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1. Introduction

1.1 The problem

This Chapter examines the problem of coherent multilook radar detection of targets in the
sea from an airborne maritime surveillance platform. The radar of interest operates at high
resolution, and at a high grazing angle, with frequency in X-Band, and is fully polarised.
Typically, such surveillance radars are searching for small targets, such as fishing boats or
submarine periscopes. When a radar transmits signals toward a potential target, the returned
signal is distorted by a number of sources. The signal will be affected by thermal noise in
the radar. Atmospheric conditions will also distort the signal. In a maritime surveillance
context, backscatter from the rough sea surface will result in what is known as clutter returns
Levanon (1988). In most cases, the first two sources of interference can be modelled by
Gaussian processes Gini et al (1998). However, the sea clutter distribution is much more
complex to model. Much research has consequently been dedicated to modelling sea clutter
returns. Once a suitable clutter model has been proposed and validated, detection schemes
can be designed using statistical methodology. This Chapter will construct radar detection
schemes for a modern clutter model used for the scenario of interest. Before introducing this,
a synopsis of clutter models is provided. Useful references on radar include Levanon (1988);
Mahafza (1998); Peebles (1998); Stimson (1998). For statistical hypothesis testing, consult
Beaumont (1980). For a detailed description of statistical and probability methods employed
here, consult Durrett (1996). A useful reference on statistical distributions is Evans et al (2000).

1.2 Historical perspective

In earlier low resolution radar systems, sea clutter returns were found to be well modelled
by a Rayleigh distribution for amplitude, with the exception of the case of low grazing angle
scanning Shnidman (1999). As technology improved, and allowed the development of higher
resolution radars, it was found that the Rayleigh assumption was no longer valid. As far
back as 1967 it was found that data taken from a high resolution radar, operating at X-band
with vertical polarization and a 0.002 µ second pulse, and at a grazing angle of 4.7◦, deviated
from the Rayleigh assumption significantly Trunk and George (1970). The major reason for
the failure in the Rayleigh assumption is that the higher the radar’s resolution, the smaller the
resolution cells, and the corresponding clutter densities have greater tails than the zero mean
Gaussian clutter models investigated by Marcum and Swerling Trunk and George (1970).

9

www.intechopen.com



2 Will-be-set-by-IN-TECH

Within small resolution cells the clutter has been observed to consist of a series of discrete
spikes, or high intensity returns, that vary in time. As is also reported in Trunk and George
(1970), failure to alter the clutter model for high resolution radar results in an increased
incidence of false alarms, which can seriously undermine a radar’s performance. Hence it
became critical to develop new models for high resolution radar sea clutter.

Sea clutter return statistics have also been found to have a complex dependence on a given
radar’s operating characteristics. In particular, it has been found that such statistics depend
on the radar’s operating mode, grazing angle and background operating environment. The

clutter returns can vary significantly with grazing angle: the critical grazing angle θc = λ
4πσh

divides the set of grazing angles into a “high” and “low” class. Here λ is the wavelength
and σh is the root mean squared surface height deviation above average height Skolnik (2008).
Clutter returns vary significantly over the partition of grazing angles by this threshold. At
a low grazing angle, sea clutter returns are subjected to shadowing, ducting and multipath
propogation Dong (2006); Skolnik (2008). By contrast, at higher grazing angles, the returns are
affected by Bragg scattering from rough surface and scattering from whitecaps Dong (2006).
It was reported in Crombie (1955) that at high frequency, wavelength scattering seemed to
arise due to a resonant interaction with sea waves with one half of the incident wavelength.
Such phenomenon is referred to as Bragg scattering. Whitecaps refer to the visible appearance
of whitecaps in the sea surface as waves break Ward et al (2006). Wind speed affects the sea
state, which in turn has a significant effect on clutter Skolnik (2008). The radar’s polarization
also has been found to affect the behaviour of clutter returns, with increased spikiness with
horizontal polarization Dong (2006). Thus it is clear that adequate models for sea clutter
backscattering must account for such phenomena as described above, and need to model the
complex nature of true sea clutter returns.
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Fig. 1. Examples of real high grazing angle clutter. The left plot shows vertically polarized
clutter, while the right is for horizontally polarization. All measurements are in intensity.

Figure 1 contains examples of real sea clutter returns, in the intensity domain, showing the
changes in clutter as the radar’s polarization is switched from vertical to horizontal, on a pulse
to pulse basis. Both these examples of clutter have been obtained during a trial conducted by
DSTO in the Southern Ocean using Ingara, an X-band fully polarized airborne radar Stacy et
al (2003). The grazing angle for the clutter shown was 38.7◦ . This has been taken from a range
profile in data set run3468 at an azimuth angle of 225◦ . Further details can be found in Stacy
et al (2003), and will be provided with the numerical analysis to follow.

