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1. Introduction  

Mature blood cells arise from hematopoietic stem cells (HSCs) capable of generating every 

hematopoietic cell type; including the various lymphoid and myeloid lineages. To maintain 

the steady state levels of hematopoietic cells in the circulation, each HSC has the capacity to 

generate large numbers of mature cells daily via various multi- and oligopotent lineage-

committed progenitors (Kondo et al., 2003; Orkin, 2000). Finely tuned self-renewal and 

differentiation programs, controlled by essential transcriptional regulatory networks 

(Miranda-Saavedra & Gottgens, 2008), determine the HSC and progenitor pool sizes in 

adults. These regulatory networks include both positive and negative transcriptional 

regulators that control lineage specific gene expression and ensure normal hematopoietic 

cell differentiation.  Deregulation of these transcriptional networks caused by aberrant 

upstream signalling, point mutations as well as chromosomal translocations of key 

transcriptional regulators particularly within the HSC compartment (Bonnet & Dick, 1997) 

can lead to various blood related disorders including anemia and hematological 

malignancies or leukemia.  

The origins of HSCs during the development of a mammalian embryo are only beginning to 
be understood. Tracing of the true stem cells via marker analysis is difficult and the ‘gold 
standard’ for identifying these cells is based on their ability to reconstitute lethally 
irradiated hosts over a long term. Various transplantation studies in the mouse (Dzierzak & 
Medvinsky, 2008)  have revealed that HSCs arise in a complex developmental process 
during which multipotent progenitors sequentially migrate to several anatomical sites 
(Dzierzak & Speck, 2008; Orkin & Zon, 2008), including the yolk sac, the aorta-
gonadomesonephros (AGM) region, placenta, fetal liver and finally the bone marrow in the 
adult (Palis et al., 2001). Lately, it is thought that the first definitive adult-type of HSCs are 
generated in the AGM region at embryonic day (E) 10.5 in the mouse (de Bruijn et al., 2002). 
It was demonstrated through fate mapping that the first HSCs arise as part of the 
hematopoietic progenitor clusters that emerge from the hemogenic endothelium and 
subendothelial layers at the ventral part of the dorsal aorta and in the vitelline artery 
(Rybtsov et al., 2011; Yokomizo et al., 2011). These small cell clusters of hematopoietic 
progenitors are closely associated with the endothelium and originate from vascular 
remodelling and extravascular budding (Boisset et al., 2010; Robin et al., 2011; Zovein et al., 
2010). This involves changes in endothelial cell shape and loss of cellular adhesion that have 
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been likened to the changes in cell adhesion that epithelial cells undergo during epithelial to 
mesenchymal transition (EMT). EMT encompasses a series of events in which well-
polarized epithelial cells round up in shape, lose their cell contacts and acquire the motile, 
migratory properties of mesenchymal cells (Greenburg & Hay, 1982). EMT is essential for 
many developmental processes including mesoderm formation during gastrulation and 
neural crest delamination and migration (Kalluri & Weinberg, 2009; Thiery et al., 2009). 
Similar EMT-like changes in cellular morphology can be observed during tumor progression 
and allow tumor cells to acquire the capacity to invade into the surrounding tissue and 
ultimately metastasize to a distant site (Berx et al., 2007). Subsequent tissue colonization 
occurs via a reverse transitional mechanism, called mesenchymal to epithelial transition 
(MET) (Kalluri, 2009). Significant cross talk and interactions between members of the Snai 
family and Zeb family of transcription factors have been documented to be involved in the 
regulation of these EMT/MET processes (Thiery & Sleeman, 2006). More recently, it has 
been suggested that the expression of the EMT regulators are also involved in the 
formation/acquisition of (cancer) stem cell properties (Gupta et al., 2009). In addition to 
their roles in epithelial/mesenchymal biology there is accumulating evidence that these 
EMT inducers may be involved in several aspects of hematopoietic differentiation and 
hematological malignancies that is the main focus of this chapter and are reviewed below.   

