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1. Introduction

Host protection against pathogens and tumor cells is mediated mainly via white blood cells
or leukocytes. As an inappropriate immune response can result in damage to the host
and/or failure in pathogen clearance, the activation and function of leukocytes are tightly
regulated processes. Regulation of immune cells is carried out by complex networks of
receptors and cellular mediators. While the progress of the signal cascade is necessary for
leukocyte activation and the development of an immune response, improper signaling and
cellular activation are associated with various pathologies. The study of such networks
constitutes a cornerstone of immunological research and has great implications for the
understanding of the immune system and for the development of immunotherapies for
cancer, infectious diseases, as well as autoimmunity.

In this chapter, we will describe the importance of the stoichiometry of signalling complexes
in the regulation of leukocyte activation and function. We will focus on techniques used to
analyze the formation, composition, and stoichiometry of multiprotein complexes, and we
will also review current information and implications of stoichiometry on immune-cell
activation and regulation.

1.1 Leukocytes and their regulation

Protection against infectious diseases is mediated by the immune system, which includes
both humoral and cellular responses that enable the protective function or resistance against
pathogens (Viret & Janeway, 1999). While humoral immunity is mediated by secreted
proteins, peptides and small molecules and participates in host protection, responses of
immune cells are cardinal for most immunological functions.

Immune cells, or leukocytes (white blood cells) are divided into two main cell types based
on their nuclear shape; these include mononuclear cells (including monocytes,
macrophages, dendritic cells and lymphocytes) and polymorphonuclear cells, also termed
“granulocytes” (including neutrophils, eosinophils, and basophils). In general, each of these
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cell types plays a role in a different aspect of the immune response (Risso, 2000). Some of the
leukocytes such as macrophages, neutrophils and dendritic cells, also termed "phagocytes",
are responsible for the phagocytosis of pathogens. Others, as the granulocytes, secrete
bactericidal agents, while one type of lymphocytes (B lymphocytes- described below)
produce and secrete target-specific antibodies. The leukocytes are also responsible for the
destruction of virus infected cells, as well as for the identification and eradication of
cancerous cells (Doherty, 1996; Jager et al., 2001).

The leukocytes belong to two arms: either to the innate or to the adaptive immune system.
Cells of the innate immune system constitute the first responders to pathogens and
cancerous cells. Phagocytes are responsible for pathogen removal as they engulf, ingest and
digest these invaders. Cells belonging to the mononuclear phagocyte family, such as
macrophages and dendritic cells, process ingested particles, releasing peptide fragments and
displaying them on their cell surface. The presentation of these peptide chains, or antigens,
in the context of immune cell recognition, constitutes the corner stone of the activation of the
adaptive arm of the immune system (Davis & Bjorkman, 1988). The cells that display foreign
antigen complexes on their surfaces are termed “antigen presenting cells” (APCs) and
include, among others, macrophages and dendritic cells.

The lymphocytes are divided into three cell types: Natural killer cells (NK), T lymphocytes
(also termed T cells) and B lymphocytes (also termed B cells). While NK cells play a major
role in the innate immune response, T and B cells play a major role in the adaptive immune
response. In contrast to NK cells, which do not express receptors for specific antigens, T and
B cells express a stochastically generated receptor, the T-cell antigen receptor (TCR) or the B-
cell receptor (BCR), capable of interacting with a single specific antigen. The large repertoire
of different lymphocyte clones expressing different receptors allows the recognition of
virtually all antigens (Davis & Bjorkman, 1988). T cells are involved in cell-mediated
immunity, whereas B cells are primarily responsible for humoral immunity (secretion of
antibodies) (Davis & Bjorkman, 1988).

Antigen presentation is mediated via the Major Histocompatibility Complex molecules
(MHC). Class I MHC is expressed by all nucleated cells while Class II MHC is expressed
only by dedicated APCs mentioned above, and B lymphocytes.

Class I MHC molecules, in addition to their role in antigen presentation, act as NK
inhibiting ligands. Disruption of MHC Class I expression, occurring in certain virus infected
cells and in tumor cells, while facilitating escape from recognition by T cells, reduces NK
inhibitory signaling, thereby enhancing cytotoxic NK activity (Chini & Leibson, 2001; Wu &
Lanier, 2003).

In response to pathogens, a type of T cells, called T helper cells, produce cytokines that
direct the immune response, while another type, called cytotoxic T cells, produce also
cytotoxic granules, similarly to NK cells, which induce the death of pathogen infected cells
(Chini & Leibson, 2001; Wu & Lanier, 2003).

Cytokines are proteins that act as messengers between cells. In the immune system,
cytokines facilitate communication among immune cells and between immune cells
and other host cells. Cytokines are responsible for inducing immune cell proliferation
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and for enhancing, suppressing and terminating immune responses (Weber & Ilacono,
1997).

Given their role in the coordination of the immune response, the development of long term
immunity, and their role in the recognition and elimination of cancerous and virally infected
cells, T lymphocytes are the subject of a vast amount of studies. Deciphering the processes
governing T cell activation constitutes a focal point of immunological research (Smith-
Garvin et al., 2009; Wucherpfennig et al., 2010).