Earlier solutions to the inadequacy of the Rayleigh model include the Log-Normal
Distribution, which was used for low grazing angles (θ ≤ 5◦)
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Coherent Multilook Radar Detection for Targets in KK-Distributed Clutter 3

Trunk and George (1970), and the Weibull Distribution Schleher (1976). As reported in the
latter, the Weibull model was found to be a close fit to high resolution radar sea clutter returns
with a grazing angle 1◦ ≤ θ ≤ 30◦. An attractive feature of the Weibull model is that it
encompasses the two previous classical models of Rayleigh and Log-Normal.

However, it was found that the Weibull model was still insufficient because it did not take
into account the complex nature of clutter. In fact, this model had been developed on the
basis of empirical studies of clutter and not including any real physical understanding of the
nature of sea clutter. Further investigation of high resolution sea clutter showed that time
plots for an individual range cell demonstrated a fast pulse to pulse fluctuation. There was
also an underlying slow modulation of the fast fluctuations. Presence of fast fluctuations
and decorrelation with frequency agility implies there are many scatterers contributing to
the resultant echo within each illumination patch. Hence an appropriate statistical model of
clutter was needed to accommodate this phenomenon.

1.3 The K-Distribution

The K-Distribution was introduced in an attempt to model the phenomena described in
the previous subsection. This model has a physical interpretation as well as a theoretical
justification. This distribution models the observed fast fluctuations of clutter using a
conditional Rayleigh distribution, while the underlying modulation is modelled through a
Gamma distribution. Such a process can be described as a modulated Gaussian process. The
short term or fast fluctuation is referred to as the speckle component, while the modulation or
slow varying component is called the texture. The modern formulation of the K-Distribution
can be traced back to Ward (1981), who arrived at it by considering high resolution sea
clutter returns as a product of two independent random variables. One component has a
short correlation time and is decorrelated by frequency agility (Rayleigh component referred
to above). The other component has a long correlation time and models the underlying
modulation or sea swell component (the Gamma distributed component).

The first appearance of the K-Distribution, applied to modelling radar clutter returns,
is Jakeman and Pusey (1976). In the latter a mathematical model was developed for
non-Rayleigh clutter, under the assumption that the illuminated area of the sea surface
can be seen as a finite number of discrete scatterers. Each scatterer is assumed to give
randomly phased contributions of the fluctuating amplitude in the radar’s far field. The
K-Distribution allowed explicit dependence on the illuminated area. In addition to this
theoretical development, Jakeman and Pusey (1977) validated the K-Distribution as a model
for X-band sea clutter taken from a coastal cliff site in England.

We now introduce the K-Distribution mathematically. The reference
Ward et al (2006) is particularly useful in deriving K-Distribution properties.

The K-Distribution X = [X1, X2]
T is defined, in the complex domain, as a bivariate random

variable through the product

X =

√

2τ

π
X IQ, (1)

where τ = τ(µ, ν) is a Gamma random variable with density

fτ(t) =
1

Γ(ν)

(

ν

µ

)ν

tν−1e
− νt

µ , (2)
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for t ≥ 0, and X IQ is a bivariate Gaussian random variable, with mean the 2 × 1 zero vector
0, covariance matrix the 2 × 2 identity matrix I2 and density

fX IQ
(x) =

1

2π
e−

1
2 xTx, (3)

where x
T is the transpose of x. The two components of X IQ represent the in-phase and

quadrature elements of the complex clutter return sampled by the radar. The Gamma
distribution (2) has two free variables µ and ν. The former variable is an intermediate scale
parameter, while ν is called a shape parameter. The

√
τ component in (1) is the slow varying

component, while the Gaussian element is the fast varying component.

The representation (1) is convenient mathematically, from a signal processing point of view,
when considering targets embedded in K-Distributed clutter and Gaussian noise. This is
because, under the assumption of independent clutter and noise components in the return,
we can use statistical conditioning on τ to combine these into one Gaussian component. This
facilitates the analysis considerably: see Conte et al (1995); Farina et al (1995) for examples of
this.

The amplitude of X is

K := ||X || =
√

2τ

π
||X IQ || =

√

2τ

π
R, (4)

where the norm || · || in (4) is the standard Euclidean norm on vectors and R := ||X IQ || .

