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1. Introduction  

Occurring with an incidence between 1/400 – 1/1000 live births autosomal dominant 
polycystic kidney disease (ADPKD) is the most common potentially lethal genetic disorder 
affecting the kidney (Ecder et al., 2007). The disease results from mutation in either of two 
genes PKD1, located on chromosome 16p13.3 or PKD2, located on chromosome 4q21 and is 
inherited in an autosomal dominant manner (European Polycystic Kidney Disease 
Consortium, 1994; Mochizuki et al., 1996). The resulting disrupted expression of the respective 
encoded proteins polycystin 1(PC1) and polycystin 2(PC2) leads to development of multiple 
fluid filled cysts in the kidney. As the cysts continure to grow throughout life the normal 
kidney parenchyma is gradually lost and ensuing decrease of renal function occurs. ADPKD 
accounts for 4-10% of end-stage renal disease (ESRD) worldwide (Freedman et al., 2000; 
Konoshita et al., 1998). In 50% of cases loss of renal function, necessitating renal replacement 
therapy occurs by age 60 (Gabow et al., 1992). Renal cysts are often evident on ultrasound or 
magnetic resonance imaging (MRI) in children, who typically do not become symptomatic 
until reaching young adulthood (Chapman et al., 2003; Fick-Brosnahan et al., 2001; Seeman et 
al., 2003). While renal cysts are an invariable characteristic of ADPKD, cysts may also occur in 
other organs with differing degrees of severity. Hepatic cysts are found in 75% of patients with 
ADPKD by age 60, while pancreatic, arachnoid, seminal vesicle, and prostate cysts occur with 
a lower frequency (Ecder et al., 2007). ADPKD is a systemic disorder with abnormalities 
occuring in several organs and a significantly increased risk for cardiovascular complications 
among affected patients. The reader is referred to several comprehensive reviews on the 
clinical and and genetic determinants of ADPKD for more detailed description of disease 
attributes (Chapin & Caplan, 2010; Ecder et al., 2007; Pei, 2011).  

The process of cystogenesis involves proliferation of the epithelial cells that line the kidney 
tubules. This process initially results in localized dilation of the tubule. Continued epithelial 
cell proliferation and fluid secretion into the cyst results in cyst growth, until the cyst 
pinches off from the tubule. While the development and growth of renal cysts is the key 
feature of this disorder, the exact mechanism and identity of the factors influencing this 
process remain to be determined. However, it is apparent that vascular changes including 
expansion and remodeling of the existing vascular network must occur in order to support 
the structural changes occurring in the ADPKD kidney. Accordingly, it is not surprising that 
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cyst growth in ADPKD has been likened to growth of a benign tumor (Grantham & Calvet, 
2001). Indeed, there are many similarities between tumor growth and cyst growth, both 
processes being marked by increased cell proliferation, changes in apoptosis, and 
angiogenesis. In this chapter we will focus on the process of angiogenesis, defined as the 
growth of new blood vessels by invasion and sprouting of the existing vessels, as distinct 
from embryonic vasculogenesis or de novo growth of blood vessels.  

2. Angiogenesis 

In order to understand the various signals and processes that define angiogenesis it is 
necessary to consider the main function of blood vessels, namely the supply of oxygen and 
nutrients to all the cells in the body. Much of our current knowledge of angiogenesis stems 
from studies of tumor biology. The fact that the diffusion limit of oxygen is approximately 

100m indicates that all blood vessels must be located within 100-200 m of mammalian 
cells to ensure viability (Torres Filho et al., 1994). Subsequent studies by Judah Folkman et 
al. determined that tumor growth beyond 1-2-mm was angiogenesis dependent (Folkman, 
2006). In health the endothelial cells that line the blood vessel lumen and the pericytes that 
surround the outer surface of the endothelial cells are in a “quiescent “ state. This state is 
maintained by a balance of “pro” and anti-angiogenic growth factors that include vascular 
endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), and 
various other chemokines and growth factors. Angiogenesis in the adult is defined by 
sprout formation or by splitting of a pre-existing blood vessel (Persson & Buschmann, 2011). 
The process of angiogenesis proceeds in several distinct stages and is initiated by a decrease 
in partial pressure of oxygen, which is detected by oxygen sensors on the endothelial cell. In 
the ADPKD kidney the growing cysts compress the renal vasculature resulting in decreased 
oxygenation. Hypoxia results in stabilization of the hypoxia-inducible factor (HIF-1). The 
HIF family, which in addition to HIF-1, also includes HIF-2 and HIF-3 are transcription 

