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1. Introduction  

Most active noise control (ANC) systems [1-3] are based on feedforward structure with 

adaptive filters, which are updated with the filtered-x LMS algorithm [4, 5] or the multiple 

error filtered-x (MEFX) LMS algorithm [6, 7]. The convergence characteristics of these 

algorithms have been studied mostly in the time domain, and it was found that the 

convergence characteristics were subject to eigenvalue distribution of the autocorrelation 

matrix of the filtered reference signal [4, 7]. Analysis in the time domain, however, requires 

a great deal of computation, and its physical meaning is unclear.  

This chapter presents a new method for evaluating the adaptive algorithm for the 

feedforward ANC system, which can be approximately analysed in the frequency domain at 

each frequency (FFT) bin separately, which can provide significant computational savings 

and a better understanding of the physical meaning. Some convergence characteristics in the 

frequency domain can be understood easily, and a preprocessing method is proposed to 

improve the whole performance of the adaptive algorithm, especially when the reference 

pathssre unknown or measured in prior. Most contents of this chapter are based on the 

previous works [8-11]. 

The chapter is orgnized as follows. In section 2, the model of adaptive algorithm for 

multiple noises and multiple control points system is introduced in the time domain and the 

frequency domain, separately. Section 3 analyzes the convergence characteristics of some 

adaptive algorithms in the frequency domain, like the filtered-x LMS algorithm, the 

Delayed-x LMS, and the MEFX LMS algorithm, and the effects of the secondary path and 

the reference path on the convergence performance are analysed. Some results are 

represented by computer simulations in section 4. 

2. A multiple noise source and multiple control point ANC system 

Figure 1 shows a general ANC system for multiple noise sources and multiple control 
points. In Figure 1, I is the number of noise sources, K is the number of the reference sensors 
of the adaptive digital filter (ADF) array, which are finite impulse response (FIR) filters, M is 
the number of secondary sources, and L is the number of the control points (error sensors). 
Such a system will be referred to as CASE[I, K, M, L] in this chapter. Noises are recorded by 
K reference sensors and the impulse response of the reference paths are modelled with the 
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transfer matrix ( )nB . There are M L  different secondary paths (secondary path matrix) 

between all secondary sources and error sensors, and all secondary paths are assumed to be 

time invariant and are modelled as ( )nC . The outputs of the adaptive filter arrays are used 

to drive M secondary sensors to reduce the effect of noises at the error sensors as large as 
possible according to the estimated secondary paths and the recorded reference signals. 
 

 

Fig. 1. Block diagram of the general active noise control system for multiple noise sources 
and multiple control points, CASE[ I, K, M, L ]. 

2.1 The adaptive algorithm in the time domain 

As is shown in Figure 1, the adaptive controller generates the outputs to construct M 

secondary sources, and the squared sum of L error signals is minimized to update the 

coefficients of all adaptive filters. The updating mechanism of adaptive filter coefficients is 

controlled by the MEFX LMS algorithm, which is an extension of the filtered-x LMS 

algorithm for the CASE[ I, K, M, L ] ANC system. 

The MEFX LMS algorithm can be summarized as follows [11], 

 ( ) ( ) ( ) ( )n n n n e d U w ,  (1) 

 
T( 1) ( ) 2 ( ) ( )n n n n  w w U e , (2) 

where the superscript T  denotes the transpose,   is the step-size parameter,  

  T1 2( ) ( ) ( ) ( )Ln e n e n e ne  ,   (3) 

   T1 2( ) ( ) ( ) ( )Ln d n d n d nd   (4) 

and ( )nw  is the stacked column vector of all adaptive filter coefficients, 
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  T11 1( ) ( ) ( ) ( )M MKn n n nw w w w   .   (5) 

The element of ( )nw , ( )mk nw , is the adaptive filter coefficients vector between the m-th 

secondary source and the k-th reference signal, 

  
1 2

( ) ( ) ( ) ( )
Nw

mk mk mk mkn w n w n w nw  , (6) 

where wN  is the length of the adaptive filters. 