2. EMT regulators of the Snai family  

Members of Snai family encode for transcription factors with a common structural 

organization consisting of a highly conserved C-terminal region with four to six C2H2 zinc-

fingers (Knight & Shimeld, 2001) and a more divergent N-terminal region (Fig. 1). This zinc-

finger domain serves as a sequence-specific DNA binding domain that recognizes consensus 

E2-box type elements C/A(CAGGTG)  (Batlle et al., 2000; Cano et al., 2000; Mauhin et al., 

1993). All vertebrate Snai family members share as well an evolutionary conserved 7-9 AA 

N-terminus, the SNAG (Snail/Gfi) domain (Grimes et al., 1996). This domain was originally 

identified as a repressor domain in the zinc-finger protein Gfi1 that acts as a molecular hook 

to recruit co-regulators and/or demethylases and is essential for their Snai transcriptional 

repressive function (Lin et al., 2010). 

Snail (also known as Snai1, Sna, Snah, Slugh2, Snail1.) represents the founding member of 
the superfamily (Manzanares et al., 2001; Nieto, 2002) and was first described in Drosophila 
melanogaster (Grau et al., 1984). In mammals, besides Snail two other Snail family members 
were identified Slug (aka Snai2, Slugh1, Slugh, Snail2) and Smuc (aka Snai3, Zfp293, 
Znf293). Snail and Slug are the best characterized and have been implicated in the formation 
of the mesoderm (Boulay et al., 1987; Sefton et al., 1998) and neural crest cell migration  (del 
Barrio & Nieto, 2002; LaBonne & Bronner-Fraser, 2000) as well as with the loss of epithelial 
features associated with the acquisition of a fibroblast-like motile and invasive phenotype of 
tumor cells. Induced expression of Snail or Slug in various epithelial cancer cell lines either 

by FGF, Wnt, Notch or TGF administration (De Craene et al., 2005) or directly via ectopic 
expression of the repressors is sufficient to adopt a more mesenchymal morphology (Cano 
et al., 2000). This phenotypic switch is characterized by the downregulation of a number of 
epithelial marker genes (E-cadherin, desmoplakin, Muc-1, cytokeratin-18) (Batlle et al., 2000; 
Cano et al., 2000) and the induction of various mesenchymal marker genes (vimentin, 
fibronectin) (Cano et al., 2000), which can vary dependent on the cellular context. Several 
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lines of evidence indicated that Snail family members not only regulate cellular adhesion 
and motility or invasion but as well can bind and regulate genes that participate in other 
processes (Wu Y. & Zhou, 2010) like proliferation (CyclinD1) (Liu J. et al. 2010), cell 
survival/apoptosis (BID, caspase-6) (Kajita et al., 2004), inflammation (Lyons et al., 2008; 
Yang & Wolf, 2009) and angiogenesis (Gill et al. 2011). 

 

Fig. 1. Schematic diagram of conserved functional domains of the three members of the Snai 
family of transcription factors. All  members contain an N-terminal SNAG domain and a C-
terminal zinc-finger (ZF) domain. The central SLUG-domain is unique for Slug (Figure 
based on Cobaleda et al., 2007)   

Besides this, Snai gain-of-function is correlated with the acquisition of (cancer) stem cell 

properties (Gupta et al., 2009). Studies of various neoplastic tissues have demonstrated the 

existence of cancer stem cells (CSC) or tumor-initiating-cells with self-renewal capacity that 

exhibit an ability to induce new tumors when transplated into nude and/or syngeneic 

mouse strains (Schatton et al., 2009). The existence of CSCs was initially discovered in 

leukemia samples (Bonnet & Dick, 1997), but subsequently they have been identified in 

various solid tumor types as well (Al-Hajj et al., 2003; Ricci-Vitiani et al., 2007; Singh et al., 

2004). The origin of these stem cells is until now unclear but compelling results from Mani 

and colleagues (Mani et al., 2008) now link EMT processes with the formation of CSCs. 

Ectopic expression of Snail in an immortalized human mammary epithelial cell line resulted 

in the acquisition of mesenchymal traits, expression of stem cell markers and enhanced 

capacity to form mammospheres, a property previously and exclusively associated with 

mammary epithelial stem cells. For now it is unclear whether this is restricted to cancer stem 

cells of an epithelial origin or can be generalized to all (cancer) stem cells. Somewhat 

contradictory to this, is the recent findings that suppression of EMT inducers and the 

expression of E-cadherin  is one of the first essential steps during the reprogramming of 

fibroblasts for the generating induced pluripotent stem cells (Li et al., 2010; Redmer et al., 

2011; Wang et al., 2010). This may reflect the fact that stemness properties and totipotency 

are not equivalent and may be controlled by divergent molecular mechanisms.  
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Recently, the in vivo functions of Snail and Slug could be further analyzed by the generation 
of novel gain/loss-of-function mouse models. Here we shall focus more on the 
hematopoietic phenotypes observed in these mouse models. 