The density of (4) can be derived by applying statistical conditioning; see Durrett (1996). In
particular, by conditioning on the variable τ,

fK(t) =
∫ ∞

0
fK|τ(t|η) fτ(η)dη. (5)

With a considerable amount of analysis, it can be shown that

fK(t) =
2c

Γ(ν)

(

ct

2

)ν

Kν−1(ct), (6)

where c =
√

πν
µ , giving the density function of the K-Distribution’s amplitude. The parameter

ν, which arises from the underlying Gamma Distribution, is referred to as the K-Distribution’s
shape parameter, while c is called the scale parameter. The shape parameter ν governs the tail
of the K-Distribution’s density, and it has been found that small values of ν represent more
spiky clutter Crisp et al (2009). Larger values of ν produce backscattering that is closer to
Rayleigh in distribution. As reported in Crisp et al (2009), ν around 0.1 corresponds to very
spiky clutter, while ν near 20 produces approximate Rayleigh clutter.

The cumulative distribution function of the K-Distribution can be obtained by integrating (6)
over the interval [0, t]. It can be shown that

FK(t) = IP(K ≤ t) = 1 − (ct)νKν(ct)

2ν−1Γ(ν)
. (7)

As reported in Dong (2006), the first two moments of K are given by

IE(K) =

√
πΓ(ν + 1

2 )

cΓ(ν)
and IE(K2) =

4ν

c2
, (8)
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and consequently the K-Distribution’s variance can be obtained as

Var(K) = IE(K2)− [IE(K)]2 =
1

c2

[

4ν − πΓ2(ν + 0.5)

Γ2(ν)

]

. (9)

1.4 Modifying the K-Distribution: The KA-Distribution

As remarked in the previous subsections, the K-Distribution was introduced in an attempt to
reflect the complex nature of sea clutter backscattering of high resolution radars. However, it
has been found that horizontally polarised data tends to be spikier than that obtained from
a vertically polarized radar. In the latter, the K-Distribution is a suitable model, but in the
former, there is a deviation in the distribution’s tail region. Hence, this resulted in the search
for a new model that incorporated such deviations in the distribution’s fit.

A major step toward this objective was the introduction of the
KA-Distribution in Middleton (1999). In this model, the fast varying component is still
Rayleigh Distributed, but it is conditioned on the number of spikes in each range cell. The
latter is assumed to follow a Poisson Distribution. The slow varying component is still Gamma
Distributed, which is the local intensity of Bragg/whitecap scatterers. Mathematically, the
KA-Distribution is defined in an identical formulation to (5). Specifically, its density is given
by the integral

fKA(x) =
∫ ∞

0
fKA|τ(x|t) fτ(t)dt, (10)

where τ has a Gamma Distribution with parameters ν and µ = σbw (refer to (2)). The
conditional distribution KA|τ has density

fKA|τ(x|t) =
∞

∑
n=0

2x

t + σn + nσsp
e
−
(

x2

t+σn+nσsp

)

ρ(n), (11)

where ρ(n) = e−N̄ N̄n

n! is the Poisson probability that a range cell contains n spikes. In (11), σn is
the mean noise intensity, σsp is the spike intensity, σbw is the mean Bragg/whitecap intensity
and N̄ is the mean number of spikes in each range cell Dong (2006). As also pointed out in
the latter, the noise, spikes and Bragg/whitecap scatterers are all assumed to be mutually
uncorrelated. The expression (11) is the law of total probability applied over all possible
number of spikes in range cells.

The KA-Distribution was also investigated in Ward and Tough (2002) and Watts et al (2005),
and was shown to improve the fit of sea clutter in the distribution’s tail region. Further
validation of the KA-Distribution’s fit to spiky sea clutter is given in Valeyrie et al (2009) using
airborne radar records in rough sea states. Unfortunately, there is no closed form expression
for the density of the KA-Distribution.

1.5 The KK-Distribution

The KK-Distribution was proposed in Dong (2006) as an alternative to the KA-Distribution.
This Distribution assumes both the Bragg/whitecap scatterers and spikes are K-Distributed.
The overall clutter distribution is defined as a mixture of the two: namely, a weighted sum of
densities of the respective components Dong (2006). This formuation leads to a closed form
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for the density, in the amplitude domain, in terms of K-Distribution densities, and statistical
properties can be determined via linearity of the density, as will be demonstrated below.

In particular, for a fixed parameter k ∈ [0, 1], the amplitude density of the KK-Distribution is
defined as the mixture

fKK(t) = (1 − k) fK1
(t; σ, ν) + k fK2

(t; σsp, νsp), (12)

where each fKj
is a K-Distribution with parameters (σ, ν) and (σsp, νsp) respectively. The first

K-Distribution density in (12) represents the Bragg and whitecap scatterers in the model. The
second K-Distribution in (12) represents the spike component of the clutter.

The restricted range of values for k ensures (12) preserves the features of a probability density.
As reported in Dong (2006), it has been found empirically that we may assume ν = νsp, and

so selection of k, νsp and ρ :=
σsp

σ determines the spike component. Throughout we will use
the notation c1 = σ and c2 = σsp for the two scale parameters.