The filtered reference signal matrix ( )nU  is an wL MKN  matrix and is defined by 

 

T T T
111 1 1 1

T T T
211 2 1 2

T T T
11 1

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

M MK

M MK

L LM LMK

n n n

n n n
n

n n n

 
 
 

  
 
 
 

u u u

u u u
U

u u u




   



, (7) 

where the element of ( )nU , ( )lmk nu ,  is the wN -vector of the filtered reference signals 

  T( ) ( ) ( 1) ( 1)lmk lmk lmk lmk wn u n u n u n N   u  , (8) 

 and the filtered reference signal ( )lmku n  is obtained by 

 
1

( ) ( ) ( 1)c

j

N
lmk lm kj

u n c n x n j


   , (9) 

1, ;l L   1, ;m M   1,k K   

where cN  is length of the estimated secondary path 
1 2

T

Nc
lm lm lm lmc c c   c  , which 

models the response between the m-th secondary source to the l-th error sensor. The 

reference signal ( )kx n at the k-th reference sensor is   

 
1 1 1

( ) * ( ) ( ) ( 1)
b

b

b

NI I

k ki i kij i b
i i j

x n b s n b n s n j
  

      , (10) 

where ( )is n  is the i-th noise source and ( )kib n is the impulse response from the i-th noise 

source to the k-th reference sensor, which is assumed to be a finite length of bN . 

2.2 Analysis in the time domain 

It is well known that the convergence speed of the LMS algorithm is determined by the 
convergence time of different modes, which depend on the eigenvalues of the 

autocorrelation matrix,  T( ) ( )E n nx x , of the input signals to adaptive filter [12-14]. Similar 

conclusion is applied to the MEFX LMS algorithm to analyse the eigenvalue spread of the 
autocorrelation matrix of the filtered reference signals [2], which is defined by 
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  T( ) ( ) ( )n E n nR U U ,  (11) 

where  E  is the statistical expectation operator. The reference signals are assumed to be 

statistically stationary and time index n of the matrix R  has been emitted. 

To analyse the convergence characteristics of the MEFX LMS algorithm in the time domain, 

it is necessary to calculate the autocorrelation matrix R  of the filtered reference signal, 

whose size is w wMKN MKN . Therefore, it is difficult to calculate the eigenvalues of the 

matrix R  so as to investigate the convergence characteristics of the adaptive filters in the 

time domain. Another disadvantage is that the physical meanings of both maximum and 

minimum eigenvalues of the matrix R  are unclear since the filtered reference signals 

include the reference paths and secondary paths by convolution operation. 

2.3 Analysis in the frequency domain 

In this section, the convergence characteristics of the MEFX LMS algorithm are analysed in 

the frequency domain. It is known that the system using the filtered-x LMS algorithm may 

be unstable, even for a very small step-size parameter (resulting in a slow adaptive speed), 

because small estimated errors to the secondary paths will enlarge the filtered reference 

signals to make the whole algorithm diverge in the time domain [2]. Since the convergence 

speed of the MEFX LMS algorithm is slow, the adaptive filters can be considered as time 

invariant linear filters for a short period. Thus, the MEFX LMS algorithm described in 

equations (1) and (2) in the time domain can be approximately expressed in the frequency 

domain as [10, 11] 

 ( , ) ( , ) ( , ) ( , )n n n n    E D U W ,  (12) 

 H( 1, ) ( , ) 2 ( , ) ( , )n n w n n     W W U E ,  (13) 

where the superscript H  denotes the Hermitian transpose, and 

 T
1 2( , ) [ ( , ), ( , ), ( , )]Ln E n E n E n   E  , (14) 

 T
1 2( , ) [ ( , ), ( , ), ( , )]Ln D n D n D n   D  , (15) 

 T
11( , ) [ ( , ), ( , )]MKn W n W n  W   .  (16) 

The filtered reference matrix ( , )n U  is an L MK  matrix defined by 

 

111 1 1 1

211 2 1 2

11 1

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

M MK

M MK

L LM LMK

U n U n U n

U n U n U n
n

U n U n U n

  
  



  

 
 
 
 
 
 

U

  
  

     
  

, (17) 

where 

 ( , ) ( ) ( , )lmk lm kU n C X n   , (18) 
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( )lmC   is the estimated transfer function from the m-th secondary source to the l-th error 

sensor, ( , )kX n   is the reference signal obtained at the k-th reference sensor, 

 
1

( , ) ( , ) ( , )
I

k ki i
i

X n B n S n  


 . (19) 

The matrix ( )R  is defined by the matrix of the filtered reference signal ( , )n U , as 

follows, 

  H( ) ( , ) ( , )E n n  R U U . (20) 

In the time domain, the matrix ( )nR shown in equation (11) is the autocorrelation matrix 

[13] . In the frequency domain, the matrix  R  in equation (20) is called the power 

spectrum matrix. Since the dimensions of the power spectrum matrix  R  are MK MK  

at each frequency bin   such that much less computation is required to find the eigenvalues 

of the matrix  R  in the frequency domain than those in the time domain. 

