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Neutrophil Chemotaxis and Polarization:  
When Asymmetry Means Movement 
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Instituto Politécnico Nacional (IPN), México DF,  
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1. Introduction 

Neutrophils (also known as polymorphonuclear leukocytes or PMN), the first line of 
defense against intruding microorganisms, are produced in the bone marrow from stem 
cells that in turn proliferate and differentiate into mature neutrophils. They play an 
important role in host defense and contribute to inflammation-related tissue injuries. During 
inflammation, neutrophils extravasate across the endothelium that lines the blood vessel 
wall through a multistep process [1, 2], which includes rolling on and subsequent firm 
adhesion to endothelial cells. 

Neutrophil migration through the vascular endothelial layer into lymphoid or inflamed 
tissues involves a dynamic regulation of cell adhesion in which new adhesions are formed at 
the cell’s leading edge, [3] while filipodia and lamellipodia are generated as exploratory and 
motile projections and, coordinately, adhesions are released from the trailing edge [4].  

For these events, the supply of adhesion molecules to the site of pseudopodial protrusion 
must be necessarily replenished in order to enable the cell to move forward. There is 
evidence that the membrane trafficking pathways that recycle adhesion receptors contribute 
to cell migration [5], which is crucial for polarization and migration in various cell types [6]. 
Preferential targeting of proteins to the leading or lagging edge of migrating cells is 
important for polarity and chemotaxis. Asymmetric distribution of proteins has implications 
beyond polarity and chemotaxis because these same proteins display characteristic 
localization patterns when cells undergo morphological changes in general. Several proteins 
have been identified as contributing to cell polarity organization and subsequent 
inflammatory-cell migration by regulating membrane trafficking. Ly49Q directs the 
organization of neutrophil polarization as well as neutrophil migration to inflammation sites 
by regulating membrane raft functions, reorganizing neutrophils in the presence of 
inflammatory signals, and maintaining neutrophil homeostasis in the absence of such 
signals [7]. In addition, regulated exocytosis plays a crucial role in conversion of inactive, 
circulating neutrophils into fully activated cells capable of chemotaxis, phagocytosis, and 
bacterial killing [8]. 

Polarity gives cells morphologically and functionally distinct spatial restriction to leading 

and/or lagging edges by relocating certain proteins or their activities selectively to the 
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poles. Polarization provides cells with morphological, functional, and sensitivity differences 

to the chemoattractant, altering the way the cell responds to a gradient. Thus, polarization 

generates a bipolar mechanosensory state with a dynamic leading edge for acquiring new 

contacts and signals, a stiff mid-body, and a sticky uropod that is dragged along the 

substrate and stabilizes the cell position in complex environments [9, 10]. Hence, integration 

of signals generated in both cellular poles leads to a coordinated movement of the leukocyte. 

Chemotaxis is conceptually divided into motility, directional sensing, and polarity; 

however, chemotaxis typically incorporates these features. Many molecules involved in 

chemotaxis include both lipids and proteins and are localized on the membrane or in the 

cortex, specifically at either the leading or the lagging edge of polarized cells. 

Freely diffusing chemoattractant or soluble molecular cues, known as Damage-associated 

molecular patterns (DAMP), are liberated from damaged tissue in high abundance. DAMP 

include Adenosine triphosphate (ATP), bacterial peptides, heat-shock proteins, chromatin, 

and galectins [11], providing short-lived or pulsatile directional information, in addition to 

longer-lived cues provided by constitutive or induced tissue-bound chemoattractants [11]. 

Beyond adhesive migration arrest, local reduction of promigratory signals is achieved by 

down-modulation of chemoattractant receptors, receptor desensitization, and ligand 

competition, whereas termination of chemoattractant activity occurs through uptake by 

neutralizing chemoattractant receptors and/or proteolytic degradation. After ligation, 

chemoattractant receptors become internalized and are either recycled to the leading edge or 

stored in vesicles in the uropod, thus limiting the availability of both the chemoattractant 

and its receptor [12]. The end result is a cascade of activation and adhesion events designed 

to uptake  leukocytes along vessel walls, activate these for them to make stable adhesions, 

allow them to locomote along the endothelial surface, and to transmigrate across endothelial 

junctions and through the subendothelial basal lamina, guiding them onto the damage site  

(Figure 1) [13].  