factors. Structurally the HIF’s comprise of a heterodimer of a regulatory  subunit and a 

constitutively expressed  subunit (Wang & Semenza, 1995). Angiogenesis is initiated by 
binding of HIF-1 to a hypoxia response element in the promoter of an angiogenic growth 
factor such as VEGF as reviewed by Hoeben et al. (Hoeben et al., 2004). In the case of new 
vascular sprout formation, when an angiogenic signal is detected by a quiescent blood 
vessel, the pericytes detach from the blood vessel wall and from the basement membrane. 
This is mediated by metalloproteinase (MMP) induced proteolytic degradation (Persson & 
Buschmann, 2011). Endothelial cells undergo several changes, loosening their cell junctions 
and allowing dilation of the vessel. VEGF increases endothelial cell permeability allowing 
escape of plasma proteins and formation of a provisional extracellular matrix (ECM). 
Endothelial cells next migrate onto the ECM surface mediated by integrin. Degradation of 
the ECM by proteases releases additional angiogenic growth factors from the ECM 
providing an angiogenic gradient that mediates migration and proliferation of the 
endothelial cells. One endothelial cell called a “tip cell” is instrumental in leading the 
migration, ECM degradation and consequent direction of growth of the vascular sprout. 
Maturation of the vessel requires return of the endothelial cells to a quiescent state, pericytes 
to attach and cover the vessel and down regulation of proteases by expression of tissue 
inhibitors of metalloproteinases (TIMP’s). These changes are mediated by downregulated 

expression of VEGF and increased levels of Ang-1, transforming growth factor  (TGF-), 
and platelet derived growth factor (PDGF) (Chung et al., 2010). 
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3. Angiogenic growth factors 

In this section we will describe some of the most important angiogenic growth factors and 
their respective receptors with emphasis on the role of VEGF, Ang-1, and Ang-2 in the 
kidney in health and disease. 

3.1 Vascular Endothelial Growth Factor (VEGF) 

VEGF is a central mediator of angiogenesis inducing endothelial cell proliferation, sprouting 
and promoting vascular leakiness (Otrock et al., 2007). The VEGF family includes VEGF A, 
VEGF B, VEGF C, VEGF D and placenta growth factor (PlGF) each coded by a separate gene 
(Table 1).  

 

Family Member Receptor Action 

VEGF A VEGFR-1/Flt-1 and 
VEGFR-2/Flk (with lower 
affinity) 

Angiogenesis 
Endothelial cell migration 
Mitosis 
Permeability 
Chemotactic for 
macrophages and 
granulocytes 

VEGF B VEGFR-1/Flt-1 Embryonic angiogenesis 

VEGF C VEGFR-3/Flt-4 Mitosis, Migration, 
Differentiation, Survival of 
lymphatic endothelial cells 

VEGF D VEGFR-3/Flt-4 Lymphatic vasculature 
around broniole in lung 

PlGF VEGFR-1 Vasculogenesis 
Angiogenesis in ischaemia, 
Inflammation, Wound 
healing, Cancer related 
angiogenesis 

Table 1. Receptor affinity and actions of VEGF family members. 