As is the same with the analysis in the time domain [12-14], the upper limit of the step-size 

parameter     and the longest time constant ( )   can be given at each frequency bin by 

 
max

1
0 ( )

( )
 

 
  ,  (21) 

  
min

1
( )

2 ( ) ( )
 

   
 . (22) 

Where  max   and  min   are the largest and smallest eigenvalues of the matrix ( )R  

shown in equation (20) at each frequency bin. Over the whole frequency range of interest, 

the upper limit of the step-size parameter   is given by 

 
max

1
0

max{ ( )}



 

  . (23) 

Where  max


 denotes the maximum value over the whole frequency range. In practice, we 

can choose the unique step-size parameter determined by equation (23) to keep the system 

stable. Hence, smaller max( )   leads to a slower convergence at some frequency bins. 

Especially, if a large sharp dip exists over the whole frequency range, the corresponding 
convergence speed will be slowed down. The sharper the dip becomes, the slower the 
convergence speed will be.  

It was also found from simulation results [16] that the smaller max( )   leads to a larger 

computational error and a smaller noise reduction at some frequency bins, results in a slow 

convergence speed over the entire frequency range, which is the same as in the time 

domain. Substituting equation (23) into equation (22) will give the longest time constant at 

each frequency bin, max( )  , as follows, 

 
max

max
min

max{ ( )}
( )

2 ( )


 
 

 
 , (24) 
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It is clear that the convergence speed is subject to the ratio of the maximum to the minimum 
eigenvalues. 

It is clear from equation (24) that the convergence speed is subject to the minimum 

eigenvalue of the matrix  R  at the frequency bin . Comparing the convergence speed of 

the adaptive filters at different frequency bin , it is found that a smaller eigenvalue of the 

power spectrum matrix  R  results in a longer convergence time. Then, the convergence 

speed of the adaptive filters over the whole frequency bin ( in the time domain ) becomes 

slower.  

The longest time constant, max , over the whole frequency range can be obtained as 

 
max

max
min

max{ ( )}

2min{ ( )}




 


 
 , (25) 

where  min


 denotes the minimum values over the whole frequency range. It is clear 

from equation (25) that the longest time constant is related to the ratio of the maximum to 

the minimum eigenvalue of the matrix  R  over the whole frequency range. The 

convergence analysis of the time domain MEFX LMS algorithm may be evaluated generally 
in the frequency domain such that we can obtain insight into the convergence characteristics 
of the MEFX LMS algorithm in the time domain. 

2.4 The power spectrum matrix R 

The filtered reference signal    
1

1cN
ii

u n x n i c


    in the time domain is expressed by the 

convolution of  x n  and ( )c n , while      , ,U n C X n    in the frequency domain is 

expressed by a simple multiplication. Rearrange the filtered reference matrix ( , )n U  in 

equation(17) and combine the result of equation (18), the matrix ( , )n U  can be written as 

   T, ( , ) ( )n n   U X C ,  (26) 

where   is the Kronecker product, and 

      , ,n n  X B S ,  (27) 

where the reference path  B  and the secondary path ( )C  are  

 

11 12 1

21 22 2

1 2

M

M

L L LM

C C C

C C C

C C C

 
 
 
 
 
 

C




   


  and  

11 12 1

21 22 2

1 2

I

I

K K KI

B B B

B B B

B B B

 
 
 
 
 
 

B




   


.               

The matrix  R  can be given by      

   H T H T[ ( , ) ( , )] {[ ( , ) ( )] [ ( , ) ( )]}E n n E n n         R U U X C X C  (28) 
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Utilizing the Kronecker product characteristics,   

   

 

 

T H T

H * H

H H * H

2 2 H * H
1

{[ ( , ) ( )] [ ( , ) ( )]}

[ { ( , ) ( , )}] [ ( ) ( )]

[ { ( , ) ( , )} ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]S SI

E n n

E n n

E n n

    

   

     

   

  

 

 

 

R X C X C

X X C C

B S S B C C

B B C C

  (29) 

MK MK  power spectrum matrix  R  is dependent completely on the reference path 

 B  and the secondary path ( )C . 

