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1. Introduction 

Plasmons are well known as collective excitations of free electrons in solids. Simple unit 
structures are nanoparticles such as spheres, triangles, and rods. Optical properties of 
metallic nanoparticles were reported at the beginning of the 20th century (Maxwell-Garnett, 
1904, 1906). Now it is well known that the resonances in metallic nanoparticles are described 
by Mie theory (Born & Wolf, 1999). It is interesting to note that the studies on nanoparticles 
were concentrated at the beginning of the century, at which quantum mechanics did not 
exist. Shapes and dimensions of metallic nanoparticles such as triangles and rods were 
clearly classified by their dark-field images after a century from the initial studies on 
nanoparticles (Kuwata et al., 2003; Murray & Barnes, 2007). Nanoparticles were revived 
around 2000 in the era of nanotechnology.  

It may be first inferred that dimers and aggregations of metallic nanostructures have bonding 
and anti-bonding states stemming from Mie resonances in the nanoparticles. The conjecture 
was confirmed in many experimental studies (For example, Prodan et al., 2003; Liu et al., 2007; 
Liu et al., 2009). Dimer structures composed of a pair of nanospheres or nanocylinders are one 
of the most examined structures. At the initial stage of the dimer study, very high-
enhancement of electric field at the gap was frequently reported based on a computational 
method of finite-difference time domain (FDTD), which is directly coded from classical 
electromagnetics or Maxwell equations. However, recent computations including nonlocal 
response of metal, which is quantum mechanical effect, disagree the very high-enhancement 
(García de Abajo, 2008; McMahon et al., 2010). Especially, as the gap is less than 5 nm, the 
discrepancies in cross section and extinction becomes prominent. While the physics in 
dimensions of nm and less obeys quantum mechanics in principal, many experimental and 
theoretical results show that classical electromagnetics holds quite well even in tens of nm 
scale. Thus, it is not yet conclusive where the boundary of classical electromagnetics and 
quantum mechanics exists in nm-scale plasmonics. It will be elucidated when further 
development of nanofabrication techniques will be able to produce nm-precision metallic 
structures with reliable reproducibility. Taking the present status of nanotechnology into 
account, we focus on structures, such as gap, of the dimension more than 5 nm, where classical 
electromagnetics holds well.  

Contemporary nanofabrication technology can produce a wide variety of plasmonic 
structures, which are usually made of metals. In addition to unit structures such as 
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nanoparticles, periodic structures are also produced, where surface plasmon polaritons 
(SPPs) are key resonances. Strictly, the SPPs in periodic structures are different from the 
original SPPs induced at ideally flat metal-dielectric interface. Periodic structures enable to 
reduce the original SPP into the first Brillouin zone; it is therefore reasonable to call the SPPs 
in periodic structures reduced SPPs. The reduced SPPs were known since 1970s (Raether, 
1988) and were revived as a type of resonances yielding extraordinary transmission in a 
perforated metallic film (Ebbesen et al., 1998).  

When producing periodic array of nanoparticles, what is expected? Periodic structures are 
aggregation of monomers and dimers, and have photonic band structures. By structural 
control, it is expected to obtain desired photonic bands, for example, wave-number-
independent, frequency-broad band, which is not obtained in dimers and so on. In terms of 
photovoltaic applications, light absorbers working at a wide energy and incident-angle (or 
wave-number) ranges are preferred. On the other hand, if one access highly enhanced 
electromagnetic fields, states of high quality factor, which are associated with narrow band, 
may be expected. Thus, the designs of plasmonic structures vary in accordance with needs. 
Main purpose of this chapter is to show some of concrete designs of plasmonic structures 
exhibiting collective oscillations of plasmons and broad-band plasmonic states, based on 
realistic and precise computations.  

This chapter consists of 7 sections. Computational methods are described in section 2. One-
dimensional (1D) and two-dimensional (2D) plasmonic structures are examined based on 
numerical results in sections 3 and 4, respectively. As for applications, light absorption 
management is examined in section 3 and polarization manipulators of subwavelength 
thickness are shown in section 4. Conclusion is given in section 5.  

2. Computational methods 

Before describing the results of 1D and 2D plasmonic structures, computational methods are 
noted in this section. In section 2.1, Fourier modal method or rigorously coupled-wave 
approximation (RCWA) is described, suitable to compute linear optical spectra such as 
reflection and transmission. In section 2.2, finite element method is explained, which is 
employed to evaluate electromagnetic field distributions. Although the two methods have 
been already established, the details in implementation are useful when researchers unfamiliar 
to plasmonics launch numerical study. Furthermore, the detailed settings are described.  