The gene encoding VEGF A comprises of eight exons which by differential splicing encodes 
seven transcript variants that give rise to isoforms of differing amino acid length, VEGF-
A206, VEGF-A189, VEGF-A183, VEGF-A165, VEGF-A148, VEGF-A145 and  VEGF-A121 respectively 
(Bevan et al., 2008; Hoeben et al., 2004). A further variant VEGF-A110 is derived by 
proteolytic cleavage. The major circulating isoform VEGF-A165,  is also abundant in the 
extracellular matrix. The VEGF polypeptides are homodimers although heteodimeric forms 
of VEGF-A and PlGF have also been described (DiSalvo et al., 1995). The biological functions 
of VEGF are mediated by binding to the tyrosine kinase receptors, VEGF receptor-1/fms-
like tyrosine kinase-1 (VEGFR-1/Flt1), VEGF receptor-2/fetal liver kinase-1 (VEGFR-2/Flk-
1) and VEGF receptor-3/ fms-like tyrosine kinase-4  (VEGFR-3/Flt4) (Ortega et al., 1999). 
The various members of the VEGF family bind to different VEGF receptors as shown in 
Table 1. VEGF-A (also referred to as VEGF) is expressed by mural cells including vascular 
smooth muscle cells and pericytes. In addition, in the kidney VEGF is expressed by both 
glomerular epithelial cells (podocytes) and by tubular epithelial cells (Robert et al., 2000). 
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The VEGF receptors are expressed on vascular endothelial cells as well as on a range of non-
endothelial cells including monocytes and macrophages in the case of VEGFR-1 (Koch et al., 
2011). In the kidney, glomerular endothelial cells express VEGFR-1 and VEGFR-2 (Thomas 
et al., 2000). Expression of VEGF is upregulated in response to hypoxia through 
upregulation of HIF-1α transcription factors. In addition, VEGF activity is modulated by 
binding to heparin sulfate and through interaction with the co-receptors neuopilin 1 and 
neuropilin 2, although the molecular mechanisms involved at present remain unclear (Koch 
et al., 2011). Both animal and human studies have shown that VEGF is essential for vascular 
repair and maintenance of normal glomerular function in the kidney (Dumont et al., 1995; 
Kitamoto et al., 2001; Satchell et al., 2004; Sugimoto et al., 2003). However, over expression 
of VEGF is also associated with glomerular disease, indicating that maintenance of normal 
VEGF level is essential for renal function (Veron et al., 2010). Significantly, a link between 
cystogenesis and VEGF was demonstrated in an animal study showing that increased 
expression of VEGF in renal tubules resulted in cyst formation (Hakroush et al., 2009).  

Several recent studies have supported a role for an imbalance of angiogenic growth factor 
levels in disease processes including tumor growth, diabetes, chronic kidney disease (CKD), 
and cardiovascular disease (Futrakul et al., 2008; Guo et al., 2009; Persson & Buschmann, 
2011; Lim et al., 2005; Nadar et al., 2004; Nadar et al., 2005). Endothelial dysfunction is a 
feature of patients with ADPKD (Schrier, 2006). VEGF has been shown to play a crucial role 
in preservation of the microvasculature, promoting vascular proliferation and repair in 
experimental renal disease (Chade et al., 2006; Iliescu et al., 2009; Zhu et al., 2004). Increased 
plasma levels of the VEGF inhibitor, soluble VEGF receptor (sFlt1) were recently 
demonstrated in CKD patients supporting an imbalance of the VEGF pathway in CKD (Di 
Marco et al., 2009). Tubulointerstitial hypoxia and capillary rarefaction are common features 
of progressive renal disease. In a study of patients with progressive or stable proteinuric 
renal disease attenuated VEGF-A expression by proximal tubular cells, despite activation of 
the intracellular response signalling pathway, was shown to distinguish those patients with 
progressive disease (Rudnicki et al., 2009).  

Patients with ADPKD are at an increased risk for development of left ventricular 
hypertrophy (LVH) which is a significant risk factor for sudden death (Chapman et al., 
1997). Increased plasma VEGF levels have been demonstrated in patients with target organ 
damage, defined as stroke, previous myocardial infarction, angina, LVH, and mild renal 
failure (Nadar et al., 2005). Mice expressing a vegf b transgene develop cardiac hypertrophy, 
further indicating that VEGF may also play a potential role in cardiac pathology associated 
with ADPKD (Karpanen et al., 2008). 