It is easy to prove that  R  is Hermitian matrix, i.e.    H R R , so all eigenvalues of 

 R  are nonnegative, that is to say,  R is a nonnegative define matrix. H( ) ( ) B B  and 

H( ) ( ) C C  are also Hermitian. According to the characteristics of the Kronecker product, 

the determinant and trace of  R  satisfy the following equations  

       H Hdet[ ] det[ ( ) ( )] det[ ]K M    R C C B B  (30) 

      H H[ ] [ ( ) ( )] [ ]Trac Trac Trac    R C C B B  (31) 

The determinant of the power spectrum matrix  R  may be expressed in terms of the 

input power spectra 
2

1s ,…, 
2

Is  ,  K times the determinant of the matrix H( ) ( ) C C  and 

M times determinant of the matrix    H B B . 

From equation (25), the longest time constant max is only determined by the ratio of the 

maximum and minimum eigenvalues of  R , so the max is independent of the noise 

power 
2

1S ,…, 
2

IS and only determined by the characteristic of the reference path  B  

and the secondary path ( )C . In general, if the determinant of the matrix H( ) ( ) C C  or 

   H B B  is small, the smallest eigenvalue of the matrix H( ) ( ) C C  or    H B B  is 

small, and the smallest eigenvalue of the matrix  R  is also small. Therefore, the 

convergence characteristics of the MEFX LMS algorithm can be evaluated separately by the 

distributions of eigenvalues of the matrix H( ) ( ) C C  or    H B B .   

3. The behavior of adaptive algorithm in the frequency domain 

3.1 The filtered-x LMS algorithm 

Firstly, Let us investigate the convergence characteristics of the filtered-x algorithm 

influenced by the secondary path C  for a simple ANC system, CASE[1,1,1,1].  For 

convenience, assuming that the primary noise s(n) is white noise with zero mean and unit 

variance ( 2 1  ), and the primary path b(n) is 1, so  

        , , ,X n B S n S n     . (32)  

In the CASE[1,1,1,1], a simple ANC system, the power spectrum  R  is real at each 

frequency bin   
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2 2 2
1( ) ( ) ( )R S C B    

In this case,  R  can be expressed as follows: 

            2 2 2 2 22 2
1R S C B C B C         , (33) 

and the upper limit of the step-size parameter   from equation (21) can be rewritten as  

 2

1

max{ ( ) }C





 , (34) 

It is clear that the step-size parameter   is subject to the maximum value of 
2

( )C  .  The 

time constant, ( )  , at a frequency bin can be obtained from equation (22), as 

 2

1
( )

2 ( )C
 

 
 , (35) 

 
 2

2

max ( )
( )

2 ( )

C
t

C





 . (36) 

It is found from equation (35) that the smaller value of 
2

( )C   leads to a slower convergence 

speed of the adaptive filter at the frequency bin . In other words, if 
2

( )C   shows a large 

dip at a frequency bin , the convergence speed of the adaptive filter is slow at that 

frequency bin, and the total convergence speed is also slow. This means that the 

performance of the filtered-x LMS algorithm is not good if the power gain of the secondary 

path C  is not flat over the whole frequency range. In practical cases, the transfer function of 

the secondary path C  has to be measured prior to the active noise cancelation. Therefore, 

the convergence characteristics can be evaluated by the power gain of the measured 

secondary path C . 

With the secondary path C  measured experimentally or generated by computer, the 

simulations show that the smaller value of the power gain of the secondary path C  leads to 

slower a convergence speed, a larger computation error and a smaller cancellation at a given 
frequency bin. 

3.2 The delayed-x LMS algorithm 

The filtered-x LMS algorithm is widely used in feedforward ANC systems. This adaptive 

algorithm is an alternate version of the LMS algorithm when the secondary path C  from the 

adaptive filter output to the error sensor is represented by a non-unitary transfer function. 
The Filtered-x LMS algorithm requires a filtered reference signal, which are the convolution 

of the reference signal and the impulse response of a secondary path C . As a result, this 

algorithm has a heavy computational burden for real-time controllers. 
The Delayed-x LMS algorithm [9] is a simplified form of the filtered-x LMS algorithm,  

where the secondary path C  from the secondary source to the error sensor is represented  
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by a pure delay of k samples (the delayed model D ) to reduce computation and system 
complexity. This simplified version has been applied in telecommunications applications 
[16,17]. In the ANC system, the simplification will bring a modelling error [18,19], which 
causes deterioration in the ANC performance. The ANC system with the Delayed-x LMS 
algorithm was empirically studied in the time domain [20-22], and stability has been 
evaluated by using a frequency domain model of the ‘‘filtered’’ LMS algorithm [23]. The 
theoretical study of the convergence characteristics will be summarized here. 