 

Fig. 1. Type chemotaxis in neutrophils. A) Chemotaxis triggered by soluble diffusing 
compounds leading to formation of the leading edge. B) Directed-mediated migration 
toward chemoattractants trapped on tissue structures. 
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2. Trafficking requirements  

Trafficking leukocytes often reduce their migration speed, pause, and polarize toward the 
bound cell or the tissue structure to execute crucial functions including phagocytosis, cell-to-
cell signaling, activation, and the release of cytokines or toxic factors toward an encountered 
cell. 

At least three basic kinetic states govern leukocyte positioning in tissues, including fast 
migration (5 to 25 μm/min), slow and often locally confined movement (2 to 5 μm), and 
adhesive arrest, and these rapidly interconvert. Based on these kinetic states, leukocyte 
accumulation in tissues occurs by means of at least three distinct mechanisms: 1) local 
engagement of adhesion receptors causes individual leukocytes to stick and become 
immobilized at a specific spot; 2) degradation of promigratory signals causes cell 
populations to slow down or stop movement, and 3) loss of exit signals confines cells to a 
local microenvironment despite ongoing migration [14]. 

Complete migration arrest is mediated by activation of adhesion receptors on the moving 

cell followed by attachment to counter-receptors on other cells or on Endothelial cell 

migration (ECM) structures, leading to an immobilized cell. Within seconds, adhesion 

overrides ongoing promigratory signals; this is followed by cytoskeletal polarization toward 

the bound cell or the ECM structure [15].  

3. Ensuring tightened adhesion  

Endothelial cells (EC) are the critical substrate for leukocyte attachment and motility within 

the vascular lumen via adhesion molecules such as integrin, ligands whose expression is 

enhanced on activated ECs, which in turn react to molecules generated during infection and 

inflammation such as Tumor necrosis factor alpha (TNF-), interleukin 1 (IL-1), and 

interleukin 17 (IL-17). Expression of these molecules can be further regulated through the 

cross-talk between EC and leucocytes; binding of PSGL-1 to P-selectin and E-selectin 

establishes the initial contact between neutrophils and activated ECs. Interaction of EC 

adhesion molecules (ICAM-1 and VCAM-1) with leukocyte ligands triggers the formation of 

docking structures or transmigrating cups [16, 17], which embrace adherent leucocytes [18]. 

Additionally, formation of pro-adhesive sites termed “endothelial adhesive platforms” 

(EAP) is determined by the existence of pre-formed, tetraspanin-enriched microdomains 

such as CD9, CD151, and CD81 [19].  

Adherent leukocytes may transmigrate at the point of initial arrest, but sometimes rather 

locomote laterally to preferred sites of Transendothelial cell migration (TECM) [20, 21]; in 

vitro and in vivo luminal crawling is dependent on ǃ2 integrins and its blockade appears to 

increase the incidence of trans- as opposed to paracellular cell migration [21]. The junctional 

adhesion molecule A (JAM-A), an adhesion molecule expressed on both EC and leukocytes 

[22], regulate integrin internalization and re-cycling [23]. 

There are other molecules and mechanisms that have been recently implicated in leukocyte 

motility; for example, it has been demonstrated both in vivo and in vitro that platelets 

enhance neutrophil TECM in inflammation, which is consistent with a mechanistic role for 

PSGL-1 for this response [24].  
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4. Neutrophil mobilization 

Leukocyte interactions with the endothelial surface trigger cellular and sub-cellular events 

that initiate and/or facilitate leukocyte passage through the endothelium by interaction of 

docking structures with cytoskeleton via adaptor proteins such as vinculin, paxilin, and 

Ezrin, radixin, and moesin (ERM) proteins [18, 25], although Guanosine triphosphate 

(GTP)ases (RhoG and RhoA) induce actin polymerization leading to the formation of small 

membrane protrusions called apical cups or docking structures. 