Realistic simulations are intended here. As material parameters, constructive equations in 

Maxwell equations for homogeneous media have permittivity and permeability (Jackson, 

1999). In the following computations, we took permittivity of metals from the literature 

compiling measured data (Rakić et al., 1998). The permittivity of transparent dielectric was 

set to be typical values: that of air is 1.00054 and that of SiO2 is 2.1316. The permittivity of Si 

was also taken from literature (Palik, 1991). At optical wavelengths, it is widely believed 

that permeability is unity in solids (Landau et al., 1982); to date, any exception has not been 

found in solid materials.1 

                                                 
1 Metamaterials were initially intended to realize materials of arbitrary permittivity and permeability by 
artificial subwavelength structures (Pendry & Smith, 2004). This strategy has been successful especially at 
microwaves.  
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2.1 Optical spectra 

Linear optical responses from periodic structures are observed as reflection, transmission 

and diffraction. To calculate the linear optical responses, it is suitable to transform 

Maxwell equations into the Fourier representation. By conducting the transformation, the 

equation to be solved is expressed in the frequency domain; therefore, optical spectra are 

obtained in the computation with varying wavelength. In actual computations, it is crucial 

to incorporate algorithm which realizes fast convergence of the Fourier expansion. If one 

does not adopt it, Fourier expansion shows extremely slow convergence and practically 

one cannot reach the answer. The algorithm could not be found for a few decades in spite 

of many trials. The issue was finally resolved for 1D periodic systems in 1996 (Lalanne & 

Morris, 1996; Li, 1996b; Granet & Guizal, 1996) and succeedingly for 2D periodic systems 

in 1997 (Li, 1997). The Fourier-based method is often called RCWA. Commercial RCWA 

packages are now available. In this study, we prepared the code by ourselves 

incorporating the Fourier factorization rule (Li, 1997) and optimized it for the vector-

oriented supercomputers.  

In general, the periodic structures are not single-layered but are composed of stacked layers. 

Eigen modes in each layer expressed by Fourier-coefficient vectors are connected at the 

interfaces by matrix multiplication. The intuitive expression results in to derive transfer 

matrix (Markoš, 2008). Practically, transfer matrix method is not useful because it includes 

exponentially growing factors. To eliminate the ill-behaviour, scattering matrix method is 

employed. Transfer and scattering matrices are mathematically equivalent. In fact, scattering 

matrix was derived from transfer matrix by recurrent formula (Ko & Inkson, 1988; Li, 

1996a). The derivations were independently conceived for different aims: the former was to 

solve electronic transport in quantum wells of semiconductors as an issue in quantum 

mechanics (Ko & Inkson, 1988) and the latter was to calculate light propagation in periodic 

media as an issue in classical electromagnetics (Li, 1996a).  

In actual implementation, truncations of Fourier expansions are always inevitable as written 

in equation (1), which shows Lth-order truncation. Of course, the Fourier expansion is exact 

as L→∞.  

 

 
, 0, 1, 2, ,

( , ) exp( 2 / 2 / )mn x y x ym n L
E x y E ik x ik y im d in dπ π

= ± ± ±
= + + +   (1) 

In equation (1), 2D periodic structure of the periodicities of dx and dy is assumed and 

incident wave vector has the components kx and ky. The term Emn is Fourier coefficient of 

function E(x, y). For 2D periodic structures shown later, the truncation order is set to be L= 

20. Then, estimated numerical fluctuations were about 1%. For 1D periodic structures, one 

can assume that dy is infinity in equation (1); as a result, requirements in numerical 

implementation become much less than 2D cases. It is therefore possible to set large order 

such as L=200 and to suppress numerical fluctuations less than 0.5%.  

Optical spectra calculated numerically by the Fourier modal method were compared with 

measured spectra; good agreement was confirmed in stacked complementary 2D plasmonic 

crystal slabs, which have elaborate depth profiles (Iwanaga, 2010b, 2010d).  

www.intechopen.com



 
Nanorods 

 

78

2.2 Electromagnetic-field distributions 

Electromagnetic-field distributions were computed by employing finite element method 
(COMSOL Multiphysics, version 4.2). One of the features is to be able to divide constituents 
by grids of arbitrary dimensions.  

To keep precision at a good level, transparent media were divided into the dimensions less 
than 1/30 effective wavelength. As for metals, much finer grids are needed. Skin depth of 
metals at optical wavelengths is a few tens of nm; therefore, grids of sides of a few nm or 
less were set in this study. Such fine grids result in the increase in required memory in 
implementation. Even for the unit domain in 2D periodic structures, which is minimum 
domain and becomes three-dimensional (3D) as shown in Fig. 7, the allocated memory 
easily exceeded 100 GB. As for 1D structures, the unit domain is 2D and requires much less 
memory in implementation. Accordingly, computation time is much shorter; in case of Fig. 
3, it took about ten seconds to complete the simulation.  