Comparison of this model to high resolution radar sea clutter has been recorded in Dong
(2006), where it is shown the KK-Distribution provides a better fit to the upper tail region of
the empirical distribution than the K- and KA-Distributions. The KK-Distribution’s validity
is also supported by the analysis of trials data in Rosenberg et al (2010), who also extend the
model to include multiple looks and thermal noise.

The moments of the KK-Distribution can be obtained from those of the K; in particular, if we
let KK be a random variable with the density (12), it follows that

IE(KK) = (1 − k)IE(K1) + kIE(K2) =

√
πΓ(ν)

Γ(ν + 1
2 )

(

1 − k

c1
+

k

c2

)

, (13)

where we have applied (8) for two K-Distributions with common shape parameter ν and scale
parameters c1 and c2 respectively. The KK-Distribution’s second moment can also be derived
from (8): in particular, and under the same parameter values, we can show

IE(KK2) = (1 − k)IE(K2
1) + kIE(K2

2) = 4ν

(

1 − k

c2
1

+
k

c2
2

)

. (14)

We can use (13) and (14) to derive the KK-Distribution’s variance. It is straightforward to
derive

Var(KK) = 4ν

(

1 − k

c2
1

+
k

c2
2

)

− πΓ2(ν)

Γ2(ν + 1
2 )

(

1 − k

c1
+

k

c2

)2

. (15)

The cumulative probability density function of the KK-Distribution can be obtained from the
fact that

FKK(t) = (1 − k)FK1
(t) + kFK2

(t)

= 1 − tν

2ν−1Γ(ν)
((1 − k)Kν(c1t)cν

1 + kKν(c2t)cν
2) , (16)

where the parameter sets {c1, ν} and {c2, ν} are for the two K-Distributions K1 and K2

respectively.
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1.6 Scope, assumptions and structure

This Chapter will be focused on multilook radar detection of targets embedded within
KK-Distributed clutter. In order to do this, a number of assumptions will be made.
Throughout, the thermal noise and Gaussian interference will be ignored. It will be assumed
that the radar has the capability to determine the clutter parameters, so that these are
known from the detection point of view. The clutter covariance matrix will also be assumed
known, and furthermore, it will be assumed its inverse is semi-positive definite. It will be
assumed that the normalised Doppler frequency (to be specified later) is also known. The
Neyman-Pearson approach will be employed to construct detection schemes. The focus will
be restricted to coherent radar detection.

Section 2 formulates the KK-Distribution as an intensity distribution of a complex spherically
invariant random process. This enables the determination of the Neyman-Pearson optimal
decision rule in Section 3. The generalised likelihood ratio test will be used to construct a
suitable suboptimal decision rule, which assumes the target is constant on a scan to scan basis.
Section 4 introduces the Ingara data briefly, and investigates receiver operating characteristics
curves. These provide a means of gauging the performance of a detction scheme over varying
signal to clutter strengths.

Throughout we will use IP to denote probability, IE to be expectation with respect to IP, and

X
d
= Y will represent equivalence in distribution.

2. Coherent multilook detection

2.1 Spherically invariant random processes

Spherically Invariant Random Processes (SIRPs) Rangaswamy et al (1993); Wise (1978);
Yao (1973) provide a general formulation of the joint density of a non-Gaussian random
process, enabling the construction of densities for Neyman-Pearson detectors Beaumont
(1980); Neyman and Pearson (1933).

Traditionally, a SIRP is introduced as a process whose finite order subprocesses, called
Spherically Invariant Random Vectors (SIRVs), possess a specific density Conte and Longo
(1987); Rangaswamy et al (1991). However, due to an equivalent formulation, we can specify
SIRVs and SIRPs in a manner more intuitive to the modelling of radar returns as follows. Let
ccc = {ς1, ς2, . . . , ςN} be the complex envelope of the clutter returns. Then this vector is called
SIRV if it can be written in the compound-Gaussian formulation

ccc = SGGG, (17)

where the process GGG = (G1, G2, . . . , GN)
T is a zero mean complex Gaussian random vector, or

multidimensional complex Gaussian process, and S is a nonnegative real valued univariate
random variable with density fS. The latter random variable is assumed to be independent
of the former process. If such a decomposition exists for every N ∈ IN the complex stochastic
process {ς1, ς2, . . .} is called spherically invariant. For a comprehensive description of the
modelling of clutter via SIRPs consult Conte and Longo (1987). What is clear from the
formulation (17) is that, by conditioning on the random variable S, we can write down the
density of ccc as a convolution. This will be shown explicitly in the analysis to follow.
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2.2 General formulation