Once firm adhesion is established, two routes can be taken for transendothelial migration: 

the transcellular road, whereby neutrophils penetrate the individual EC, or the paracellular 

road, by which neutrophils squeeze between EC Figure 2.  

A number of molecules at EC junctions actively facilitate leukocyte transmigration via a 

paracellular route such as Platelet endothelial adhesion molecular-1 (PECAM-1), 

Intracellular adhesion molecule-2 (ICAM-2), CD99, Endothelial cell-selective adhesion 

molecules (ESAM), and junctional adhesion molecules (JAM) [22, 26] and, according to in 

vivo and in vitro evidence, a sequence of events has been suggested that regulate neutrophil 

transmigration to EC walls and that include the following: (i) ICAM-1 and ICAM-2 on the 

luminal surface of EC and within the junction may provide a haptotactic gradient to guide 

neutrophils to EC junctions via their 2 partners (LFA-1 and MAC-1) [27]; (ii) once within 

junctions, endothelial-cell JAM-A (through interaction, possibly with LFA-1) [28], facilitates 

completion of neutrophil passage through the EC layer, and (iii) within the EC junction, 

homophilic interactions between endothelial and leukocyte PECAM-1 stimulates 

neutrophils to express the key leukocyte laminin receptor, integrin ǂ6ǃ1, on their surface, 

which facilitates neutrophil passage through the vascular basement membrane [29-31]. It is 

also noteworthy that signals from ICAM-1 activate Src and Pyk-2 tyrosine kinases, which 

phosphorylate VE-Cadherin, destabilizing its bonds and loosening endothelial cell-cell 

junctions [32]. 

The transcellular route is taken by some 20% of neutrophils and has been observed in a 

broad range of tissues including bone marrow, thymus, lymph nodes, pancreas, and the 

blood brain barrier [33]. Apparently, there is clear evidence for the formation of a 

transcellular pore requiring membrane fusion and displacement of cytoplasmic organelles 

during transcellular migration. Vesicular vacuolar organelles (VVO) are enriched at pore-

formation sites, apparently providing additional membrane to the area and facilitating the 

fusion of apical and basal membranes in a process dependent on SNARE-containing 

membrane fusion complexes [34], and there is increasing evidence for a role for caveolin-1 in 

determining transendothelial migration route [35]. 

Carman et al. (2008) [34] have identified in vitro and in vivo the existence of protrusive 

podosomes on the basal side of crawling lymphocytes ; these protrusive podosomes appear 

to identify the cell’s thinner peripheral areas rather than the perinuclear region in order to 

identify a pore formation-permissive site. These dynamic investigatory podosomes can then 

extend to form invasive podosomes, resembling invadopodia of metastatic tumor cells, 

which extend down into the EC, bringing the apical and basal membranes into close 

apposition. U 
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5. Mobilization beyond the endothelium   

Beyond the endothelium, migrating cells face two further barriers; the pericyte sheath, and 
the tough venular Basement membrane (BM) [36, 37]. Neutrophils have the ability to 
migrate through the pericyte sheath via both para- [38] and transcellular pathways  

 

Fig. 2. Hypothetical sequence of events during neutrophil transmigration. Neutrophils are 
tethered by P- and E-selectin on endothelial cells and PSGL, L-selectin, and CD44 on 
neutrophils simultaneously participate in neutrophil rolling and activation. Endothelium 

activation by stimuli such as IL-1, IL17, TNF- promote transmigration dependent of 
molecules such as PECAM-1, ICAM-1, and JAM-A, thus unzipping the tight junctions and 

restoring themselves while TNF- promote transmigration via ESAM. Neutrophils take 
trans- or paracellular routes. Postendothelial cleavage of structural proteins occurs by means 
of secreted or membrane-anchored matrix metalloproteases (MMPs). Abbreviations: 
Basement membrane (BM), Endothelial cells (EC), Platelet endothelial cell adhesion 
molecule (PECAM-1), Intracellular adhesion molecule-1 (ICAM-1), Endothelial cell-selective 

adhesion molecule (ESAM), Tumor necrosis factor-  (TNF-) [39].  