 

Fig. 1. Schematic drawing of an efficient 1D plasmonic light absorber of Ag nanorod array 
on SiO2 substrate, which was found based on the search using genetic algorithm. Plane of 
incidence is set to be parallel to the xz plane.  

The finite element method was applied for resolving the resonant states in the stacked 

complementary 2D plasmonic crystal slabs and revealed the eigen modes successfully 

(Iwanaga, 2010c, 2010d).  

3. 1D periodic metallic nanorod array 

Light absorbers of broad band both in energy and incident-angle ranges were numerically 
found (Iwanaga, 2009) by employing simple genetic algorithm (Goldberg, 1989). One of the 
efficient absorbers is a 1D metallic nanorod array as drawn in Fig. 1. The Ag nanorods (dark 
grey) are assumed to be placed on the step-like structure of SiO2 (pale blue). Periodic 
direction was set to be parallel to the x axis, and the periodicity is 250 nm. The nanorods are 
parallel to the y axis and infinitely long. The nanorods in the top layer have the xz rectangular 
sections of 100×50 nm2. The other nanorods have the xz square sections of 50×50 nm2.  
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In 1D structures, it was found that depth profiles are crucial to achieve desired optical 
properties. Single-layered 1D structures have little degree of freedom to meet a designated 
optical property whereas 1D structures of stacked three layers have enough potentials to 
reach a given goal (Iwanaga, 2009).  

In this section, we clarify the light-trapping mechanism by examining the optical and 
absorption properties, and electromagnetic field distributions. Collective electrodynamics 
between the nanorods plays a key role to realize the doubly broad-band absorber.  

3.1 Optical responses and light absorption 

Incident plane waves travel in the xz plane (that is, the wave vectors kin are in the xz plane) as 
shown in Fig. 1, keeping the polarization to be p polarization, that is, incident electric-field 
vector Ein is in the xz plane. To excite plasmonic states in 1D periodic systems, the p 
polarization is essential. If one illuminates the 1D object by using s-polarized light (that is, Ein 
parallel to y), plasmonic states stemming from SPPs are not excited. Absorbance spectra under 
p polarization at incident angles θ of -40, 0, and 40 degrees are shown in Fig. 2(a) with solid 
line, dashed line, and crosses, respectively. The sign of incident angles θ is defined by the sign 
of x-component kin,x(=|kin|sinθ) of incident wave vector. Absorbance A in % is defined by  

 
0, 1, 2,

100 ( )n nn
A R T

= ± ±
= − +   (2) 

where Rn and Tn are nth-order reflective and transmissive diffractions, respectively. R0 
denotes reflectance and T0 stands for transmittance. We computed linear optical responses 
Rn and Tn by the Fourier modal method described in section 2.1, and evaluated A by use of 
equation (2). The symbols R0 and T0 are respectively expressed simply as R and T from now 
on. In the 1D structure in Fig. 1, since the periodicity is 250 nm, Tn and Rn for n ≠ 0 are zero 
for θ = 0° in Fig. 2(a) and zero for θ = -40° at more than 525 nm.  

In Fig. 2(a), absorption significantly increases at θ = -40° in the wavelength range longer 
than 600 nm. It is to be stressed that absorption is more than 75% in a wide range from 600 
to 1000 nm. Thus, the 1D structure in Fig. 1 works as a broad-band absorber in wavelengths 
from the visible to near-infrared ranges.  

 

Fig. 2. (a) Absorption spectra at -40° (solid line), 0° (dashed line), and 40° (crosses) under p 
polarization. (b) Spectra of A (solid line), R (dotted line), and T (dashed line) at 620 nm 
dependent on incident angles.  
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In Fig. 2(b), The A spectrum at 620 nm dependent on incident angles is shown with solid 
line. The corresponding T and R spectra are shown with blue dashed and red dotted lines, 
respectively. Note that diffraction does not appear at this wavelength.  

The T spectrum in Fig. 2(b) exhibits asymmetric distribution for incident angles θ, indicating 
that the structure in Fig. 1 is optically deeply asymmetric. In contrast, the R spectrum is 
symmetric for θ and the relation of R(θ)=R(-θ) is satisfied; the property is independent of 
structural symmetry and is known as reciprocity (Potten, 2004; Iwanaga et al., 2007b). The A 
spectrum takes more than 80% at a wide incident-angle range from 5° to -60°. It is thus 
shown that the 1D periodic structure in Fig. 1 is a doubly broad-band light absorber.  