2.1 Slug is an important downstream mediator of SCF/cKit signaling and plays pivotal 
roles in stress-induced hematopoietic stem/progenitor cell survival and self-renewal 

The first evidence of an important role for Slug in hematopoiesis and leukemia came from 
study by Inukai et al. (1999) in which Slug was identified as a downstream target of the 
E2A-HLF oncogene in leukemic B-cells. The E2A-HLF fusion gene transforms human pro-B 
lymphocytes by interfering with the apoptotic signaling pathway at an early step. Moreover, 
Slug expression in IL3-dependent Baf-3 cells prolonged the survival of these cells 
significantly after deprivation of the cytokine. These initial data suggested a pivotal role for 
Slug in the cell survival pathway of lymphocyte progenitor cells and possibly as well in 
other hematopoietic progenitors, based on its expression profile. Endogenous Slug is 
normally expressed in both long- and short-term repopulating HSCs and in committed 
progenitors of the myeloid lineage but not in differentiated myeloid cells or pro-B or pro-T 
cells.  Its role in other lineages was further investigated in vivo by the generation of Slug 
deficient mice. Mice lacking Slug survive and are fertile, but display postnatal growth 
retardation phenotypes (Inoue et al., 2002). Upon loss of Slug, normal circulating blood cell 
counts were observed but the number of hematopoietic colony-forming progenitors in the 
bone marrow and spleen were significantly (2-4-fold) increased. This suggested that in the 
absence of Slug, hematopoietic progenitor pools must expand to maintain normal levels of 
differentiated blood cells in the circulation. In addition, Slug deficient mice are more radio-

sensitive; these mice not only died earlier upon -irradiation, but as well showed 
accentuated decreases in peripheral blood cell counts and marked increases in apoptotic 
(TUNEL+) bone marrow progenitors cells compared to their control littermates. These data 
implicated an important role for Slug in protecting hematopoietic progenitor cells from 
apoptosis after DNA damage (Inoue et al., 2002). By crossing the Slug knockout mice with 
various other mouse models it was demonstrated that Slug directly represses the 
proapoptotic factor Puma and in this way is able to antagonize the p53-mediated 

upregulation of Puma in -irradiated myeloid progenitor cells, allowing them to survive 
(Wu W.S. et al., 2005). All together these data suggest that Slug governs a pivotal checkpoint 
that controls cell survival/apoptosis decisions upon exposure to genotoxic stress. 

The role of Slug in the regulation of the bone marrow stem cell compartment was further 
investigated under both normal steady-state and stress conditions via competitive 
repopulating assays and serial bone marrow transplants (Sun et al., 2010). Under normal 
conditions, Slug deficiency seems to have no effect on proliferation or differentiation of HSC 
or progenitors. However, if transplanted, Slug null HSCs demonstated increased 
repopulating potential that was not a result of altered differentiation nor homing ability, 
suggesting Slug deficiency alters HSC self-renewal. Indeed this was confirmed under the 
stress conditions of serial bone marrow transplantation. Consistently, 5-FU treatment of 
Slug knockout mice showed an expansion of the Lin-Sca1+ cell population, not by changing 
their cell survival capacity but by increasing their proliferation rates (Sun et al., 2010).    