On the other hand, leukocyte penetration of the vascular BM depends on the vascular bed. 
Additionally, it has recently been shown that the venular BM contains pre-formed regions 
with low expression of certain BM components, denominated Low expression regions 
(LER), which are preferentially utilized by transmigrating neutrophils and monocytes [29, 
40]. Alignment of these regions with gaps between adjacent pericytes suggests a key role for 
these cells in vascular BM generation in vivo. Vascular BM architecture depends on the 
migration of neutrophils, but not monocytes, through the LER remodeling these regions and 
increasing their size [41, 42], suggesting the involvement of proteases in this response.  

6. Neutrophil polarization and migration structures 

Neutrophils present in the blood are able to tissue-injury or infection signals by adhering to 
vascular endothelial cells, then transmigrating across the endothelium through the 
basement membrane and homing into sites of infection or inflammation.  
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The following four steps mediate the multiple cycles of attachment and detachment 
generating neutrophil forward movement during migration: the leading edge protrudes one 
or several pseudopods by actin flow; protruding membrane and surface receptors interact 
with the substrate; actomyosin-mediated contraction of the cell body occurs in mid-region, 
thus the rear of the cell moves forward. Neutrophil migration moves at up to 30 μm/min, 
lacks strong adhesive interactions to the tissue, and commonly preserves tissue integrity [9].  

Receptors such as ǃ2 integrins in neutrophils show discrete relocation toward the tips of 

ruffles [43]. The mid-region of amoeboid cells contains the nucleus and a relatively 

immobile cell region that maintains the front-rear axis. The trailing edge contains the highly 

glycosylated surface receptors CD43 and CD44, adhesion receptors including Intercellular 

adhesion molecule (ICAM)-1, ICAM-3, ǃ1 integrins, and Ezrin-radixin-moesin adaptor 

proteins (ERM), as well as GM-1-type cholesterol-rich microdomains [44]. The uropod 

mediates cell–matrix and cell–cell interactions during migration and has a putative 

anchoring function [45]. The uropod extends rearward from the nucleus and contains the 

microtubule-organizing center and rearward-polarized microtubules, the Golgi, and 

abundant actin-binding ERM proteins. In association with microtubules, mitochondria 

localize to the rear of the cell that, presumably, due to local ATP delivery to the region of 

ATP-dependent actomyosin contraction, is required for proper polarization, uropod 

retraction, and migration [10, 46].  