3.2 Angiopoietins 

The members of the angiopoietin family including Ang-1, Ang-2 and Ang-4 together with 
their soluble Tie-2 (tyrosine kinase with immunoglobulin-like and EGF-like domains 2) 
receptor are endothelial cell regulators with a role in the remodeling/maturation phases of 
angiogenesis. In addition to expression in endothelial and vascular smooth muscle cells 
Ang1, Ang2 and Ang-4 are also expressed in kidney (Fiedler and Augustin, 2006; 
Yamakawa et al., 2004; Yuan et al., 1999). Ang-1 is a Tie-2 agonist while Ang-2 in the absence 
of VEGF inhibits Ang-1/Tie-2 signaling as reviewed by Fiedler et al. (Fiedler and Augustin, 
2006). Conversely, under conditions of adequate VEGF, or under hypoxic conditions as may 
exist in and around the growing renal cysts, Ang-2 stimulates angiogenesis (Lobov et al., 
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2002). The activity of Ang-4 is similar to Ang-1 as it is a Tie-2 agonist and is expressed in 
human kidney proximal tubule epithelial cells. Activation of Tie-2 results in a downstream 
activation of P13K-Akt in endothelial cells leading to a survival pathway and cell 
chemotaxis (Makinde and Agarwal, 2008).  

The plasma level of Ang-2 is elevated in patients with diabetes and is associated with 

indices of endothelial damage and dysfunction (Lim et al., 2005). Likewise, abnormal levels 

of serum Ang-1 and Ang-2 in hypertension have been linked with target organ damage 

(Nadar et al., 2005), thus indicating a potential role for angiopoietins in exacerbation of the 

extrarenal complications associated with ADPKD including left ventricular hypertrophy 

(LVH). LVH is a major risk factor for cardiac arrhythmias, sudden death, heart failure and 

ischemic disease in ADPKD (Schrier, 2006). Prevention of LVH in ADPKD is consequently a 

key factor in patient management. The expression of Ang-1, Ang-2 and Ang-4 in different 

tissues including human kidney proximal tubule cells is regulated by various factors 

including hypoxia, VEGF, angiotensin II and estrogen (Ardelt et al., 2005; Kitayama et al., 

2006, Yamakawa et al., 2004).  

4. Similarities between tumor growth and cyst growth in ADPKD  

The polycystin proteins PC1 and PC2 have been likened to tumor suppressors associated with 
many types of neoplasia (Grantham, 2001). Thus, when polycystin function is impaired as in 
ADPKD, cells revert to a more de-differentiated state marked by high proliferative capacity 
(Song et al., 2009). It has been recognized for many years that angiogenesis is necessary to 
support tumor growth (Folkman, 1971). Moreover, many non-neoplastic diseases including 
macular degeneration, arthritis and endometriosis are angiogenesis dependent (Folkman, 
2006). Thus a facilitative role for angiogenesis in ADPKD cyst growth is suggested. Tumor cell 
expression of angiogenic growth factors including VEGF is mediated by hypoxia (Pugh and 

Ratcliffe, 2003). Central to the hypoxia response pathway are HIF-1 and 2. HIF-1 is targeted 
for destruction via the ubiquitin pathway regulated by Von Hippel Lindau (VHL) protein. 

Inactivation of VHL results in an increase of HIF-1 and VEGF level (Na et al., 2003). In 
progressive renal disease human proximal tubular epithelial cells demonstrate activation of 
intracellular hypoxia response pathways and VEGF signaling despite attenuated expression of 
VEGF-A (Rudnicki et al., 2009). Growth of renal cysts results in compression of the 
surrounding blood vessels. Significantly, an up-regulation of hypoxia-angiogenic pathways 
has been reported based on a systems biology approach in ADPKD (Song et al., 2009). A 
further key mediator of angiogenesis is the tumor suppressor gene phosphatase and tension 
homolog deleted on chromosome 10 (PTEN) which is frequently deficient or inactivated in 
human cancers (Mirohammadsadegh et al., 2006; Ohgaki & Kleihues, 2007; Tam et al., 2007). 
Activation of mammalian target of rapamycin (mTOR) is a feature of ADPKD and this 
pathway is regulated by PTEN (Boletta, 2009; Rosner et al., 2008; Shillingford et al., 2006). Thus 
the literature supports similarities between tumorigenesis and ADPKD and underscores a 
potential role for angiogenesis in ADPKD cyst growth. 