In the Delayed-x LMS algorithm, the model of the secondary path C  is replaced by a 

delayed model D , and no convolution is required to obtain the filtered reference signal. A 
block diagram of the ANC system with the Delayed-x LMS algorithm is shown in Figure 2. 
The filtered reference signal is given by 

 '( ) ( )u n gx n k   (37) 

where the gain g is usually 1 and k is the number of points from 0 to the peak of the impulse 

response of the secondary path C . 
 

 

Fig. 2. Block diagram of an ANC system with the Delayed-x LMS algorithm. 

The Delayed-x LMS algorithm can reduce computation loading significantly by eliminating 

the convolution. However, the modelling error caused by simplifying the filtered reference 

signal deteriorates the performance of the adaptive control system. In the frequency domain, 

 ,U n is the DFT of the filtered reference signal  u n  filtered by the real secondary path, 

   , , ( )U n X n C   .  ' ,U n  is the DFT of the filtered reference signal  'u n  in equation 

(37),    ' , , ( )U n X n G    and  ' ,U n  is the complex conjugate of   ' ,U n . The 

transfer function of the delayed model D  is defined as ( )G  . From equation (20), the 

convergence characteristics of the Delayed-x LMS algorithm are defined by matrix 

   [ ' , , ]E U n U n   at each frequency bin . Assuming that the primary noise  s n  is a 

white noise with zero mean and unit variance, the matrix can be written as 

        [ ' , , ] [ ]E U n U n E G C     (38) 

It is clear that the stability of the Delayed-x LMS algorithm is assured by 

    0 1 2 1G C     ,  (39) 
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where 

      exp( )gG G j     , (40) 

       exp( )cC C j    , (41) 

and ( )g  and ( )c   are phases of ( )G   and  C  , respectively. For convenience, the 

frequency bin ω will be omitted hereafter. From equations (40) and (41), equation (39) can be 

rewritten as 

 0 1 2 exp( ( )) 1c gG C j        (42) 

It is clear that the change of the gain G  can be included into the adjustment of the step-size 

parameter  . The stability condition of the Delayed-x LMS algorithm is determined by the 

phase error s c g     in the following range 

 /2 (mod2 ) /2s      . (43) 

In other words, if the phase error s  is out of the above range, the Delayed-x LMS algorithm 

will not be stable. The theoretical result in equation (43) is the same as that obtained by 

Feinutuch [23]. For easy understanding, the stability and convergence characteristics of the 

Delayed-x LMS algorithm are also discussed in the complex plane [9, 24]. It is found the 

Delayed-x LMS algorithm is stable when the phase error will keep in the range between 

/ 2  and / 2 . It is also found that the convergence speed of the adaptive filter is 

slower and cancellation is smaller when the phase error with the stability condition in 

equation (43) is large in the frequency domain. 

Since the secondary path C  can be measured generally prior to active cancellation, stability 

and convergence characteristics are easily evaluated by calculation the phase error before 

cancellation. A possible way to achieve good performance is to adjust the position of the 

loudspeaker and error microphone or to adjust the number of delayed points.  

3.3 The behavior of the multichannel filtered-x algorithm 

In this section, the behavior of the MEFX LMS algorithm will be evaluated in CASE[I,K,L,M] 

system with M L secondary paths C  and  K  I reference paths B . As stated in equation 

(29), the power spectrum matrix ( )R  is determined by the secondary paths ( )C  and the 

reference paths ( )B . The effect of ( )C  and ( )B  on the convergence behavior of the 

MEFX LMS algorithm will be discussed separately, and a new preprocessing method to the 

reference path is proposed to improve the whole performance of the adaptive algorithm. 

3.3.1 The matrix C 

In general, if the smallest eigenvalue of the matrix R is small, the smallest eigenvalue of the 

matrix H
C C is small, so the determinant of the matrix H

C C  is also small. An approximate 

method to avoid computing the eigen-decomposition of H
C C  is to replace the ratio of the 

maximum to minimum eigenvalue with the ratio of determinant. Define the ratio     

instead of equation (25) as follows, 
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H

H

max{ ( ) ( ) }
( )

( ) ( )
C


 

 
 


C C

C C
.  (44) 

The ratio ( )C   of the maximum to the minimum value of the determinant of matrix H
C C  

over the whole frequency range is defined by  

 

H

H

max{ ( ) ( ) }

min{ ( ) ( ) }
C





 


 


C C

C C
.  (45) 

Thus, we can evaluate the convergence speed approximately by using the ratio C , instead 

of calculating the eigenvalues of the matrix R  or H
C C . This is to say, the frequency domain 

analysis requires much less computation compared with the time domain analysis. The 

physical meaning of the matrix H
C C  will be further discussed in the next section. 