3.2 Magnetic-field and power-flow distributions 

To reveal the plasmonic state inducing the doubly broad-band absorption in Fig. 2, we 
examine here the electromagnetic field distributions at 620 nm and θ = -40°, evaluated by the 
finite element method. As described in section 3.1, incident plane waves are p-polarized and 
induce transverse magnetic (TM) modes in the 1D periodic structure. Therefore, magnetic-
field distribution is suitable to examine the features of the plasmonic state.  

In Fig. 3(a), magnetic-field distribution is presented; the magnetic field has only y 

component under p polarization and the y-component of magnetic field is shown with 

colour plot. Figure 3(a) shows a snapshot of the magnetic field, where the phase is defined 

by setting incident electric field Ein=(sin(-40°), 0, cos(-40°)) at the left-top corner position. The 

propagation direction of incidence is indicated by arrows representing incident wave 

vectors kin. To show a wide view at the oblique incidence, the domain in the computation 

was set to include five unit cells. We assigned the yz boundaries (that is, the left and right 

edges) periodic boundary condition.  

The magnetic field distribution in Fig. 3(a) forms spatially oscillating pairs indicated by the 

signs + and -. It is to be noted that the oscillating pairs are larger than each metallic nanorod 

and are supported by three or four nanorods. The distributions are enhanced at the vicinity 

of nanorod array and strongly suggest that collective oscillations take place, resulting in the 

broad absorption band. As for plasmonic states, resonant oscillations inside metallic 

nanorod have been observed in most cases, which are attributed to Mie-type resonances 

(Born & Wolf, 1999). The present resonance is distinct from Mie resonances and has not been 

found to our best knowledge.  

In Fig. 3(b), time-averaged electromagnetic power-flow distribution is shown. The power 
flow is equivalent to Poynting flux at each point. The z-component of the power flow is 
shown with colour plot and the vectors of power flow are designated by arrows, which are 
shown in the logarithmic scale for clarity. Oblique incidence is seen at the top of the panel 
and the power flow successfully turns around the nanorods, going into SiO2 substrate. In 
addition to this finding, let us remind that the sum of R and T are at most 10% as shown in 
Fig. 2(b), that the power flow in the substrate is not far-field component but mostly 
evanescent components, and that most of incident power is consumed at the vicinity of the 
nanorod array. Therefore, incident radiation is considered to be effectively trapped at the 
vicinity of the nanorod array, especially in the substrate. Management of electromagnetic 
power flow is a key to realize photovoltaic devices of high efficiency.  
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Fig. 3. (a) A snapshot of y-component of magnetic field (colour plot). Incident wave vectors 
are shown with arrows on the top. (b) Time-averaged electromagnetic power flow of z 
component (colour plot). Vectors (arrows) are represented in the logarithmic scale.  

3.3 Management of incident light for photovoltaic applications 

As is shown in sections 3.1 and 3.2, periodic structure of metallic nanorod array can be 
broad-band light absorber concerning both wavelengths and incident angles. Good light 
absorbers are preferred to realize more efficient photovoltaic devices. Possibility for the 
application is discussed here.  

In considering producing efficient photovoltaic devices, it is crucial to exploit incident light 
fully. In the context, perfect light absorbers are usually preferred. However, light absorption 
and management of light have to be discriminated. If plasmonic absorbers consume incident 
light by the resonances resident inside metallic nanostructures such as Mie resonance, 
photovoltaic parts cannot use the incident light. Thus, it is not appropriate to optimize light 
absorption by metallic nanostructures when one tries to incorporate them into photovoltaic 
devices. Instead, one should manage to convert incident light to desired distributions by 
metallic nanostructures (Catchpole & Polman, 2008a, 2008b). In Fig. 3(b), we have shown 
that incident light effectively travels into substrate, in which photovoltaic parts will be 
made. Additionally, most of the light taken in is converted to enhanced evanescent waves. 
In comparison with the incident power, the power of the evanescent wave is more than a-
few-fold enhanced. Such local enhancement of electromagnetic fields is preferable in 
photovoltaic applications.  

As is widely known, management of incident light has been conducted in Si-based solar cells. 
At the surface, textured structures are usually introduced to increase the take-in amount of 
light (Bagnall & Boreland, 2008). The difference between the textured structures and the 
designed metallic nanostructures exists in the enhancement mechanism; the former has no 
enhancement while the latter can have local resonant enhancement as described above.  