The detection decision problem is now formulated. We assume that we have a SIRP model for
the clutter ccc as specified through the product formulation (17). Suppose the radar return is zzz,
which is a complex N × 1 vector. Then the coherent multilook detection problem can be cast
in the form

H0 : zzz = ccc against H1 : zzz = Rppp + ccc, (18)

where all complex vectors are N × 1, and H0 is the null hypothesis (return is just clutter)
and H1 is the alternative hypothesis (return is a mixture of signal and clutter). Statistical
hypothesis testing is outlined in Beaumont (1980). Here, the vector ppp is the Doppler steering
vector, whose components are given by ppp(j) = ej2πi fDTs , for j ∈ {1, 2, . . . , N}, where fD is the
target Doppler frequency and Ts is the radar pulse repetition interval. It will be assumed that
this is completely known. The complex random variable R accounts for target characteristics,
and |R| is the target amplitude. Suppose the zero mean Gaussian process has covariance

matrix Cov(GGG) = IE(GGGGGGH) = Σ. Since it is a covariance matrix, its inverse will exist. Recall
that (since Σ−1 is also a covariance matrix), the inverse will be symmetric and positive definite.
If we assume it is semi-definite positive, then we can apply a whitening filter approach to
simplify the detection problem. Hence we suppose the Cholesky Factorisation exists for Σ−1,
so that there exists a matrix A such that Σ−1 = AH A.

A SIRP is unaffected by a linear transformation Rangaswamy et al (1993). This means that
applying a linear operator to the clutter process alters the complex Gaussian component,
but the characteristic function of the SIRP is preserved. Hence in the literature, a whitening
approach is often applied to the detection problem of interest. Note that, by applying the
Cholesky factor matrix A to the statistical test, we can reformulate (18) in the statistically
equivalent form

H0 : rrr = nnn against H1 : rrr = Ruuu + nnn, (19)

where rrr = Azzz, nnn = Accc and uuu = Appp.

The transformed clutter process nnn = SAGGG, and AGGG is still a multidimensional complex

Gaussian process, with zero mean but covariance Cov(AGGG) = IE(AGGGGGGH AH) = AΣAH .

Since Σ−1 = AH A, it follows that IN×N = ΣAH A, from which it is not difficult to deduce
that A = (AΣAH)A. Let B = AΣAH , then note that B2 = B, so that B is idempotent. Also,
it follows that B must be invertible, since det(B) = det(A)det(Σ)det(AH) and det(Σ) �= 0 and
det(Σ−1) = det(AH)det(A) �= 0. Thus it follows that B must be the N × N identity matrix.
Consequently, we conclude that the transformed Gaussian process AGGG has zero mean and
covariance matrix this identity matrix. Hence the clutter, conditioned on the variable S, is
completely decorrelated through this linear transform.

We write this as AGGG d
= CN(�0, IN×N). Observe that nnn|S is still complex Gaussian with zero

mean vector but covariance matrix s2 IN×N , hence its density is

fnnn|S=s(xxx) =
1

πNs2N
e−s−2‖xxx‖2

. (20)
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Hence by using conditional probability Durrett (1996)

fnnn(xxx) =
∫ ∞

0
fnnn|S=s(xxx) fS(s)ds

=
∫ ∞

0

1

πNs2N
e−s−2‖xxx‖2

fS(s)ds. (21)

Hence if we define a function hN(p) by

hN(p) =
∫ ∞

0
s−2Ne−s−2p fS(s)ds, (22)

then the clutter joint density can be written in the compact form

fnnn(xxx) =
1

πN
hN(‖xxx‖2). (23)

The function hN defined in (22) is of paramount importance in SIRP theory, as all densities
of interest are expressed in terms of it. It is thus called the characteristic function. Much of
the literature is devoted to determining hN and fS pairs for particular desired clutter models
Rangaswamy et al (1991; 1993).

Next we derive the marginal amplitude and intensity distributions of the complex clutter
process nnn, which are intimately related to the special function hN . Let the kth element of nnn be
nk, so that nk = SAGGGk, where GGGk is the kth component of GGG, for 1 ≤ k ≤ N. Then the complex
Gaussian density of AGGGk is

fAGGGk
(z) =

1

π
e−|z|2. (24)

Hence, equivalently, AGGGk is a bivariate Gaussian process with zero mean and covariance
matrix 1

2 I2×2. Consequently, it follows that its amplitude |AGGGk| has a Rayleigh distribution

with parameter 1√
2

. Hence, using the fact that S and AGGGk are independent, and the definition

of the Rayleigh density, we can show that

f|nk|(t) =
∫ ∞

0

2t

s2
e−

t2

s2 fS(s)ds = 2th1(t
2), (25)

yielding the marginal amplitude distribution for each k. Transforming to the intensity domain,
it is not difficult to show

f|nk|2(t) =
1

2
t−

1
2 f|nk|(

√
t) = h1(t), (26)

also for each k.