5. Evidence for angiogenesis in ADPKD kidneys 

Abnormalities of the renal vasculature in polycystic kidneys have long been recognized 
based on early angiographic studies of the kidney (Cornell, 1970, Ettinger et al., 1969) Bello-
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Reuss et al. presented evidence of angiogenesis in human ADPKD kidneys based on 
angiographic studies (Bello-Reuss et al., 2001). These studies illustrated development of a 
well-defined vascular capsule around human renal cysts in ADPKD. Many morphological 
malformations were shown in the cyst wall vessels including presence of spiral, tortuous, 
and dilated vessels. This aberrant morphology is also typical in tumors further illustrating 
similarities between ADPKD cyst growth and growth of a benign tumor.  A later study by 
the same group using corrosion cast studies of human ADPKD kidneys confirmed the 
occurrence of angiogenesis (Wei et al., 2006). This study also reported loss of the normal 
kidney vascular architecture in addition to evidence of microvascular regression. The 
pathological changes related to angiogenesis in ADPKD may also result in increased 
vascular permeability thus facilitating fluid secretion into cysts (Wei et al., 2006).  

6. Angiogenic growth factors in ADPKD kidneys 

Angiogenesis is mediated by a shift in the balance towards expression of pro-angiogenic 
growth factors with concomitant decrease in anti-angiogenic factors. VEGF expression by 
renal cystic tubular epithelial cells and VEGFR-2 expression in endothelial cells in the small 
capillaries surrounding the cysts was demonstrated by Bello-Reuss et al. (Bello-Reuss et al., 
2001). This contrasts with normal adult kidney where only weak expression of VEGF and 
VEGFR-2 are present in the collecting duct and surrounding capillaries (Simon et al., 1995). 

The demonstration of MMP-2 and integrin v3 on the endothelial surface of blood vessels 
in ADPKD kidneys by the same authors further affirms the presence of components 
necessary for angiogensis in ADPKD kidneys. Subsequent studies in a rat model of 
polycystic kidney disease demonstrated increased expression of VEGF in the kidneys and 
sera of the cystic animals compared to control animals (Tao et al., 2007). Similarly, increased 
expression of both VEGF receptors, VEGFR1 and VEGFR2 was demonstrated in renal 
tubular epithelial cells in the polycystic kidneys of these animals. We have also 
demonstrated expression of Ang-2 and the Tie-2 receptor by cyst lining epithelial cells of 
human polycystic kidneys as illustrated in Figure 1 (unpublished data).  

 

Fig. 1. Expression of Ang-2 (A) and Tie-2 (B) by ADPKD cyst lining cells. Arrows indicate 
cyst lining cells with Ang-2 staining shown by lighter shading in A and Tie-2 staining by 
lighter speckled shading in B. 

These observations suggest a mechanism whereby secretion of pro-angiogenic growth 
factors by the cyst lining epithelial cells may result in stimulated growth of the blood vessels 
surrounding the cysts thus facilitating cyst growth as illustrated in Figure 2. 

Cyst  

A 

Cyst 

B 
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Fig. 2. Release of angiogenic growth factors by cyst lining and other cells in response to 
hypoxic stimulus stimulates angiogenesis. 

However, the nature of renal injury in ADPKD is complex, apoptosis and loss of endothelium 
occurs which correlates with the severity of glomerular sclerosis and interstitial fibrosis (Wei et 
al., 2006). Thus both indication of angiogenesis and destabilization of the existing vasculature 
are apparent in ADPKD kidneys. This is supported by demonstration that changes in renal 
blood flow parallel increase in total kidney volume and precede decline in renal function 
measured by change in glomerular filtration rate (GFR) in ADPKD (Torres et al., 2007). 