3.3.2 The physical meaning 

The physical meaning of the matrix H
C C  will be discussed in detail in this section. For 

simplicity, an 2M L   system will be considered, of course equation 
2H C C C  is valid 

in this case. At each frequency bin , the matrix C  can be expressed by 

 
11 12

21 22

C C

C C

 
  
 

C . (46) 

 

 

Fig. 3. The condition for 0C , in the case of an 2M L  . 

Referring to Figure 3, at a frequency bin  , the determinant of the matrix is small ( 0C  ) 

in the following three cases: (a) All elements of a row of the matrix C  are small (e.g., 11 0C   

and 12 0C  ), which implies the existence of a common zero in the transfer function of 

secondary paths from two secondary sources to the error sensor 1; (b) All elements of a 

column of the matrix C  are small (e.g., 11 0C   and 12 0C  ), which means the secondary 

source 1 does not work at this frequency. Hence, the effective number of secondary sources 

is decreased. (c) The transfer paths from the secondary sources to the error sensors are 

similar. This can be expressed mathematically as 

 11 21 12 22/ /C C C C . (47) 
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It follows from equation (47) that two secondary sources act as one secondary source. This 

means that the effective number of the secondary sources is decreased. Therefore, the 

multiple channel ANC system does not work properly. It is well known that characteristics 

of the secondary paths are dependent upon the arrangement of secondary sources / error 

sensors, as well as frequency responses. Therefore, if the frequency responses of the 

secondary sources to the error sensors are proportional as equation (47), which implies that 

either the secondary sources or the error sensors will be located close to each other, which 

reduces the effective number of secondary sources. On the other hand, in practical 

applications, frequency responses of the secondary sources to the error sensors are 

frequently different at each frequency bin. Under this condition, even if their arrangement is 

not close together as y mentioned above, equation (47) may be valid, which results in a 

divergence of the adaptive process. In summary, either arrangement of the secondary 

sources to the error sensors, or their frequency responses can make equation (47) valid, the 

determination of matrix C  may be equal approximately to zero and the eigenvalue spread 

of the power spectrum matrix R will become large.   

For the three cases mentioned above, since C or H
C C is small, the smallest eigenvalue of 

the power spectrum matrix R  is correspondingly small, which results in a low 

convergence speed. If the value H
C C  varies significantly over the whole frequency range, 

the convergence speed of the MEFX LMS algorithm is also slow. From the previous works 

on the single-channel ANC system, conditions (a) and (b) can easily be considered. 

However, such conditions are very rare in practical applications. Condition (c), which 

occurs more frequently in practical applications, should be emphasized in a practical 

ANC system for multiple control points. The physical meaning of the general multiple 

channel ANC system can be discussed by using the rank and the linear independence 

theory of the matrix C . 
In practical applications, since the transfer function for the secondary paths, which is time 

invariant in most cases, can be measured prior to the ANC processing, the influence of 

multiple secondary paths on the convergence speed should be evaluated prior to the ANC 

processing. 

3.4 The matrix B 

In equation (29), the transfer function matrix B  of the reference paths is similar to the 

transfer matrix C  of the secondary paths, so that the characteristics of the matrix C  are 

also similar to those of matrix B . But the physical meaning of smaller B is different that 

of C .  

Here, the physical meaning of the case that H 0BB  is discussed for an I = K =2 system for 

simplicity. The equation 
2H BB B  is valid in this case. 

For each frequency bin , B  is of the form 

 
11 12

21 22

B B

B B

 
  
 

B   (48) 

Referring to Figure 4, at a frequency bin , the determinant of the matrix is small ( 0B ) in 

the following three cases: 
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a. All elements of a row of the matrix B  are small (e.g., 11 0B  and 12 0B  ). This implies 

the existence of a common zero in the transfer function from two noise sources to the 
reference sensor #1. 

b. All elements of a column of the matrix B  are small (e.g., 11 0B   and 21 0B  ). In this 

case, noise source #1 doesn’t exist at this frequency. Hence, the reference sensor cannot 
receive the correct reference signal from noise source #1. 

c. The transfer rates from the noise sources to the reference sensors are similar 

( 11 21 12 22/ /B B B B ). In this case,  2 21 11 1/X B B X , and this is equivalent to using 

only one reference sensor at this frequency, even though two sensors are used. This 
means that the effective number of the reference sensors is decreased, and perfect noise 
cancellation is impossible. But minimization of the noise level is achievable in the sense 
of the least mean square error by the adaptive processing of the ANC system. 
Therefore, the multiple channel ANC system does not work properly. 