7. Polarization of cytoskeletal and signaling scaffolds 

In neutrophils, polarization and migration to chemoattractant gradients such as chemokines 
and cytokines, lipid mediators, bacterial factors, and Extracellular matrix (ECM) 
degradation products including collagen, fibronectin, and elastin fragments [47, 48], is 
known as chemotaxis. After chemokines and chemoattractants bind to the extracellular 
domains of their cognate G protein-coupled receptor (GPCRs) pseudo- and lamellipodia 
protrusion are induced. In leukocytes, the majority of GPCRs transmit through the ǂ subunit 
of Giǂ. These GPCR include the following: the fMLP (N-formyl-Met-Leu-Phe) receptor and 
the C5a receptor; chemokine receptors including CCR7, CXCR4, CXCR5, and CCR3; the 
leukotriene B4 receptor BLT1; sphingosine-1-phosphate receptors 1–4 (S1P1–4), and 
Lysophosphatidic acid (LPA) receptors 1–3 [49]. All these GPCR mediate promigratory 
signals but also enhance cell activation. A key GPCR-mediated pathway is signaling 
through the Phosphatidylinositol-3-kinase (PI(3)K), which contains the p110Ǆ catalytic 
subunit). PI(3)K-Ǆ is recruited into the inner leaflet of the plasma membrane by the G 
protein ǃǄ subunit, where it becomes activated and subsequently phosphorylates 
Phosphatidylinositol phosphates (PIP) and other effectors [50]. PIP serve as docking sites for 
pleckstrin-homology domain-containing proteins, notably Akt (also known as protein 
kinase B), which is implicated in inducing actin polymerization and pseudopod protrusion 
by phosphorylating downstream effectors [51] such as the actin-binding protein girdin [52]. 
A second pathway linked with PI(3)K activation is induced by ζ-chain-associated receptors, 
including T cell receptors (TCRs) and receptors FC (FcRs). These receptors signal through 
tyrosine kinases Lck and Zap-70 to class Ia PI(3)Ks (consisting of p110ǅ) and activate 
downstream Akt, as well as the GTPases Rac and Cdc42 [53]. A third, PI(3)K-independent 
pathway induced by the fMLP receptor in neutrophils leads to the activation of p38 
mitogen-associated protein kinase and downstream Rac activation [54, 55]. Ultimately, Rac 
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induces actin polymerization through WAVE (Scar) and Arp2/3. WAVE, a member of the 
WASP family of actin-binding proteins, mediates actin filament formation [56], while 
Arp2/3 causes sideward branching of actin filaments. Together, these activities generate 
interconnected, branched networks [57]. Thus, promigratory signals received at the leading 
edge generate local Rac activation and actin network protrusion, pushing the plasma 
membrane outward. Preferential receptor-sensitivity mechanisms at the leading edge are 
likely diverse and may include local signal- amplification mechanisms [58] and exclusion of 
counter-regulatory proteins. The mid-region generates actomyosin-based stiffness and 
contractility, limits lateral protrusions, and thereby maintains a stable, bipolar cortex. The 
cytoskeletal motor protein myosin II, located in the central and rear regions of leukocytes, 
promotes actin-filament contraction and limits lateral protrusions. Myosin II cross-links 
actin filaments in parallel, forming the contractile shell required to hold the extending cell 
together and propelling the cell nucleus, the most rigid part of the cell, forward [59].  

8. Leukocyte movement in different environments and initial migration 

Neutrophils are able to migrate along or through 2- or 3- dimensional (2-D or 3-D) surfaces. 

2-D Surfaces, such as inner vessel walls, peritoneum, and pleura, require integrin-mediated 

attachment known as haptokinesis and polarized adhesion through binding of integrins 

ǂ4ǃ1 and LFA-1 (L2) to their counterparts (VCAM-1 and ICAM-1)(Figure 3A). In contrast, 

migration in 3-D, ECM environments, which are composed mainly of cellular (lymph node) 

or fibrillar ECM components, is integrin-independent and cells use weakly adhesive-to-

nonadhesive interaction and traction mechanisms that are mediated by actin flow along the 

confining ECM scaffold structure, contributing to shape change and squeezing [9, 44, 60] 

(Figure 3B). It is likely that neutrophils adapt to tissue geometry and follow paths of least 

resistance, a process known as contact guidance (Figure 2). 

For passage, the first postendothelial tissue structure and barrier to cells undergoing 

diapedesis, locally confined cleavage of the structural proteins laminin-10 and type IV 

collagen, occurs by secreted or membrane-anchored Matrix metalloproteases (MMPs) and 

serine proteases [61, 62]. Cell-body deformation is coupled with cytoplasmic propulsion and 

streaming through preexisting or newly formed pores; the deformation and constriction 

capability of leukocytes is considerable, especially for neutrophils [63]. 