More detailed analysis of Slug deficient mice revealed macrocytic anemia as well as 
pigmentation deficiency and gonadal defects (Perez-Losada et al., 2002). These phenotypes 
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are  very similar to the defects reported in the white-spotting (W) and Steel (Sl) mutant mice 
with mutations in the c-Kit receptor (Chabot et al., 1988; Geissler et al., 1988) and its Stem 
Cell Factor (SCF) ligand (Copeland et al., 1990; Huang et al., 1990; Zsebo et al., 1990). The 
SCF/c-Kit signaling pathway has pleiotrophic functions in hematopoiesis and beyond. The 
primary function of SCF/c-Kit in early hematopoiesis seems to induce the growth of 
quiescent progenitor/stem cells through synergistic interactions with other early-acting 
cytokines (Migliaccio et al., 1991; Williams N. et al., 1992). Ample evidence indicates that in 
the absence of other cytokines, SCF selectively promotes viability rather than proliferation of 
primitive murine progenitor cells (Fleming et al., 1993) and confirms previous findings of 
Slug playing a role in both cell cycle/proliferation and cell survival/apoptosis. Next to its 
role in hematopoiesis, SCF/c-Kit signaling has been implicated in the 
development/migration of melanocytes (Nishikawa et al., 1991). In human piebaldism 
patients, c-Kit signaling has been demonstrated to be involved in congenital depigmented 
patches and poliosis, (Giebel & Spritz, 1991). Interestingly in some piebaldism patients, also 
heterozygous SLUG deletions could be detected, providing further genetic evidence that 
Slug may play crucial roles in the SCF/c-Kit signaling pathway (Sanchez-Martin et al., 
2003). The importance of Slug as a putative downstream mediator of c-Kit signaling was 
further tested by means of a complementation study in which transduction with TAT-Slug 
protein was sufficient to rescue the radio-sensitivity of c-Kit deficient mice. Taken together 
these data clearly demonstrate that Slug is an important mediator downstream of c-Kit 
receptor activation (Perez-Losada et al., 2003).  

The observed macrocytic anemia observed in the Slug mutant mice resemble in some ways 
human congenital anemias such as Diamond-Blackfan anemia (Perez-Losada et al., 2002), 
however more research is necessary to explore the involvement of Slug in this disease. 

2.2 Snail and Smuc in normal hematopoiesis  

Mice deficient for Snail are embryonic lethal at E7.5-8.5 due to defects in mesoderm 

formation (Carver et al., 2001) as well as vascular defects (Lomeli et al., 2009). Consequently, 

due to the early embryonic lethality, the effects of Snail loss on hematopoiesis could not be 

further investigated in these mice. Although some evidence exists that Snail is expressed in 

the hematopoietic system, more detailed research is necessary and final proof of its potential 

role in hematpoiesis will come from breeding the conditional floxed Snail mice (Murray S.A. 

et al., 2006) to mice with hematopoietic-specific transgenic Cre lines.  

Based upon the fact that in vitro Snail binds similar E-box binding domains and in general 

shows more drastic phenotypes both in vitro as in vivo compared to Slug, Snail may also play 

crucial roles in hematopoiesis. Interestingly, Snail and Slug in most cases can complement 

each other and differences in phenotypes can be explained by differences in expression 

patterns as exemplified by the aggravated phenotypes of the Snail/Slug double knockouts 

(Murray S.A. et al., 2007). In addition, loss of one Snai family member often induces or 

increases the expression of the other(s). In this way hematopoietic-specific double knockouts 

may reveal even more functions for Snail and Slug in normal hematopoiesis.     

More recently a third family member of the Snail family was identified in vertebrates, Smuc. 

Until now, little is known about its functions but it is abundantly expressed in thymocytes 

(Zhuge et al., 2005), specifically in the early CD4-CD8- double negative (DN) and 

www.intechopen.com



 
Hematology – Science and Practice 

 

106 

CD4+CD8+ double positive (DP) stages of thymocyte maturation and then solely expressed 

in the CD8+ T lymphocyte lineage both in the thymus and peripheral immune system. In 

macrophages, Smuc is able to interact with PU.1, a master regulator of myeloid 

differentiation, and binds the negative regulatory element within the Pactolus promoter. 

These data suggests that Smuc is modulating the PU.1 transcriptional activity and lack of 

Smuc leads to aberrant PU.1 transactivation (Hale et al., 2006). 

2.3 Overexpression of Snail or Slug induces leukemia  

Based on the prominent roles of Snail and Slug in stress-induced hematopoiesis, and their 
roles in the progression of solid tumours, as well as acquisition of cancer stem cell 
characteristics, it is therefore surprising that only a limited number of studies have 
addressed the roles of Snai family members in hematopoietic malignancies.   