 

 

Fig. 4. Block diagram for 2 noise sources and 2 reference sensors. 

For the three cases mentioned above, the value of the determinant of the matrix B  or H
BB  

become small, and the physical meaning is the correlation between the reference signals 1X  

and 2X become large [24]. In this case, the determinant or the smallest eigenvalue of the 

matrix B  is small, the smallest eigenvalue of the power spectrum matrix R  is also small, 

and the convergence speed of the adaptive filters is slow at that frequency bin. Then, the 

convergence speed of the mean square error at the error sensors is also slow. If the value 
H

BB  varies over the whole frequency range, the convergence speed of the MEFX LMS 

algorithm is slower.  

It is analysed from equation (29) that exchanging the roles of the transfer matrices B  and C , 

the same conclusion can be obtained as in section 3.3.  
An adaptive blind method for reducing the eigenvalue spread of the correlation matrix of 
reference signals is discussed in next section. The preprocessed outputs used as input of an 
ANC system are approximately uncorrelated noises and the power spectrums are flat 
approximately. The MEFX LMS algorithm converges rapidly and a small MSE is obtained 
[25, 26].  
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3.5 Blind preprocessing method for multichannel freedforward ANC system 

Sometimes, the effects of the reference path B  can’t be ignored, especially when the 

reference sensors cannot be located near the noise sources. As stated in equation (30), the 

value H
BB at each frequency bin   affects the eigenvalue spread of the autocorrelation 

matrices R , and the step size   and the longest time constant of the adaptive filter. In order 

to improve the whole performance of the MEFX LMS algorithm, some necessary 

preprocessing methods are proposed to reduce the effects of the reference path. However, 

noise signals are often unknown and time-varying in practice, and the accurate transfer 

function of the reference path is difficult to be measured in prior, so it seems impossible to 

cancel this effects. A blind preprocessing method is proposed to deal with this case, where 

noises are assumed to be independent or uncorrelated each other and the channel impulse 

responses are unknown.  
An arbitrary linear system can be factored into the product of an all-pass system and a 
minimum phase system           

 ۰ሺωሻ = ۰௠௜௡ሺ߱ሻ۰௔௟௟ሺ߱ሻ, (49) 

 

where the all-pass system satisfy ۰௔௟௟ሺ߱ሻ۰௔௟௟ୌ ሺ߱ሻ = ۷, and the minimum phase component ۰௠௜௡ሺ߱ሻ has a stable inverse. ۰ሺωሻ۰ୌሺ߱ሻ can be simplified as 

 ۰ሺωሻ۰ୌሺ߱ሻ = ۰௠௜௡ሺ߱ሻ۰௠௜௡ୌ ሺ߱ሻ ,  (50) 

 

In order to eliminate or reduce the eigenvalue spread of ۰ሺωሻ۰ୌሺ߱ሻ, a natural choice is to 
find an inverse system matrix 	܄ሺωሻ to filter the reference signals, and the new transfer 
system matrix from the noise sources to the inputs of the adaptive filter array is 	 ۵ሺωሻ =  ሺωሻ۰ሺωሻ, which has a smaller eigenvalue spread. The correlation matrix of the new܄
system is 

ୌሺ߱ሻ܄ሺωሻ۰ሺωሻ۰ୌሺ߱ሻ܄  = ሺωሻ۰௠௜௡ሺ߱ሻ۰௠௜௡ୌ܄ ሺ߱ሻ܄ୌሺ߱ሻ,  (51) 

and the optimal inverse system matrix is ܄ሺωሻ = ۰௠௜௡ିଵ ሺ߱ሻ.  
If the reference path ۰ሺωሻ can be measured in prior, the optimal inverse system ܄ሺωሻ can be 

computed easily and fixed into the application to cancel the effect of the reference path. 