In actual fabrications of photovoltaic devices incorporating metallic nanostructures, 

plasmonic structures will be made on semiconductors. The structure in Fig. 1 is made on 

SiO2 and has to be redesigned because the permittivity of SiO2 and semiconductor such as Si 

is quite different at the visible range. In this section, we have shown actual potentials of 

plasmonic structures for light management through a concrete 1D periodic structure of 

nanorod array. Since genetic algorithm search is robust and applicable to issues one wants 
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to find solutions (Goldberg, 1989), we positively think of finding plasmonic structures for 

photovoltaic applications.  

In further search, 2D structures will be the targets, independent of incident polarizations. As 
for the actual fabrications, one may think that the step-like structure as shown in Fig. 1 are 
hard to produce by current top-down nanofabrication technique. In fact, there is hardly 
report that 90° etching is successfully executed. However, there is enough room to improve 
fabrication procedures; for example, if one could prepare hard mask and use calibrated 
aligner to conduct dry etching of semiconductors, it would be possible to etch down at 
almost 90° and even to produce step-like structures.  

 

Fig. 4. Schematic drawing of 2D periodic Ag nanorod arrays on SiO2 substrate. (a) Free 
standing in air. (b) Embedded in a Si layer.  

4. 2D periodic metallic nanorod array 

2D periodic nanorod array has much variety in design. In this section, we show how 
modification of unit cell drastically changes the optical properties. As concrete structures, 
we present the results on the rectangular nanorod array as shown in Fig. 4 and refer to those 
on circular nanorod array. In addition, it is shown that well-adjusted 2D nanorod arrays 
work as efficient polarizers of subwavelength thickness. As the application, circular dichroic 
devices are presented, which include 2D nanorod array as a component.  

Before describing the numerical results on 2D metallic nanorod arrays, we mention how 
they can be fabricated. It is probably easier to produce the structure in Fig. 4(b) than that in 
Fig. 4(a). Since thin Si wafers can be fabricated in nm-precision as Si photonic crystal slabs 
are made (Akahane et al., 2003), the procedure of electron-beam patterning, development, 
metal deposition, and removal of resist results in the structure in Fig. 4(b) Free-standing 
metallic nanorods seem to be relatively hard to produce. Simple procedure described as for 
Fig. 4(b) is unlikely to be successful. Instead, other procedures have to be conceived. One of 
the ways is to modify the fabrication procedure to produce metallic nanopillars of about 300 
nm height (Kubo & Fujikawa, 2011).  

4.1 Optical properties 

In Fig. 5, T and R spectra of free-standing Ag nanorod arrays are shown. Unit cell structures 
in the xy plane are drawn at the left-hand side. The periodicity is 250, 275, and 240 nm along 
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both x and y axes in Figs. 5(a), 5(b), and 5(c), respectively. Grey denotes the xy section of Ag 
nanorods, which is 50×50 nm2 in the xy plane. The height of the nanorods was set to be 340 
nm. The gaps between nanorods were set to be 0, 5, and 10 nm along the x and y axes in 
Figs. 5(a), 5(b), and 5(c), respectively. 

 

Fig. 5. Unit cell structures and the optical spectra of free-standing Ag nanorod array on SiO2 

substrate. Grey denotes Ag nanorod of 50×50 nm2 in the xy plane. Gaps between each 

nanorod are set along the x and y axes: (a) 0 nm, (b) 5 nm, and (c) 10 nm. Dimensions are 

written in units of nm. T and R spectra at ψ = 45° are shown with solid and thin lines, 

respectively. T and R spectra at ψ = 135° are represented with dashed and dotted lines, 

respectively. 

Incident plane waves illuminate the 2D structures at normal incidence. Incident polarization 

Ein was set to be linear, defined by azimuth angle ψ, that is, the angle between the x axis and 

the Ein vector, as drawn in Fig. 5(a). In accordance with the symmetry of the unit cell, two 

polarizations ψ = 45° and 135° were probed. T and R spectra at ψ = 45° are displayed with 

blue solid and red thin lines, respectively. T and R spectra at ψ = 135° are shown with blue 

dashed and red dotted lines, respectively.  

T spectra at ψ = 45° are sensitive to the gaps. In Fig. 5(a), at the visible range of wavelength 
less than 800 nm, definite contrast of T at ψ = 45° and 135° is observed. As gaps becomes 
larger, the contrast of T rapidly diminishes. Actually, in Fig. 5(c) where the gap is 10 nm, T 
spectra at ψ = 45° and 135° become quite similar in spectral shapes and lose the difference 
seen in Fig. 5(a). The gap dependence of T spectra implies that there exists resonant state in 
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the structure of Fig. 5(a) at ψ = 45° and less than 800 nm and that the resonant state is lost by 
the nm-order gaps between nanorods.  