7. Angiogenic growth factors in ADPKD liver 

Expression of angiogenic growth factors have also been demonstrated in cystic liver from 
human ADPKD patients and also in animal models of PKD.Upregulated expression of Ang-
1, Ang-2 and their Tie-2 receptor has been demonstrated in the cholangiocytes that line 
hepatic cysts in ADPKD, supporting a role for angiogenic growth factors in liver 
cystogenesis (Fabris et al., 2006). Moreover, cyst fluid from hepatic cysts has been shown to 
contain VEGF (Amura et al., 2008; Nichols et al., 2004,). In a subsequent animal study factors 
secreted by liver cyst epithelia were shown to promote endothelial cell proliferation and 
development (Brodsky et al., 2009).  

8. Serum levels of angiogenic growth factors are increased in ADPKD 

We have previously reported that serum levels of VEGF and Ang-2 are elevated in children 
and young adults with ADPKD compared to age, sex, and renal function matched young 
subjects with diabetes as shown in Table 2 (Reed et al., 2011). In these children and young 
adults renal function was normal, mean eGFR 128 ml/min/1.73m2. The level of VEGF 
detected in renal cyst fluid was comparable to the mean serum level. The plasma levels of the 
soluble VEGF receptor (sFlt1), an antagonist of VEGF, rise progressively with declining renal 
function in patients with CKD (Di Marco et al., 2009). The same study demonstrated an 
association between plasma sFlt1 level and endothelial dysfunction. In our own study we 
found that serum levels of sFlt1 ranged between <13-320 pg/ml in ADPKD patients, however 
normal healthy serum values were not available for comparison (unpublished data) (Table 2). 
It is important to note that both the circulating level of VEGF and level of the VEGF antagonist 
sFlt1 may play a role in implenting disease progression in ADPKD. 

www.intechopen.com



 
Novel Insights on Chronic Kidney Disease, Acute Kidney Injury and Polycystic Kidney Disease 

 

100 

VEGF Mean SD or range (N) 

Adult ADPKD patients (serum) 5910  6188 pg/ml (N=46) 

Children and young adults with ADPKD (serum) 2997  5326 pg/ml (N=71) 

Healthy adults (A) (serum) 
Healthy children (C) (serum) 

249  46 pg/ml  (A) (Saito et al.,2009) 

306  39 pg/ml  (C) (Heshmat & El 
Kerdany, 2007) 

Urine adults with ADPKD 82.7-277.2 pg/ml (N =8) 
183.9 - 469.2 ng/24h (N=8) 

Renal cyst fluid 5940  6757 pg/ml (N=5) 

Soluble VEGF Receptor 1 (sFlt1)  

Adult ADPKD patients (serum) 93.8 ± 63 pg/ml (N =38) 

Adult ADPKD patients (urine) Not detected 

Angiopoietin 1  

Adult ADPKD patients (serum) 37.54  19.54 ng/ml (N=85) 

Children and young adults with ADPKD (serum) 35.53  21.03 ng/ml (N=71) 

Healthy adults (A) (serum) 
Healthy children (C) (serum) 

39.0  9.9 ng/ml (A) (Park et al., 2009) 
64.4 (23.5-101 ng/ml) (C) (Lovegrove et 
al., 2009) 

Renal cyst fluid None detected 

Angiopoietin 2  

Adult ADPKD patients (serum) 3002  1379 pg/ml (N=85) 

Children and young adults with ADPKD (serum) 2352  962 pg/ml (N=71) 

Healthy adults (A) (serum) 
Healthy children (C) (serum) 

1270  494 pg/ml (A) (Park et al., 2007) 
68 (68-1330 pg/ml) (C) (Lovegrove et 
al., 2009) 

Renal cyst fluid  1657  1035 pg/ml (N=5) 

Table 2. Mean serum, urine or cyst fluid levels of angiogenic growth factors. 

Several recent studies have supported a role for an imbalance of angiogenic growth factor 

levels in disease processes including tumor growth, diabetes, CKD and cardiovascular 

disease (Augustin et al. 2009; David et al., 2009; Lim et al., 2005; Nadar et al., 2004; Nadar et 

al., 2005). Endothelial dysfunction is a common feature of patients with CKD and VEGF has 

been shown to play a crucial role in preservation of the microvasculature promoting 

vascular proliferation and repair in experimental renal disease (Chade et al., 2006; Iliescu et 

al., 2009; Zhu et al., 2004). The plasma level of Ang-2 is elevated in patients with diabetes 

and is associated with indices of endothelial damage and dysfunction (Lim et al., 2005). 