However, ۰ሺωሻ cannot be obtained in most applications in prior and may be time-varying in 

complicated application, an adaptive algorithm to find the optimal inverse system is 

expected. A blind spatial-temporal decorrelation algorithm is proposed in [25], which is 

based on maximization of entropy function in the time domain. More details and the final 

performance evaluation of the adaptive algorithm can be referred in [25, 26]. Computer 

simulations show that blind preprocessing algorithm can obtain lower MSE for 

multichannel feedforward ANC system. 

4. Computer simulations 

Numerical simulations are carried out to demonstrate the convergence characteristics 
discussed above by using a simple CASE[2, 2, 2, 2 ] system, as shown in Figure 5. All 
simulations are performed in the time domain, but their evaluation is carried out both in the 
time and frequency domains.  
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Fig. 5. Block diagram for CASE[2,2,2,2] ANC system. 

For convenience, the experimental conditions are assumed as follows: (1) Noise sources 

 1s n  and  2s n  are uncorrelated white noise with zero mean and unit variance. (2) The 

responses of the primary paths 11H , 12H , 21H , and 22H , and the secondary paths 11C , 

12C , 21C , and 22C  are experimentally obtained in an ordinary room. (3) In order to evaluate 

the influence of the matrix C , the filtered reference signal 1 1( ) ( )x n s n  and 2 2( ) ( )x n s n  are 

selected.  In this case, B = I, where I is the identity matrix.  

The simulation is carried out by using four secondary paths as shown in Figure 6. The step-

size parameter   is set to 0.00001 to keep the system stable and achieve a better 

convergence.  
 

 

Fig. 6. The four transfer functions from the secondary sources to the error sensors. 
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There is no common zero in the four secondary paths 11C , 12C , 21C , and 22C , as shown in 

Figure 6. However, it can be seen from Figure 7(a) that there are some dips in the determinant 

of the matrix H
C C . The two eigenvalues of the matrix H

C C  are plotted in Figure 7(b). As can 

be seen from Figure 7, when the H
C C  is small, the eigenvalues of the matrix H

C C  are also 

small. Spectra of the residual signal at different iterations at the error sensor #1 are plotted in 

Figure 8. Nearly the same results are obtained at the error sensor #2, but these Figures are 

omitted in this chapter. Comparing Figures 7 and 8, if the H
C C  at some frequencies is small, 

the residual power at the corresponding frequencies is high. In actual application, since the 

secondary paths, which is time invariant in most cases, should be measured prior to the ANC 

processing, the influence of the secondary path(s) on the convergence speed can be evaluated 

prior to the ANC processing. It is possible to make H
C C  over the whole range flat by 

adjusting the locations of the secondary sensors and the error sensors. 
 

 

Fig. 7. The matrix C  is composed of four secondary paths shown in Figure 6. (a): the 

determinant of the matrix H
C C ,  H

1010log 
  

C C  (b): two eigenvalues of the matrix H
C C , 

 1010log eigenvalue   . 

 

 

Fig. 8. Simulated power spectra of the residual noise (average of 20 times) at the error sensor 
#1, in the case of CASE[2,2,2,2] ANC system, when (B = I) . (a) Before adaptive processing; 
(b), (c) during adaptive processing, the numbers of the adaptive iterations are 5000 and 
10000, respectively; (d) after adaptive processing, the number of the adaptive iterations are 
60000. Similar results were obtained at the error sensor #2. 
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5. Conclusions 

This chapter has shown that the convergence characteristics of the filtered-x LMS algorithm, 

the Delayed-x LMS algorithm and the MEFX LMS algorithm in the time domain could be 

analysed in the frequency domain with much less computation and a better understanding 

of the physical meaning. Through their analysis in the frequency domain instead of time 

domain, the convergence characteristics are subject to the eigenvalues of the power 

spectrum matrix R , whose size is much smaller than that in the time domain. Another 

advantage is that the determinant of the power spectrum matrix R can be expressed by the 

product of the input spectra and the determinant of the matrix H
C C  and H

BB  in each 

frequency bin. The effect of multiple secondary paths has been investigated in detail in the 

case of the time invariant. It is found that the convergence characteristics of the MEFX LMS 

algorithm are affected by the determinant of H
C C , or the smallest eigenvalues of H

C C . 

However, since the transfer matrix B generally can't be measured prior to ANC cancellation, 

it is necessary to consider the influence of the correlation among the output of the reference 

sensors, which can be measured prior to ANC application. If the correlation among the 

output of the reference sensors is small over the whole frequency range, the convergence 

speed becomes fast. Simulation on the time-domain MEFX algorithm has been carried out 

and its convergence characteristics are evaluated in the frequency domain.  
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