Nevertheless, strong evidence that Snail and Slug are involved in leukemia formation 
and/or progression comes from the gain-of-function mouse models that were previously 
developed. CombiTA-Snail mice, carrying a hypermorphic tetracycline-repressible Snail 
transgene, showed increased Snail expression up to 20% above normal levels (Perez-
Mancera et al., 2005b). These mice survive and are fertile and although no morphological 
alterations were observed, their thymus were smaller and showed reduced differentiation 
towards CD4+CD8+ DP thymocytes. From 5-7 months onwards, CombiTA-Snail mice 
started to develop various types of epithelial and non-epithelial cancers especially 
lymphomas and acute leukemias (> 75% in two separate transgenic lines). Suppression of 
the Snail transgene expression by tetracycline administration did not ameliorate the 
malignant phenotype, suggesting that the effect of Snail overexpression is irreversible. As 
well, CombiTA-Snail transgene expression resulted in increased in vivo radioprotection, 
suggesting similar roles for Snail in hematopoietic cell survival upon genotoxic stress as was 
previously shown for Slug. 

Similar experiments were performed for in vivo overexpression of Slug. In a similar setup as 

described above for Snail, CombiTA-Slug mice were generated. To prove transgene 

functionality, these mice were crossed with Slug deficient mice, which rescued the null 

phenotype. Again these mice were born without overt morphological abnormalities (Perez-

Mancera et al., 2006). Only after 6-8 months 20% of the transgenic mice died as a 

consequence of congestive heart failure.  The surviving mice started to develop various 

tumors from 9 months of age with highest incidence of (90%) acute leukemias (Perez-

Mancera et al., 2005a). Similar as to the CombiTA-Snail mice this malignant phenotype was 

irreversible after tetracycline administration. As well, c-Kit signaling has been implicated 

both in solid tumors as well as leukemias, e.g. constitutive activating mutations of the 

receptor have been described in AML (Jung et al., 2011) Furthermore, the BCR–ABL 

oncogene did not induce leukaemia in Slug-deficient mice, implicating Slug in BCR–ABL 

leukemogenesis in vivo (Perez-Mancera et al., 2005a). As well, in an independent study it 

was shown that the increased Slug expression upon Bcr-Abl mutations is involved in the 

prolonged survival of chronic myeloid leukemia cells (Mancini et al., 2010). 

From the Slug knockout mice it appears that it is governing a pivotal role in cell survival 
upon DNA damage by repressing the pro-apoptotic factor Puma. These results may be 
highly relevant for cancer therapy. Analyzing or controlling Slug levels before or during 
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treatment may be useful as a prognostic marker for sensitivity to genotoxic agents and can 
be helpful for limiting therapeutic doses or increasing the efficiency of radiation or 
chemotherapy.  

3. EMT regulators of the Zeb family 

The Zinc finger E-Box binding (ZEB) family of DNA-binding transcriptional regulators 
consists of two structurally related proteins (Fortini et al., 1991)(Fig. 2): Zeb1 (also known as 

EF-1, TCF8, BZP, ZEB, AREB6, NIL-2-A, Zfhep, and Zfhx1a) and Zeb2 (also known as Sip1, 
KIAA0569 and Zfhx1b). Both genes have a very similar genomic structures (Fortini et al., 
1991; Vandewalle et al., 2009) and encode for large multi-domain proteins that possess N-
terminal and C-terminal zinc finger DNA binding domains along with more centrally 
located homeo (HD), Smad protein binding (SBD) and CtBP interaction (CID) domains; and 
in the case of Zeb2, an N-terminal NuRD interaction domain (Verstappen et al., 2008). ¶ 

 

Fig. 2. Schematic diagram of conserved functional domains of the two members of the Zeb 
family of transcription factors. Both possess 2 zinc-finger domains, a homeodomain (HD), 
Smad (SBD) and CtBP (CID) binding domain (Figure based on Vandewalle et al., 2009) 

Especially within the Zn-finger domains there exists a high degree of sequence 

similarity/identity between the two Zeb proteins, suggesting they bind similar target 

sequences (Verschueren et al., 1999). Each Zn-finger cluster independently can bind a 5’-

CACCT(G)-3’ sequence located in the target promotor region (Remacle et al., 1999). The 

domains outside the Zn-finger clusters seem less conserved and may be essential for the 

recruitment of various co-repressors, like CtBP (Grooteclaes & Frisch, 2000;Postigo & Dean, 

1999b; van Grunsven et al., 2007) or co-activators like p300 or P/CAF (van Grunsven et al., 

2006). Still a lot of controversy exists over whether Zeb proteins can only act as 

transcriptional repressors or as well as activators. The molecular mechanism underlying the 

choice between repression or activation are currently unknown and may include cell-type 

specific differences and/or posttranslational modifications (Costantino et al., 2002). 