Likewise, abnormal levels of serum Ang-1 and Ang-2 in hypertension have been linked with 

target organ damage (Nadar et al., 2005), thus indicating a potential role for angiopoietins in 

exacerbation of the extrarenal complications of ADPKD, including LVH.  

As the growing cysts in ADPKD kidneys result in compression of the vasculature with 

attendant ischaemia (Ecder et al., 2007) these conditions are conducive for upregulated 

angiopoietin expression. Furthermore, kidney expression of Ang-1 and Ang- 2 is known to 

be upregulated by angiotensin II in addition to hypoxia (Kitayama et al., 2006., Yamakawa 

et al., 2004). Thus, as activation of the renin-angiotensin-aldosterone system (RAAS) occurs 
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early in ADPKD, this may increase angiopoietin production with further injurious effects on 

the kidney vasculature and cyst growth. 

 

Fig. 3. Potential Role of Angiogenic Growth Factor in Renal Injury in ADPKD. 

9. Serum levels of angiogenic growth factors correlate with renal and cardiac 
disease severity in ADPKD 

Further evidence to support a role of angiogenic growth factors in the complications of 

ADPKD stems from our study in children and young adults (Reed et al., 2011). 

Measurement of VEGF, Ang-1 and Ang-2 in 71 children and young adults with ADPKD 

demonstrated strong correlations between log10 VEGF and both log10 total kidney volume 

and eGFR. (Table 3). In adult ADPKD patients no relationship between log10VEGF and total 

renal volume was found (N= 33). However, in adults there was a significant negative 

relationship between serum Ang-2 levels and eGFR (N = 85, p = 0. 04) that was not found in 

children and young adults. This indicates that VEGF may play a more significant role early 

in ADPKD, while Ang-2 may play a role in the progression of renal injury later in disease.  

 

 Children Adults 

IndependentVariable  SE P  SE P 

 Dependent Variable 

 Log10 Total Renal Volume 

Log10 VEGF 0.0511 0.0183 0.0073   NS 

Ang-1 0.0029 0.0014 0.0448 -0.00001 0.00001 NS 

Ang-2   NS   NS 

 eGFR 

Log10 VEGF -0.0229 0.0080 0.0055 -0.0583 0.0307 0.06 

Ang-1 -0.0010 0.0006 0.1058   NS 

Ang-2   NS -0.1380 0.0657 0.03 

Table 3. Relationship of VEGF, Ang-1 and Ang-2 with renal structure and function. 
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We have demonstrated significant positive correlations between LVMI and Ang-1 and 
VEGF in young subjects with ADPKD as shown in table 4 (Reed, et al., 2011). The 
relationship between LVMI and serum VEGF was apparent even in the absence of overt 
hypertension. This is of particular relevance as patients with ADPKD are at an increased 
risk for left ventricular hypertrophy (LVH) (Chapman et al., 1997). Similarly, in 33 adults a 
near significant relationship between LVMI and Ang-1 was observed. No relationship 
between VEGF and LVM was apparent in adults. However, there was a significant 
relationship between Log10 Ang-1/Ang-2 and LVM. As Ang-2 has been reported to be both 
pro-angiogenic or promote vascular regression dependent upon the presence or absence of 
VEGF (Holash et al., 1999; Lobov et al., 2002) assessment of the Ang-1/Ang-2 ratio may be 
biologically relevant. Thus, angiogenic growth factor levels may help identify children at 
risk for cardiovascular complications. This is important because cardiac MRI and/or 
echocardiography are not routinely performed on young patients with ADPKD. 

 

 Children Adults 

Independent 
Variable 

 SE P  SE P 

 Dependent Variable 

 LVM 

Log10 VEGF 0.0409 0.0078 <0.0001   NS 

Ang-1 0.0014 0.0007 0.04 0.0004 0.0002 0.06 

Log10 Ang-1/Ang-2   NS 12.2718 5.4447 0.03 

Table 4. Relationship between VEGF, Ang1 and Ang-1/Ang-2 with Cardiac Structure. 