Interestingly, a recent study showed the existence of venule-wall regions in which laminin-
10, collagen IV, and nidogen-2 expression is considerably diminished; neutrophil 
transmigration enlarges the size of these regions, and their protein content is further 
reduced, an effect that appears to involve neutrophil-derived serine proteases [40]. Location 
of proteases at the leukocyte cell surface takes place through two different mechanisms: 
either by endogenous expression as transmembrane proteins or by binding of extracellular 
proteases to integral membrane receptors. Integrins are shown to act as anchoring receptors 
for several proteases including MMPs; such interactions have been detected in caveolae, 
invadopodia, and at the leading edge of migrating cells, where directed proteolytic activity 

is required [64]. In this regard, pro-MMP-2 and pro-MMP-9 are bound to L2 and M2 on 

the surface of activated leukemic cells, and inhibition of these complexes blocks 2 integrin-

dependent leukocyte migration [65]. Pro-MMP-9–M2 complexes are primarily localized 
into intracellular granules of resting neutrophils, but after cellular activation, they are 

www.intechopen.com



 
Hematology – Science and Practice 

 

218 

relocalized to the cell surface [66]. Neutrophils secrete laminin, suggesting that leukocyte-
derived matrix proteins might also contribute to the transmigration process [67].  

 

Fig. 3. Type-substrate interaction with neutrophils. A) Two-dimensional integrin-mediated 
neutrophil migration. In vivo 2-D haptokinetic migration is present during crawling on 
Endothelial cell (EC) or through Extracellular matrix (EM). B) Three-dimensional integrin-
independent neutrophil migration. In vivo, this occurs through organized tissue structures.  

9. Role of cytoskeleton in regulating integrin adhesiveness 

Integrins are a superfamily of heterodimeric cell-surface receptors that are found in a broad 
range of animal species [68]; their main role, as their name implies, is to integrate the cell 
cytoskeleton with adhesion points of extracellular matrix and cell-surface ligands in order to 
mediate essential cellular processes such as cell-cell and cell-extracellular matrix 
interactions, polarization in response to extracellular cues, cell migration, differentiation, 
survival, and cell-pathogen interactions [69].  

In vertebrates, 19 different integrin  subunits and eight different integrin ǃ subunits have 

been reported, in combination forming about 25 ǃ heterodimers [70]. The majority of /ǃ-
subunit combinations can be organized into three fundamental groups based on subunit 

type (ǃ1, ǃ2, and ǃ3, or v chains, on the extracellular matrix protein-type recognized, or on 
the specific adhesion motifs [71] (Table 1). 

ǃ1 integrins form the first and largest group of integrins and are ubiquitously distributed in 
nucleated cells as well as in platelets. ǃ1 Integrins are expressed in bone marrow-derived cells 
(except for neutrophils), in certain tumor cells, and in muscle development. A second major 

group of integrins shares either the ǃ3 or the v subunit (Table 1) and recognizes different 

ligands from a broad gamma of cell and tissue sources. Integrins with the v subunit may 

form dimers with at least five different ǃ chains, including the ǃ1 chain. Subunits v and ǃ3 
recognize Arg-Gly-Asp (RGD) domains present in extracellular matrix proteins. 

The third group of integrins shares the ǃ2 integrin chain, whose expression is restricted to 

leukocytes [72] (Table 1). Receptors such as 4ǃ2, also known as the LFA-1 integrin, determine 
the capability of leukocytes in endothelial epithelium transmigration and recognize members 
of the Intercellular adhesion molecule (ICAM) family of adhesion proteins. In contrast, 

expression of Mǃ2 is restricted to monocytes, macrophages, and granulocytes; it recognizes  
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 Ligands Motifs Distribution 

integrin    

 Co1,Lm ND EC, SMC, TC, Monos 

 Col, Fn, Lm, Echovirus 1 DGEA Plt, EC, Fb, SMC, TC, EPC 

 Col, Epiligrin, Fn, Lm, Invasin RGD EC, TC, EPC, Fb 

 Fn, Invasin, VCAM-1 EILDV (Fn) TC, Monos, Eos, LC, ER 

  QIDSPL(VCAM-1)  