Similarly, the roles of Zeb proteins in TGF/BMP signaling are not well understood; both 

Zebs have been shown to be able to bind receptor activated R-Smads (Postigo, 2003; 

Verschueren et al., 1999). Postigo et al. (Postigo, 2003) postulated Zeb proteins as putative 

important downstream mediators of this signaling pathway however with opposing effects. 

While Zeb1 would synergize with Smad proteins to activate transcription of TGF 
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responsive reporter constructs, the structurally very similar Zeb2 would inhibit 

transcriptional activation donwstream of TGF(Postigo, 2003). These antagonistic effects 

were hypothesized to result from differential recruitment of co-activators and co-repressors 

to the Smads by Zeb1 or Zeb2 respectively (Postigo et al., 2003). 

The Zeb family of zinc finger/homeodomain proteins genes was first idenfied in Drosphila 
melanogaster (Fortini et al., 1991) and shown to be essential for myogenesis (Postigo et al., 1999) 
and the organization of the central nervous system (Clark & Chiu, 2003).  As well in 
vertebrates a vast number of muscle master regulatory genes have been shown to be repressed 

directly by Zeb1/2 (7 integrin, crystalin enhancer, Mef2c) (Postigo & Dean, 1997, 1999a) as 

well as genes essential for cartilage and bone formation (Col21) (Murray D. et al., 2000). The 
first functional studies in Xenopus proved Zeb1 to be essential for the expression of XBra 
(Xenopus Brachyury) (Papin et al., 2002), a member of T-box family of transcription factor 
essential for mesoderm formation and notochord differentiation and previously been 
implicated in EMT processes. Subsequently various in vitro studies using multiple epithelial 
cancer cell lines, it was demonstrated that both Zeb1/2 are able to bind and downregulate E-
cadherin (Comijn et al., 2001; Eger et al., 2005) and other epithelial-specific marker genes via 
binding bipartite E-boxes in their promotor regions. Exogeneous Zeb1/2 overexpression 
results in EMT-like phenotypes similarly as described above for the Snai family members of 
EMT inducers (Comijn et al., 2001; Vandewalle et al., 2005). Increased in vivo Zeb1/2 
expression has been correlated in various tumor types with increased invasion, metastasis, 
dedifferentiation, cancer stem cell characteristics, recurrence and bad prognosis (Spaderna et 
al., 2006; Spoelstra et al., 2006; Wellner et al., 2009; Yoshihara et al., 2009).  

Besides their roles in suppression of epithelial marker genes more and more studies 

revealed their participation in other cellular processes like cell division (Mejlvang et al., 

2007), apoptosis and senescence (Liu Y. et al., 2008; Ozturk et al., 2006; Sayan et al., 2009) 

and inflammation (Chua et al., 2007). 

From expression analysis it was clear that both Zeb proteins are also expressed in the 
hematopoietic system.  Actually, Zeb1 has been demonstrated to be more expressed during T-
lymphocyte development, while Zeb2 expression has been seen more in splenic B cells (Postigo 
& Dean, 2000). Using various novel mouse models recent data clearly indicated that this family 
of EMT inducers also plays pivotal roles in various steps of hematopoietic differentiation and 
progression of hematopoietic malignancies, which are discussed in detail below.  