The importance of the results (25) and (26) is that they indicate how an arbitrary distribution
can be embedded within a SIRP model. The key to the determination of a relevant SIRP for
a given detection problem is the specification of the random variable S through its density
fS. For a desired marginal distribution, we can form an integral equation using (26) and
(22) with N = 1. The literature contains extensive discussion of this problem; in particular,
Rangaswamy et al (1993) contains guidelines on performing this, as well as case studies for
most desired marginal distributions.
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2.3 The KK-SIRP

The key to constructing the KK-SIRP is to observe the fact that, since it is defined as a
mixture in the amplitude domain, we can use the K-Distribution SIRP, which is well known.
This is specified in Rangaswamy et al (1993). The following specifies the density of S for a
K-Distribution:

Lemma 2.1. The SIRP with nonnegative random variable S with density given by

fS(s) =

√
2c2ν

Γ(ν)
s2ν−1e−

c2s2

4 , (27)

admits a K-Distribution, with parameters c and ν, as marginal amplitude distributions.

Extending this result to the KK-Distribution case is simple, as the following Lemma
encapsulates:

Lemma 2.2. The function
fS(s) = (1 − k) fS1

(s) + k fS2
(s), (28)

with k ∈ [0, 1] and each fSi
(s) given by (27) with parameters ci and νi, is a well-defined density on the

nonnegative real line. Furthermore, it admits a KK-Distribution with scale parameters ci and shape
parameters νi.

The proof of Lemma 2.2 is not difficult, and is hence omitted. It requires the application of
Lemma 2.1, together with the following result:

Lemma 2.3. For the SIRP generated by the density (28),

hN(u) =
u

nu−N
2 ζ(

√
u; c1, c2, ν, k)

Γ(ν)21.5ν+0.5N−1
, (29)

with ζ defined by

ζ(u; c1, c2, ν, N, k) = (1 − k)cN+ν
1 KN−ν(c1u) + kcN+ν

2 KN−ν(c2u). (30)

The proof of Lemma 2.3 involves simplification of the characteristic function (22), application
of Lemma 2.1 and use of the corresponding properties of the K-Distribution SIRP
Rangaswamy et al (1993).

3. Detector decision rules

Using the KK-SIRP formulated in the previous section, we can now derive the
Neyman-Pearson optimal decision rules, including suboptimal approximations.

3.1 Optimal decision rule: constant target

It is useful to begin with the case of a fixed known target model, which means we assume
that R is a fixed constant that is completely specified. This enables one to specify the exact
form of the Neyman-Pearson optimal detector. Throughout, we will also assume the clutter
parameters have been estimated by the radar system, so that they are completely known. It is
also assumed that the clutter parameters are homogeneous within a range profile scan.
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Under H1, rrr = Ruuu + nnn, and conditioned on S, this is still complex Gaussian, with the same
covariance as nnn (since Ruuu is constant), but its mean is shifted by the vector Ruuu. Hence the
density under H1 is

fH1
(rrr) =

1

πN
hN(‖rrr − Ruuu‖2). (31)

The Neyman-Pearson optimal detector is the ratio of the densities under H1 and H0 Beaumont
(1980). The density under H0 is given by (23), with an application of (29). Hence, combining
these results, we get the likelihood function

L(rrr) =
hN(||rrr − Ruuu || 2)

hN(||rrr || 2)

=

( ||rrr − Ruuu ||
||rrr ||

)ν−N ζ(||rrr − Ruuu || ; c1, c2, ν, N, k)

ζ(||rrr || ; c1, c2, ν, N, k)
, (32)

and the optimal decision rule is

L(rrr)
H1
>
<
H0

τ, (33)

where τ is the detection threshold, which can be determined numerically from the false alarm

probability. The notation X
H1
>
<
H0

Y means that we reject H0 if and only if X > Y. Hence for a

radar return rrr we compare L(rrr) to the threshold τ to make a decision on whether a target
signature is present in the return.

In all reasonable practical applications, we will not have knowledge of R, and so we must
extend this result to account for an unknown R. This is the subject of the next Subsection.

3.2 Generalised likelihood ratio test

In a real application, the target is unknown and hence R must be estimated. If we assume R
is unknown but constant from scan to scan, the Generalised Likelihood Ratio Test is used to
first estimate this parameter, and then apply the estimate to the test (33). The methodology of
GLRT is described in Barnard and Khan (2004); Conte et al (1995). We essentially produce a
suboptimal detector for the case of an unknown target, based upon the optimal decision rule
formulated for a completely known target model.