 Fn, Invasin RGD Fb, EC, Monos, TC, Plt 

 Lm, Invasin ND Plts, TC, EC, EPC 

 Lm ND Myocytes 

  ND SMC 

 Col, Lm, Tenascin RGD EPC, Myocytes 

 Fn,Vn RGD Fb 

v and 3 

integrins 
   

v Fn, Vn RGD Fb 

v Vn, HIV Tat, Adenovirus RGD EC, EPC, Fb, Tumors 

v Fn, Tenascin RGD  

v Vn RGD Melanoma 

v
Col, Fib, Fn, Lm Opn, Pn, 

TSP, Vn 
RGD EC, FB, Monos, SMC, OC 


vWf, HIV Tat, Tenascin, 

Adenovirus 
 Plt, Tumors 

IIb 
Col, Fib, Fn, TSP, Vn, vWf, 

Borrelia KQAGDV Plt, Mega 

R Fib, Fn, Vn, vWf RGD PMN 

2 integrin    

L2 ICAMs (1-3) ND 
TC, BC, LGL, Monos, 

PMN, Eos 


Fib, Fn, Factor X, ICAM-1, 

iC3b 
 

PMN, Monos, Macros, 
LGL 

 Fib, iC3b GPRP Monos, Macros, PMN 

  ND TC. Macros 

Other integrins    

 Lm ND EC, EPC, Schwann cells 

 Fn, MAdCAM, VCAM-1 EILDV (Fn) Gut homing, TC 

 E-Cadherin ND Epithelial TC 

Table 1. Classification of integrins according to ligand motifs and distribution. 
Abbreviations: BC = B cells; Col = Collagen; EC = Endothelial cells; Eos = Eosinophils; EPC 
= Epithelial cells; Fb = Fibroblasts; Fib = Fibrinogen; Fn = Fibronectin; iC3b = inactivated 
component of complement; Lm = Laminin; LGL = Large granular lymphocytes;  
Macros = Macrophages; Mega = Megakaryocytes; Monos = Monocytes; OPN = Osteopontin; 
Plt = Platelets; PMN = Neutrophils or Polymorphonuclear leukocytes; SMC = Smooth 
muscle cells; TC = T cells; TSP = Thrombospondin; Vn = Vitronectin; vWf = von Willebrand 
disease. (Modified from [71]).  
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fibrinogen and inactivated C3b, playing an important role in the phagocytosis of opsonized 

particles and bacteria [73]. The fourth group of integrins includes three integrins (6ǃ4, 

4ǃ7, and Eǃ7); these integrins recognize extracellular matrix components as well as 
adhesion molecules of the Immunoglobulin superfamily (IgSF). Common integrins 
expressed on leukocytes and their counterparts are summarized in Table 1.  

Association of extended forms of integrins with the cortical cytoskeleton is required to 

integrate mechanical forces from shear flow and F-actin and to undergo ligand-induced 

strengthening at endothelial contacts. Key differences between 4 and 2 integrins 

regarding their increase in cytoskeleton-mediated avidity may occur. The 4 integrins can 

bind paxillin upon dephosphorylation of Ser988 in their cytoplasmic domain at the sides 

and rear pole of the cell, whereas PKA-mediated phosphorylation of these integrins is 

confined to the cell’s leading edge. Paxillin regulates 4 integrin function (tethering and 

firm adhesion) [74], enhancing their migration rate and reducing their spreading, and 

paxillin–4 interaction downregulates the formation of focal adhesions, stress fibers, and 

lamellipodia by triggering activation of different tyrosine kinases, such as Focal adhesion 

kinase (FAK), Pyk2, Src, and Abl [75, 76]. The 4–paxillin complex inhibits stable 

lamellipodia by recruiting an ADP-ribosylation factor (Arf)-GTPase-activating protein that 

decreases Arf activity, thereby inhibiting Rac, and limiting lamellipodia formation to the cell 

front [77]. Recently, it was discovered that integrins can induce PIP5K1C-90 polarization 

independently of chemoattractants. This integrin-induced PIP5K1C-90 polarization works 

together with chemoattractant signaling in regulating neutrophil polarization and 

directionality in vitro and infiltration in vivo [78]. 