3.1 Role of Zeb2 in hematopoietic stem/progenitor differentiation and mobilization 

Moderate to high Zeb2 expression is reported in all hematopoietic cells with highest levels 
in stem (HSC) and progenitor (HPC) populations (Goossens et al., 2011) and lowest 
expression in mature T cells (Postigo & Dean, 2000). Through the use of a conditional Zeb2 
knockout mouse (Higashi et al., 2002) model we could show that it is not essential for the 
initial formation of HSCs in the embryo but it is crucial for HSC differentiation and 
mobilization/homing (Goossens et al., 2011). Hematopoietic-specific Zeb2 loss-of-function 
resulted in embryonic lethality resulting from bleedings occurring in the developing brain. 
The observed phenotype is very reminiscent of the phenotypes associated with ubiquitous 
loss of the hematopoietic transcriptional regulators AML/Runx1 (Okuda et al., 1996). Runx1 
knockout embryos are deficient in AGM HSCs and lack intra-arterial hematopoietic clusters, 
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suggesting that Zeb2 deletion may also affect hematopoietic cluster formation. However, no 
changes in the number of hematopoietic progenitor clusters was detected for the Zeb2 null 
AGM regions (Goossens et al., 2011) indicating that the formed stem cells are not functional 
at later stages of development. Zeb2 seems to be more involved in stem/progenitor 
differentiation properties as isolated progenitors from various developing hematopoietic 
organs were unable to differentiate in vitro. As well, significant decreases in fully 
differentiated hematopoietic cells were observed. Next to this differentiation block, an 
increased adhesion/clustering of hematopoietic cells in the fetal liver and less mobile 
progenitors in the peripheral blood were observed. It was hypothesized that the increased 
levels of Cxcr4 within the Zeb2 null progenitors lead to their retention in the fetal liver that 
resulted in less progenitors in the embryonic circulation. This decreased mobilization of 
hematopoietic progenitors likely contributed to the decreased levels of angiogenic factors 
(like Ang1) within the circulation, thereby resulting in less maturation and pericyte 
recruitment towards the newly formed vessels in the developing brain. Most probably this 
defect contributed to the observed cephalic bleeding phenotype. From this initial data it has 
become clear that Zeb2 is not only a crucial transcriptional regulator of hematopoietic 
differentiation but as well plays pivotal roles in the mobilization and homing of HSCs 
within the embryo (Goossens et al., 2011). More experiments need to be performed to 
analyze whether this also holds true in adult haematopoiesis.  

3.2 Role of Zeb1 in T cell development  

Neonatal Zeb1 total knockout mice die shortly after birth. Drastic skeletal abnormalities 

(Takagi et al., 1998) and serious thymic atrophy were observed. Through the use of a second 

Zeb1 loss-of-function mouse model, expressing a C-terminal zinc finger truncation allowed 

survival to adulthood, it was feasible to further investigate the in vivo role of Zeb1 in adult 

hematopoiesis (Higashi et al., 1997). In these C-fin mice no skeletal phenotypes were 

observed. On the other hand T lymphocyte differentiation was drastically impaired. This 

observation points towards the hypothesis that different domains of Zeb1 are responsible 

for alternative/synergistic functions, which as well was hypothesized previously by Postigo 

and colleagues via their in vitro approaches described above (Postigo & Dean, 1999a). More 

detailed FACS analysis of Zeb1 C-fin mutant thymocytes revealed a block at a very early 

stage in the cKit+ CD4-CD8-DN population, before rearrangements of the T cell receptor 

(TCR) locus (Higashi et al., 1997). Only a very small proportion of the intrathymic T cell 

precursors (<1%compared of the normal T cell development) was able to differentiate 

further and expressed differentiated T cell markers. These differentiated cells were skewed 

mainly towards CD4+CD8-SP cells, indicated that also at later stages of T cell development 

Zeb1 expression may play essential roles. More recently it was shown that Zeb1 binds the 5’ 

E-boxes in the proximal enhancer of the CD4 promoter and competes with the 

transcriptional activators E12 and HEB for DNA binding. Therefore it was concluded that 

overexpression of Zeb1 in T cells converts the CD4 proximal enhancer into a silencer 

element leading to a reduction of CD4 expression. This data shows that the CD4 gene is a 

direct target of the transcriptional repressor Zeb1 and can explain the increased proportion 

of CD4+CD8-SP mature T cells in Zeb1 mutant mice (Brabletz et al., 1999).   