The strong contrast of T in Fig. 5(a) indicates that the 2D nanorod arrays serves as a good 
polarizer of subwavelength thickness, which is employed in section 4.3.  

Dimers or aggregations of rectangular and circular metallic nanostructures have attracted 
great interest in terms of so-called gap plasmons in terms of enhanced Raman scattering 
(Futamata et al., 2003; Kneipp, 2007). T spectra in Fig. 5 suggest that gap plasmons rapidly 
disappear as the gap increases and are lost even with a small gap of 10 nm.  

In Fig. 5, we show the results on rectangular Ag nanorod array; similar spectral 
examinations were conducted for circular Ag nanorod arrays though the spectra are not 
shown here. The qualitative tendency is similar and the contrast of T is rapidly lost as the 
gaps between the circular nanorods increases in nm order.  

In Fig. 6, we show T spectra of Ag nanorod arrays embedded in a Si layer of 340 nm height 

along the z axis. Incident polarizations were ψ = 45° and 135°. T spectra at ψ = 45° and 135° 

are shown with blue solid and blue dashed lines, respectively. It is first to be noted that T 

spectra at ψ = 135° are almost independent of the gaps between Ag nanorods; T’s at the 

wavelength range more than 1000 nm are several tens of % and exhibit Fabry-Perot-like 

oscillations coming from the finite thickness of the periodic structure, suggesting that the 2D 

structure for ψ = 135° is transparent due to off resonance. In contrast, T spectra at ψ = 45° 

vary the shape significantly with changing the gaps and are very sensitive to the gaps. At 

the 0 nm gap in Fig. 6(a), contrast of T is observed at the wavelength range longer than 1500 

nm, indicating that the 2D structure in Fig. 4(b) also works as an efficient polarizer. The 

states at 1770 nm (arrow in Fig. 6(a)) are examined by electric field distributions in Fig. 7.  

4.2 Electromagnetic-field distributions on resonances 

In Fig. 7, electric-field distributions are shown which correspond to the 2D periodic 

structure of the unit cell in Fig. 6(a). Incident wavelength is 1770 nm; the wavelength is 

indicated by an arrow in Fig. 6(a). Colour plots denote intensity of electric field |E| and 

arrows stand for 3D electric-field vector. The unit domain used in the computations by the 

finite element method is displayed. Periodic boundary conditions are assigned to the xz and 

yz boundaries.  

Figures 7(a) and 7(b) present the electric-field distributions at incident azimuth angle ψ = 
45° and 135°, respectively. Incident plane wave travels from the left xy port to the right xy 
port. The phase of incident wave at the input xy port was defined by Ein = -(sin(45°), 
cos(45°), 0) in Fig. 7(a) and by Ein = (sin(135°), cos(135°), 0) in Fig. 7(b). The left panels show 
3D view and the right panels shows the xy section indicated by cones in the left panels.  

Electric-field distributions at ψ = 45° in Fig. 7(a) are prominently enhanced at the vicinity of 

the connecting points of Ag nanorods. The enhanced fields are mostly induced outside the 

Ag nanorods and oscillate in-phase (or coherently), suggesting that the resonant states are 

not Mie type. On the other hand, electric-field distributions at ψ = 135° in Fig. 7(b) have local 

hot spots at the corners of the Ag nanorods. It is usually observed at off resonant conditions. 

The electromagnetic wave propagates dominantly in the Si part.  
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Fig. 6. Unit cell structures and the T spectra of Ag nanorod array embedded in a Si layer on 
SiO2 substrate. Gaps of Ag nanorods along the x and y axes are (a) 0 nm, (b) 5 nm, (c) 10 nm, 
and (d) 20 nm, respectively. Unit cells were set similarly to Fig. 5. T spectra at ψ = 45° and 
135° are shown with solid and dashed lines, respectively.  

Incident power was set to be 2.56×102 W/m2 at the input xy port and the corresponding 
electric-field intensity was 4.39×102 V/m. The resonant electric field at the vicinity of 
nanorod array reaches 4.6×103 V/m at the maximum and shows about tenfold enhancement; 
the scale bar has the maximum of 8.2×102 V/m and the distributions are displayed in a 
saturated way to clearly present them near the connecting points. In air, incident and 
reflected waves are superimposed in phase and consequently the electric-field intensity 
takes larger values than the incident power.  

4.3 Application for subwavelength circular dichroic devices 

As shown in section 4.1, 2D periodic metallic nanorod arrays can serve as polarizers of 
subwavelength thickness. In this section, we make use of such an efficient polarizer and 
introduce subwavelength optical devices of circular dichroism.  
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Fig. 7. Electric field distributions of the 2D periodic structure of the unit cell of Fig. 6(a): (a) 
1770 nm and ψ = 45°; (b) 1770 nm and ψ = 135°. Left: 3D views of the unit domain. Right: 
the xy sections, indicated by cones in the left panels.  