We call this estimate R̂, which is taken to be the maximum likelihood estimator Beaumont
(1980). It is chosen to minimise the quantity ‖rrr − Ruuu‖2. This is because, in view of the density
(31) and the definition of hN in (22), maximising the density with respect to R is equivalent to
minimisation of this quantity.

By applying a simple expansion, we can show

‖rrr − Ruuu‖2 = ‖rrr‖2 + |R|2‖uuu‖2 − 2ℜ(R̄uuuHrrr), (34)

where ℜ(z) is the real part of the complex number z. Recalling the proof of the
Cauchy-Schwarz inequality (see Kreyszig (1978) for example), this is minimised with the

choice R̂ = uuuHrrr
‖uuu‖2 . Substituting this in (34) shows that

min
R

‖rrr − Ruuu‖2 = ‖rrr − R̂uuu‖2 = ‖rrr‖2 − |uuuHrrr|2
‖uuu‖2

. (35)
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An application of (35) to (33) results in the GLRT.

4. Numerical analysis of detectors

4.1 The Ingara data

Before proceeding with an analysis of the optimal and suboptimal detectors, the Ingara data
is discussed briefly. This sea clutter set was collected by DSTO, using their radar testbed
called Ingara. This is an X-Band fully polarised radar. The 2004 trial used to collect the data
was located in the Southern Ocean, roughly 100km south of Port Lincoln in South Australia.
Details of this trial, the Ingara radar, and data analysis of the sea clutter can be found in Crisp
et al (2009); Dong (2006); Stacy et al (2003; 2005).

The radar operated in a circular spotlight mode, so that the same patch of sea surface was
viewed at different azimuth angles. The radar used a centre frequency of 10.1 GHz, with 20 µs
pulse width. Additionally, the radar operated at an altitude of 2314m for a nominal incidence
angle of 50◦, and at 1353m for 70◦ incidence angle. The trial collected data at incidence angles
varying from 40◦ to 80◦, on 8 different days over an 18 day period. As in Dong (2006), we
focus on data from two particular flight test runs. These correspond to run34683 and run34690,
which were collected on 16 August 2004 between 10:52am and 11:27am local time Dong (2006).
Dataset run34683 was obtained at an incidence angle of 51.5◦, while run34690 was at 67.2◦ .
In terms of grazing angles, these correspond to 38.7◦ and 22.8◦ respectively. Each of these
datasets were also processed in blocks to cover azimuth angle spans of 5◦ over the full 360◦

range. Roughly 900 pulses were used, and 1024 range compressed samples for each pulse
were produced, at a range resolution of 0.75m. In Dong (2006) parameter estimates for the
data sets run34683 and run34690 are given, enabling the fitting of the K- and KK-Distributions
to this data. This will be employed in the numerical analysis to follow.

As reported in Dong (2006), the radar is facing upwind at approximately 227◦ azimuth, which
is the point of strongest clutter. Downwind is at approximately 47◦ , which is the point where
the clutter is weakest. Crosswind directions are encountered at 137◦ and 317◦ approximately.

4.2 Target model and SCR

Since the Ingara clutter does not contain a target, an artificial model is used to produce the
receiver operating characteristics (ROC) curves. These curves plot the probability of detection
against the signal to clutter ratio (SCR). It hence indicates the performance of a detector
relative to varying signal strengths in the clutter model.

Throughout, a Swerling 1 target model is used Levanon (1988). This is equivalent to assuming
that the in-phase and quadrature components of the signal return are complex Gaussian in
distribution. For the problem under investigation, the SCR is given by

SCR =
IE(|R|2) ||uuu || 2

IE(S2)N
, (36)

and it is not difficult to show that

IE(S2) = 4ν

[

1 − k

c2
1

+
k

c2
2

]

. (37)
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Hence, assuming for the Swerling 1 target model, IE|R|2 = 2σ2, an application of this to (36)
yields

SCR =
σ2 ||uuu || 2

2Nν
[

1−k
c2

1

+ k
c2

2

] . (38)

The ROC curves to follow are produced by determining the parameter σ2, for a given SCR,
using (38).

4.3 Receiver operating characteristics curves

Four examples of detector performance are provided. In all cases, the ROC curves have been
produced using Monte Carlo simulations, with approximately 105 runs. Each simulation is
for the case of a false alarm probability of 10−6. The SCR is varied from -10 to 30 dB. Each
ROC curve shows the performance of the optimal decision rule (33), the GLRT decision rule
using (35) to estimate the target strength and the performance of the whitening matched filter.
The latter is the optimal detector for targets in Gaussian distributed clutter, and can be used
as a suboptimal decision rule. For a return rrr, it is given by

M(rrr) =
∣

∣

∣
uuuHrrr

∣

∣

∣

2
, (39)

where uuuH is the Hermitian transpose. Although the decision rule (33) is dependent on the
target parameters, and so is not useful in practice, it is used here to gauge the performance of
the two suboptimal decision rules.