10. Potential benefit of anti-angiogenic therapy in ADPKD 

VEGF receptor inhibition by SU-5416 has been shown to significantly reduce liver cyst 
burden in pkd2(WS25/-)mice (Amura et al., 2007). Likewise, studies in the cy/+ rat model 
of polycystic kidney disease demonstrated that treatment with ribozymes to block VEGFR-1 
and VEGFR-2 mRNA expression resulted in decreased cyst burden in the kidney (Tao et al., 
2007). Metalloproteinase inhibition by batimastat in the cy/+ rat model has also been shown 
to significantly reduce kidney weight and cyst number in treated animals compared to 
untreated animals (Obermuller et al., 2001).  

Several inhibitors that either target VEGF directly such as bevacizumab or those such as 
sorafenib and sunitinib that target receptor tyrosine kinases including VEGFR’s and platelet 
derived growth factor receptors have shown some success in cancer therapy. Indicating that 
these drugs may have a potential role in ADPKD therapy. However, there are several side 
effects associated with both of these drug classes including but not limited to hemorrhage, 
decreased wound healing and hypertension. Side effects are a significant consideration in 
relation to ADPKD therapy where drug use must potentially be continued for life. While 
most anti-angiogenic drugs are targeted towards cancer therapy, bosutinib a receptor 
tyrosine kinase inhibitor targeting the Src/Abl kinases which also reduces VEGF activity is 
currently in phase II clinical trial for ADPKD (NCT01233869).  

In terms of other anti-angiogenic targets, there are several ongoing cancer clinical trials with 
Ang-1 or Ang-2 inhibitors. Depending on the outcome of these ongoinig trials these drugs 
may hold some promise for future ADPKD therapy. It is also relevant that there are many 
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naturally occurring inhibitors of angiogenesis including angiostatin, endostatin, vasostatin, 
TIMPs, thrombospondins, tumstatin, prolactin (inhibits both basic fibroblast growth factor 
and VEGF), vasohibin-1 and sFlt1 which may also have benefit in ADPKD. The therapeutic 
effects of several endogenous angiogenesis inhibitors including angiostatin, endostatin, 
tumstatin, vasohibin-1,  and the synthetic derivative of bacterial cytogenin, 1-(8-hydroxy-6-
methoxy-1-oxo-1H-2-benzopyran-3-yl) proprionic acid (NM-3) have been examined in 
animal models of diabetic nephropathy as reviewed by Maeshima and Makino (Maeshima 
& Makino, 2010). These angiogenesis inhibitors have been shown to reduce renal 
hypertrophy/hyperfiltration and reduce albuminuria when administered during the early 
stages of disease (Zhang et al., 2006, Ichinose et al., 2005, Yamamoto et al., 2004, Nasu et al., 
2009, Ichinose et al., 2006). However, no human studies have been performed to date. In 
animal models of non-diabetic renal disease angiostatin treatment has resulted in both 
beneficial anti-inflammatory effects while the  anti-angiogenic reduction in peritubular 
capillaries may worsen tubular hypoxia (Mu et al., 2009). Thus, with progressive renal 
diseases including ADPKD angiogenic growth factors may both promote renal injury or 
protect from hypoxia by maintenance of the peritubular capillaries. While in the early stages 
of ADPKD therapeutic restoration of normal angiogenic factor balance may be more 
beneficial, later disease stages may need a different approach to ameliorate increasing renal 
hypoxia. However, further research is necessary to explore the potential disparate roles of 
angiogenic growth factors in progression of ADPKD.  

11. Conclusion 

In this chapter we have presented evidence that angiogenesis may be an important factor in 

the pathogenesis of ADPKD. We have highlighted the similarities between cyst growth and 

growth of a benign tumour. Significantly, as has been demonstrated in other disease 

conditions circulating angiogenic growth factor levels are abnormally elevated even early in 

ADPKD and may indicate the severity of underlying renal and cardiac disease. Lastly, the 

benefits of anti-angiogenic therapies which target restoration of angiogenic growth factor 

balance remain to be determined in ADPKD but may hold future therapeutic promise.  
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