Efficient polarizers selecting polarization vectors are one of the key elements to realize 
various subwavelength optical devices. Another key element is wave plates which 
manipulate the phase of electromagnetic waves. In Fig. 8(a), a concrete design of wave plate 
of subwavelength thickness is presented, which is multilayer structure composed of Ag and 
SiO2 and made thin along the layers. Thickness of each Ag and SiO2 layer along the x axis is 
assumed to be 30 and 270 nm, respectively. Incident light sheds on the side or the xy plane. 
Azimuth angle ψ is defined similarly to Fig. 5(a).  

To clarify the basic optical properties of the multilayer structure, R spectra at ψ = 0° and 90° 
under normal incidence are shown in Fig. 8(b). For simplicity, the thickness is assumed to be 
sufficiently thick to eliminate interference pattern in R spectra. For ψ = 0° (that is, Ein is 
parallel to the x axis), the structure shows small R (red dashed line) and is transparent. For 
ψ = 90° (that is, Ein is parallel to the y axis), it shows R spectrum (red solid line) just as a 
typical Drude metal (Ashcroft & Mermin, 1976). At longer wavelength range than 1000 nm, 
the structure serves as wire-grid polarizer whereas, at shorter wavelength range than 1000 
nm, the structure becomes transparent for any polarization and can work as an efficient 
wave plate (Iwanaga, 2008).  
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Fig. 8. Wave plate of subwavelength thickness. (a) Schematic drawing of structure and 
optical configuration. (b) Reflectance spectra under normal incidence at ψ = 0° (dashed line) 
and ψ = 90° (solid line).  

The strong anisotropy of the multilayer structure is quantitatively expressed by using 

effective refractive index (Iwanaga, 2007a); it was found that, as a wave plate, the x axis is 

fast axis of effective refractive index of about 2 and the y axis is very slow axis of effective 

refractive index less than 1. It is to be emphasized that such strong anisotropy has not been 

found in solid material and makes it possible for the wave plates of multilayer structure to 

be extremely thin. In artificial structures, working wavelength can be tuned at desired 

wavelength by structural modifications; in contrast, it is very hard to change the working 

wavelength in solid materials because resonance is intrinsic property of materials. The 

feasibility in tuning is another advantage in subwavelength artificial structures.  

Once key elements are found, the combinations are naturally derived and usually realized 
by producing stacked structures. A recent example is orthogonal polarization rotator of 
subwavelength thickness, which was numerically substantiated by designing a skew 
stacked structure of wave plates (Iwanaga, 2010a). By introducing stacked structures, 
potentials of subwavelength optical devices are greatly extended.  

Figure 9(a) shows a concrete design of circular dichroic device (named I), which transforms 

incident circular polarization to transmitted linear polarization. The circular dichroic device 

has stacked structure of a wave plate of multilayer structure and a polarizer of 2D Ag 

nanorod array. The wave plate basically plays a role as a quarter wave plate at the 

wavelength range of the present interest. Each unit cell of the stacked layers is drawn in 

detail at the bottom; the dimensions are written in units of nm. Grey denotes Ag and pale 

blue SiO2. The thickness of the wave plate and the polarizer was set to be 284 and 210 nm, 

respectively; therefore, the total thickness of the circular dichroic device was 494 nm.  

In Fig. 9(b), T spectra under right-handed circular (RHC) and left-handed circular (LHC) 

polarizations are shown with blue solid and blue dashed lines, respectively. Obviously, 

definite contrast of T appears at about 850 nm. The degree of circular dichroism σ is defined 

by the following equation.  

 RHC LHC

RHC LHC

T T

T T
σ

−
=

+
 (3) 
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When σ = 1, the optical device is optimized for RHC and when σ = -1, it is done for LHC. In 
Fig. 9(c), the σ is shown and takes the value almost equal to unity at 855 nm, which is 
indicated by a red arrow in Fig. 9(b). Since the thickness of the device is 494 nm, it is 
confirmed that the circular dichroic device I is certainly subwavelength thickness, which is 
58% length for the working wavelength.  

 

Fig. 9. Circular dichroic device I of subwavelength thickness. (a) Stacked subwavelength 
structure transforming circular into linear polarizations. (b) Transmittance spectra under 
RHC (solid line) and LHC (dashed line). (c) Degree of circular polarization σ, defined by 
equation (3). (d) Polarization of transmitted light.  