Each simulation uses parameters estimated from a specific Ingara data set. The clutter used
for each ROC curve is produced by simulating a zero mean complex Gaussian process whose
covariance matrix is specified, and so is not regressed from real data. This is then multiplied
by a simulation of S with density (28) to produce a simulation of the SIRP.

4.3.1 Examples for horizontal polarisation

Two cases are considered for the horizontally polarised case. The first is for the scenario
where the KK-Distributed clutter takes parameters c1 = 1, c2 = 3.27, ν = 4.158, and k = 0.01.
These parameters have been selected based upon the estimates for the clutter set run34683
described above, and with parameters estimated based upon the results in Dong (2006). For
this case, the azimuth angle is 225◦ , which is nearly upwind. The number of looks is N = 30,
and the clutter covariance matrix has been produced using simulated variables. Additionally,
for this example, the normalised Doppler frequency is generated from fD = 1 and Ts =
0.5. The corresponding ROC curve can be found in Figure 2 (left subplot). This shows the
optimal detector and GLRT detector matching very closely. Increasing the number of Monte
Carlo samples improves the plot, but takes long periods to generate. The main feature one
can observe from this plot is that the GLRT performs very well in this case, and certainly
outperfoms the WMF.

The second example considered is illustrated also in Figure 2 (right subplot). This is for the
case where the KK-Distribution has parameters c1 = 8, c2 = 46.16, ν = 4.684, k = 0.01, fD =
0.8, Ts = 0.5, with the number of looks N = 20. The clutter parameters have been estimated
from data set run34683 with azimuth angle 190◦ . The clutter covariance matrix was generated
with random Gaussian numbers. The plot shows the same phenomenon as for the previous
example.
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Fig. 2. ROC curves, Horizontal polarisation, clutter set run34683, azimuth angles 225◦ (left
plot) and 190◦ (right plot). OPT corresponds to (33), GLRT to the suboptimal rule using (35)
and WMF is (39).

4.3.2 Examples for vertical polarisation

The vertically polarised case is illustrated in Figure 3. The first subplot is for the scenario
where c1 = 25, c2 = 26.5, ν = 8.315, k = 0.01, fd = 100 and Ts = 0.5. N = 10 looks have been
used. These correspond to run34690, with azimuth angle 45◦, which is almost down wind in
direction. For this case, it is interesting to note that the GLRT and WMF match very closely. It
is only under increased magnification that it can be shown the GLRT is marginally better. The
same phenomenon is also demonstrated for the case where c1 = c2 = 35, ν = 12.394, fD = 10
and Ts = 0.5, with N = 5 looks. This is illustrated in Figure 3 (right subplot). This example
is based upon the clutter set run34690, at an azimuth angle of 315◦ , which is approximately
crosswind.
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Fig. 3. ROC curves corresponding to the vertically polarised case, for clutter set run34690,
azimuth angles 45◦ (left plot) and 315◦ (right plot). Here, the GLRT and WMF match almost
exactly, suggesting the WMF is a suitable suboptimal decision rule.

4.3.3 Analysis of detectors

Examination of ROC curves for other Ingara clutter sets showed roughly the same results.
For the vertically polarised channel, the WMF was a valid approximation to the GLRT, and
is preferable because it does not require knowledge of clutter parameters. This result can be
explained from the fact that the vertically polarised clutter is not as spiky as the horizontally
polarised case, and the Gaussian distribution is the limit of a K-Distribution as the shape
parameter increases. The latter results in less spiky clutter. For the horizontally polarised
case, the clutter is spikier and so the GLRT is much better.
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5. Conclusions and further research

The KK-Distribution was embedded within a SIRP in the complex domain, so that the
Neyman-Pearson optimal detector could be constructed for multilook detection. A GLRT
solution was then constructed, and this, together with the WMF suboptimal decision rule,
were compared using ROC curves. These ROC curves were generated using clutter parameter
estimates based upon the Ingara data set. For the horizontally polarised case, it was shown
that the GLRT produced a very good probability of detection for a Swerling 1 target model. In
the case of vertically polarised returns, the WMF often matched the performance of the GLRT.
Hence, in such cases, the WMF can be used as a simpler suboptimal detector.

Further work will be spent on trying to find suboptimal decision rules based upon
simplification of the GLRT solution. Additionally, performance analysis of detectors for other
target models will be undertaken.
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