It has been described that LFA-1 and Mac-1 may use adapter molecules talin, -actinin, 

filamin, and 14-3-3 to anchor to the actin cytoskeleton properly [79, 80]. Regarding 

subcellular localization, LFA-1 pattern ranges from low- in the lamellipodia to high 

expression in the uropod. However, it has been reported that high-affinity clustered LFA-1 

is restricted to a mid-cell zone, termed the “focal zone”, different from focal adhesions and 

focal contacts. In addition, talin, properly activated by phosphorylation or by 

phosphatidylinositol-4,5-bisphosphate (PIP2), is essential for formation and stability of the 

focal zone and for LFA-1-dependent migration [81]. 

Locomotion can be regulated by integrins because the signals involved in integrin-mediated 

leukocyte firm adhesion to endothelium are subsequently attenuated to allow leukocyte 

migration toward an appropriate transmigration site. 2 integrins appear to promote direct 

locomotion, success in correct positioning at the endothelial junction, and effective 

diapedesis [82, 83]. Upon interaction with their ligands, integrins activate distinct myosin-

contractility effectors, actin-remodeling GTPases, and molecules involved in microtubule-

network regulation at motile leukocyte leading and trailing edges [84]. During cell 

polarization, Cdc42, Myosin light chain kinase (MLCK), Rac, RapL, Rap1, mDia, myosin-IIA, 

and chemokine receptors are redistributed to the cellular front, participating in exploratory 

filopodia formation and in lamellipodia extension. In contrast, Rho- and Rho-associated 

kinase (ROCK) (both involved in trailing- edge retraction), the Microtubule-organizing 

center (MTOC), and adhesion receptors ICAM-1, ICAM-3, CD44, and CD43 move toward 

the rear pole [85].  
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Recently, dystrophin protein-adhesion complex proteins such as short dystrophins, 

utrophins, and the dystrophin-associated protein complex -dystroglycan,syntrophin 

and dystrobrevins) form part of actin-based structures such as lamellipodia and uropod, 
in which their polarized distribution is evident and their feasible role in chemotaxis and 
migration is strongly suggested [86].  

Other proteins with differential distribution appear in Figure 4 and the list is increasing.  

 

Fig. 4. Neutrophil regions observed after triggered activation and differential protein 
distribution. Adapted from [87].  

10. Conclusions 

For exiting the vasculature, leukocytes follow a consecutive sequence of events that starts 

with the first contact of free-flowing neutrophil to the vascular endothelium followed by 

leukocyte rolling along the vessel wall. Both events are mediated by specialized receptor 

ligand pairs consisting of a member of the selectin family of adhesion molecules and specific 

carbohydrate determinants on selectin ligands. During rolling, leukocytes are in intimate 

contact with the vascular endothelium, enabling endothelial-bound chemokines to interact 

with their respective chemokine receptors on the neutrophil surface. Upon binding to the 

receptor, chemokine receptor-mediated signaling events trigger the activation of ǃ2 

integrins. Activated integrins subsequently interact with endothelium-expressed ligands, 

which lead to a reduction in leukocyte rolling velocity and eventually, to mediate stable 

adhesion and migration across the blood vessel wall. Following neutrophil spreading and 

intravascular crawling along the endothelium, tethered neutrophils reach the correct spot 

for exiting into tissue. Upon neutrophil stimulation, actin, which is one of the major 

components of the cytoskeleton in neutrophils, is reorganized through reversible cycles of 

polymerization and depolymerization, thereby comprising the driving motor for the 
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formation of lamellipodia and pseudopodia during migration and phagocytosis. Activated 

neutrophils become polarized with a contracted tail (uropod) in the rear and F-actin-rich 

protrusions at the front and start crawling. Actin and the proteins regulating actin 

polymerization are key players in the establishment of morphological and functional cell 

polarity. Actin polymerization and membrane ruffling comprise the first events leading to 

the establishment of chemoattractant-stimulated neutrophil polarization. 

Morphological changes imply cytoskeleton redistribution triggered by certain activated 
pathways which are spatiotemporally coordinated.  

Undesrtanding the molecular and cellular interactions that regulate neutrophil 
transmigration could be of great value to design novel therapeutic strategies directed to 
promote or suppress an inflammatory response, which may be of potential benefit under 
physiological or pathological circumstances.  
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