Figure 9(d) presents polarization of transmitted light (red closed circles). Electric field was 
recorded for one wavelength and projected onto the xy plane. Clearly, the transmitted light 
is linearly polarized, characterised as ψ = 45° by using azimuth angle ψ.  

Figure 10(a) shows schematic drawing of circular dichroic device II, transforming incident 
circular polarization into counter-circular polarization. The device is composed of stacked 
structure of wave plate, polarizer, and wave plate and has subwavelength thickness for the 
working wavelength. Each unit cell of the components is drawn at the bottom and is 
specified; the first layer means that incident plane waves illuminate first, and succeedingly 
the incident waves travel through the second and third layers. Grey denotes Ag and pale 
blue SiO2. The thickness of the first, second, and third layers is 284, 210, and 255 nm, 
respectively; the total thickness is 749 nm. Although the basic design of the circular dichroic 
device I is similar to the device II in Fig. 9, the thickness of the third layer was finely 
adjusted to obtain ideally circular polarization of transmitted light because evanescent 
components contribute at the interface of the second and third layers, and modify the 
electrodynamics in the device II from that at homogeneous interface by plane waves.  

Figure 10(b) shows T spectra under RHC (blue solid line) and LHC (blue dashed line) 
incidence. Definite contrast of T is observed at 820-900 nm; T under LHC incidence is well 

www.intechopen.com



 
Collective Plasmonic States Emerged in Metallic Nanorod Array and Their Application 

 

89 

suppressed. In Fig. 10(c), the degree of circular dichroism σ is shown, evaluated by equation 
(3). Almost ideal circular dichroism is realized at 855 nm, indicated by a red arrow in Fig. 
10(b).  

 

Fig. 10. Circular dichroic device II of subwavelength thickness. (a) Stacked subwavelength 
structure transforming circular into counter-circular polarizations. (b) Transmittance spectra 
under RHC (solid line) and LHC (dashed line). (c) Degree of circular polarization σ, defined 
by equation (3). (d) 3D plot of the trajectory of polarization of transmitted light with wave 
vector kt; the wavelength is 855 nm and indicated by an arrow in (b).  

Figure 10(d) presents 3D plot of trajectory of the transmitted polarization (or electric field) at 

855 nm. The polarization circularly rotates in the left-handed direction along the transmitted 

wave vector kt. Thus, it is shown that a unique circular dichroic device transforming 

incident circular polarization into the counter-circular polarization can be realized with 

subwavelength thickness by employing metallic nanostructures such as thin line and 

nanorods. Miniature optical devices shown in this section can serve as key elements in 

micro-optics circuits in the future. 

In considering circular dichroism, it is often preferred to use helical structures. Probably, 
helical structures are connected unconsciously in mind to helical distributions of 
polarization such as Fig. 10(d), that is, circular polarizations. In principal, circular dichroism 
originates from simultaneous manipulations of polarization vector and the phase as proved 
in Figs. 9 and 10.  

Resonances inducing simultaneous change of polarization vector and phase are possibly to 

be resident in helical structures; an example is periodic array of gold helical structures 

which serves as a circular dichroic device in infrared range (Gansel et al., 2009). Note that it 

is impossible to move the working wavelength to the visible range by simply making the 

smaller structures because scaling law does not hold in the periodic structures including 

metals which have wavelength-dependent permittivity.  

To find new structures serving as circular dichroic devices, nature can provide clues. 

Jewelled beetles are rather widely known as circular dichroic insects. It turned out that the 

wings have helically stacked structures (Sharma et al., 2009). Biomimetics thus reminds us to 

learn from nature.  
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5. Conclusion 

Periodic metallic nanorod arrays have been investigated based on the numerical methods. It 
was shown that the nanorod arrays have collective resonant states or coherent oscillations 
outside each nanorod; the field distributions suggest that the resonant states are distinct 
from Mie resonance. The resonant states form broad band in wavelength, indicating that 
they are continuum. In the 1D periodic structure of stacked layers, the resonant states are 
also broad band in incident angles. The doubly broad-band features have not been reported 
in metallic nanostructures. It was also shown in 2D structures of nanorod array that the 
structures are crucial to realize the broad-band plasmonic states and that geometrical 
modifications in the order of 5 nm significantly affect the collective states. Further 
development of nanofabrications will lead us to the novel plasmonic states. In terms of 
applications, the 1D nanorod array was discussed as a light managing element for 
photovoltaic devices and the 2D nanorod arrays were incorporated in highly efficient 
subwavelength circular-dichroic devices which were concretely designed to work at optical 
wavelengths, transforming incident circular polarizations to desired polarizations.  
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