Another known downstream target of Zeb1 during myogenesis is 4-integrin. Also in 

hematopoietic differentiation of various lineages 4-integrin is known to play crucial roles 
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through its interaction with fibronectin and V-CAM in the stromal matrix and stromal cells 

of the bone marrow and fetal liver.  4-integrin is highly expressed in stem and progenitor 
cells and upon further differentiation its expression is restricted to lymphocytes and 

myeloid subpopulations. Zeb1 binds and directly represses 4-integrin expression (Postigo 

& Dean, 1999a). Previously it was shown that 4 integrin expression depends on C-Myb and 

Ets family of transcription factors. Based on in vitro 4-intregrin promotor analysis, Postigo 
(Postigo & Dean, 1997) concluded that Zeb1 blocks activity of c-Myb and Ets individually 

but together these synergize to overcome Zeb1 repression. Next to CD4 and 4 integrin, 
Zeb1 has been suggested to repress a number of other genes implicated in proper T cell 
differentiation like Gata3 (Gregoire & Romeo,  1999), immunoglobin heavy chain enhancer 
(Genetta et al.,1994) and interleukin-2 (Williams T.M. et al., 1991; Yasui et al., 1998).    

Within B-lymphocytes a functional cooperation between FoxO transcription factors and 
Zeb1 has been revealed. Zeb1 binds and activates two promotors of known FoxO target 
genes cyclin G2 and retinoblastoma-like 2. Both have been implicated in cell cycle arrest and 
Foxo-dependent quiescence in fibroblasts (Chen et al., 2006).   However a role of Zeb1 in B-
cell development has not been reported 

3.3 Role of Zeb1/2 in T and B cell acute lymphoblastic leukemia 

Using the same C-fin Zeb1 mutant mice described above it was demonstrated that 
expression of the truncated Zeb1 protein resulted in the development of spontaneous CD4+ 
T-cell lymphomas with a median onset at 30 weeks of age. This is consistent with the fact 
that ZEB1 expression is frequently lost in human adult T-cell leukemia/lymphoma (T-ALL) 
patients (Hidaka et al., 2008; Vermeer et al., 2008). In T-ALL cell lines it was demonstrated 

that the tumour cell’s resistance to TGF- mediated growth suppression is via up-regulation 
of the inhibitory Smad7 (Nakahata et al., 2010).  Here the role of Zeb proteins in the 
regulation of Smad7 remains needs to be better understood. Similarly the actual role of the 
other above described Zeb1 targets remains to be determined in T cell lymphomas.   

The role of Zeb1 in B-Cell leukemia has not been reported. However, in terms of 
hematological malignancy, some independent genome-wide retroviral insertional 
mutagenesis screens have identified Zeb2 and not Zeb1 as a possible gene involved in 
mouse B-cell lymphoma progression (Lund et al., 2002; Mikkers et al., 2002; Shin et al., 
2004). From these initial studies it was not clear if Zeb2 expression is lost due to retroviral 
integration and translocation events or enhanced during the transformation process.  More 
recently in CALM-AF10 transgenic mice, enhanced Zeb2 expression was found to correlate 
with increased leukemia progression (Caudell et al., 2010). Additionally, knockdown of 
Zeb2 in a B-ALL cell line resulted in decreased proliferation rates. However in vivo Zeb2 
overexpression studies are missing to be conclusive concerning the role of Zeb2 in 
leukemogenesis. Nevertheless, ZEB2 genomic locus rearrangements are commonly 
associated with aggressive B cell lymphomas in humans as well (Matteucci et al., 2008). 

4. Conclusions 

From the above literature survey it is clear that EMT inducers of the Snai and Zeb families 
play crucial and yet specific roles during various stages of hematopoiesis and leukemic 
transformation. These specific roles are in some way surprising given that they all bind 
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similar E box-containing DNA sequences and a significant overlap in target genes has been 
reported. This can in some ways be explained by differences in their expression patterns 
and/or the recruitment of other cell-specific co-repressors and/or activators.  

As well, the above reviewed data clearly indicate crucial roles for the EMT inducers of the 
Zeb and Snai family in different aspects of hematopoiesis: differentiation, proliferation, 
apoptosis/survival, mobilization, stemness, as well as quiescence. All of this suggests that 
these two family of proteins might be excellent targets for developing novel and improved 
cancer therapies not only as was suggested before for solid tumours but as well for blood-
borne cancers and other haematological defects associated with improper lineage 
differentiation. 
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