). CXCL13 was enhanced in the thymus and kidney of aged 

NZB/w F1 mice (Ishikawa et al., 2001). There was a decreased number of CXCL13 

producing peritoneal macrophages in aged NZB/w mice and the ectopic high expression of 

CXCL13 results in abnormal B1 cell trafficking during the development of murine lupus (Ito 

et al., 2004). As expected, treatment of NZB/w mice with a combination of anti-CXCL13 and 

anti-TNFǂ mAbs resulted in decreased germinal center formation in spleen sections in our 

study (Fig. 7). Combined treatment with anti-CXCL13/anti-TNFǂ mAbs significantly 

inhibited ex vivo IgM/CD40 stimulated B cells proliferation (Fig. 4),  increased the 
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frequency of follicular B cells (Fig. 1), and decreased the frequency of transitional B cells in 

the spleen (Fig. 2), when the total spleen cell number was not changed (data not shown) in 

our study. These novel results demonstrate that the combination therapy significantly 

dampens the autoimmune response in this model by maintaining a relatively normal 

lymphoid structure as well as B cell repertoire and lowering the activation status of the B 

cells, resulting in a higher threshold for hypereactivity.  

Glomerulonephritis is a consequence of immune complex deposition and subsequent 

inflammatory cell infiltration and is a pathological hallmark feature of murine SLE. TNFǂ is 

highly expressed in glomeruli in all forms of lupus nephritis and the degree of TNFǂ 

expression correlates with renal inflammatory activity (Aringer & Smolen, 2003; Herrerra-

Esparza et al., 1998). Administration of anti-CXCL13/anti-TNFǂ mAbs in our study 

significantly decreased the disease severity of glomerulonephritis in NZB/w F1 mice (Fig. 5 

& 6), as reflected in decreased protein/creatinine ratios and kidney disease scores. In 

addition to the impact on B cells, neutralization of TNFǂ and CXCL13 could also result in 

decreased DC recruitment in the circulation and decreased DC differentiation and 

maturation into CXCL13 producing DC which has been suggested to play a pivotal role in 

the development of SLE (Ishikawa, 2002). In addition, treatment of NZB/W F1 mice with 

anti-TNFǂ or a combination of anti-CXCL13/anti-TNFǂ mAbs in our study resulted in a 

significant increase of mature B cell chemotactic response mediated by CXCL13. In the saline 

treated group, there were a large number of activated and differentiated B cells in the 

spleen, which do not express CXCR5 and therefore cannot respond to CXCL13 mediated 

chemotaxis. Treatment with anti-TNFǂ or anti-CXCL13 mAb alone did not result in 

significant inhibition of autoimmune responses and kidney nephritis in this particular 

murine lupus model. Treatment with anti-CXCL13 only affects naive mature B cell 

migration to the germinal center. The activated and memory B cells that contribute 

significantly to the autoimmune responses and disease development in this animal model 

were not significantly impacted by the anti-CXCL13 mAb, which limited subsequent 

efficacy. Furthermore, TNFǂ can interact and signal through two different receptors: TNFR1 

and TNFR2, which can also bind LTǂ. LTǂ links with two LTǃ molecules to form a 

heterotrimer that signals through LTǃR (Browning et al., 1997). Both of these receptor 

pathways have been shown to activate expression of many genes, including CXCL13 (Ngo 

et al., 1999). Treatment with anti-TNFǂ mAb alone may only block the biologic activity of 

TNFǂ in symptoms driven by chronic inflammation, but not necessarily the autoimmune 

responses mediated by autoreactive B cells and LTǃR with LTǂ. LTǂ would still be able to 

signal through TNFR or LTǃR and contribute to increased CXCL13 expression and 

enhanced chemotaxis which may account for normal GC formation in the spleen of the 

TNFǂ mAb alone treated mice in our study. Simultaneously blocking both TNFǂ and 

CXCL13 allowed interruption of complementary inflammatory pathways, suppressed 

CXCL13 production and FDC maturation that contributes to the ultimate autoimmune 

disease development in this murine lupus model.  

Further characterization of the effect of neutralization of CXCL13 and TNFǂ in this disease 
model might be achieved by use of an anti-CXCL13 antibody with increased potency, to 
ensure complete neutralization of CXCL13. Also neutralization of LT to evaluate the 
complete shutdown of the TNFǂ signaling pathway on the development of disease would 
be useful to characterize its contribution to disease development. An investigation of the 
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effect of the combination of anti-CXCL13 and anti-TNFǂ in a therapeutic format could  
determine pathways essential in established disease. Additional studies to further 
characterize the mechanism of action of anti-CXCL13/anti-TNFǂ combinatorial treatment 
could include the contribution of cells from the innate immune system. Specifically, findings 
have been linked to mast cell stabilization including normalization of the B cell antibody 
profile for the promotion of innate as well as adaptive immunity during developmental 
phases of inflammation-induced immune dysfunction (Khatami, 2008, 2011) 
In conclusion, this study demonstrated that combined administration of anti-TNFǂ and anti-
CXCL13 mAbs significantly inhibited autoimmune responses and autoimmune disease 
progression in the NZB/W F1 murine model of systemic lupus erythematosus. This 
combined therapy could provide added benefit for advanced lupus patients that have 
advanced autoimmune disease. 
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