T cell activation begins with the binding of the TCR complex to peptide bound MHC
(Dembic et al., 1986; Saito & Germain, 1987). Along with this engagement, T cell specific
co-receptors called either CD4 (present on T helper cells) or CD8 (present on T cytotoxic
cells) recognize and bind to MHC class II or MHC class I, respectively (Viret & Janeway,
1999) (Fig. 1). During these binding processes, the TCR and co-receptor molecules
undergo clustering, allowing the protein kinase, Lck, bound to the intercellular portion of
either CD4 or CD8, to phosphorylate tyrosine sites on cytoplasmic proteins of the TCR
complex (Rudolph et al., 2006). These tyrosine motifs belong to a family called ITAMs
(immunoreceptor tyrosine based activation motifs) (Love & Hayes, 2010; Reth, 1989).
Upon phosphorylation, these tyrosine residues on the TCR { chain associate with the SH2
(Src Homology 2) domains of the kinase ZAP-70 (zeta chain-associated protein of 70 kDa)
(Chan et al., 1992). As ZAP-70 is recruited to the complex, it undergoes phosphorylation
by Lck, and is thereby itself activated (Barber et al., 1989; Samelson et al., 1986; Samelson
et al., 1990; Veillette et al., 1988). ZAP-70 then phosphorylates the downstream T cell
signalling molecules, LAT (linker for the activation of T cells) (Zhang et al., 1998) and
SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) (Bubeck Wardenburg et al.,
1996, Samelson, 2002). Phosphorylated LAT complexes with SLP-76 via the adaptor
proteins Gads and Grb2 and acts as a scaffold for the recruitment of additional signalling
proteins, promoting downstream activation events (Liu et al., 1999; Sommers et al., 2004).
PLC-y (Phosphoinositide phospholipase C y) recruited to phosphorylated SLP-76,
catalyzes the breakdown of the membranal phospholipid Phosphatidylinositol 4,5-
bisphosphate (PIP2) into the secondary messengers, diacylglycerol (DAG) and inositol-
1,4,5-trisphosphate (IP3) (Beach et al., 2007, Ebinu et al., 1998). DAG activates PKCO
(Protein kinase C 0), and through it, activates the cellular transcription factors NF-xB
(nuclear factor xB) and AP-1 (activator protein 1) (Melowic et al., 2007; Smith-Garvin et
al., 2009), while IP3 induces the opening of calcium channels, further facilitating T cell
activation (Imboden & Stobo, 1985). Increased cellular calcium levels induce the release of
the nuclear factor, NFAT (Nuclear factor of activated T-cells), from the calcium binding
protein, Calcineurin (Hogan et al., 2003). These transcription factors promote the
expression of proteins necessary for T cell activation and for its effector functions,
including the production and secretion of cytokines governing immune responses (Smith-
Garvin et al., 2009).

Phosphorylated SLP-76 is also a key player in the activation of the cellular actin
polymerization machinery, facilitating the reorganization of the cytoskeleton necessary for
enhancing the T-cell/APC interface and enabling T cell effector functions (Jordan et al.,
2006; Reicher & Barda-Saad, 2010). By recruiting the adaptor protein Nck (non-catalytic
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region of tyrosine kinase adaptor protein) and VAV, an activator of Rho family GTPases,
SLP-76 mediates between TCR proximate activation events and actin polymerization and
reorganization (Koretzky et al.,, 2006). Nck, in turn, recruits the actin nucleation factor,
WASp (Wiskott-Aldrich Syndrome Protein) (Zeng et al.,, 2003). With the recruitment of
WASp by Nck, and activation of actin nucleation and polymerization machinery by VAV1
activated GTPases, the cytoskeleton undergoes remodelling, enabling enhanced -cell
spreading and the reorientation of cellular polarity (Billadeau et al., 2007). In cytotoxic T
cells, cellular polarity allows for the direction of cytotoxic granules at the intended target
cell (Reicher & Barda-Saad, 2010; Smith-Garvin et al., 2009).

B cells share many points of similarity with T cells, in aspects of antigen-induced cellular
activation, subsequent signalling complex formation, and cytoskeletal remodelling. In
analogy to T cells, B cell activation is triggered by ligation of the BCR to its cognate
antigen (Fig. 1). The BCR is comprised of a membrane-bound immunoglobulin (mlg)
component with a short cytoplasmic domain that has no direct interaction with
downstream signalling molecules. Therefore, the mlg associates with two additional
immunoglobulin chains, Iga/pB, which contain ITAMs (Pierce, 2009; Tolar et al., 2005).
Antigen binding by the BCR initiates rapid phosphorylation of the ITAMs within the
Iga/p chains by Src family kinases e.g. Lyn, and leads to the recruitment of intracellular
signalling molecules and adapters, including Syk (Spleen tyrosine kinase), Blnk (B cell
linker), VAV and PLCy2. These molecules interact to form a multi protein signalling
complex known as the signalosome (Batista et al., 2010). Similar to T cells, the membrane
recruited signalling molecules induce calcium influx (mediated by PLCy2) and the
subsequent activation of transcription factors such as NF-kB. Eventually, antigen binding
by the BCR leads to B-cell proliferation, differentiation, and antibody production and
secretion. Actin cytoskeleton reorganization is pivotal for the activation and function of B-
cells, as it facilitates BCR clustering and organization, and B cell spreading (Fleire et al.,
2006; Treanor et al., 2010; Weber et al., 2008). In this context, signalling molecules such as
VAV may also facilitate actin polymerization in B-cells (Weber et al., 2008), by functioning
as activators of Rho GTPases. However, the exact molecular mechanisms underlying actin
reorganization in B-cells are not completely understood, and are under extensive
investigation.

Deciphering of the underlying mechanisms of lymphocyte activation is of great importance
to the understanding of the direct activity of T cells in anti-tumoral and anti-viral immunity,
as well as its function as a key regulator of immune responses and autoimmunity. The
regulation and function of numerous cellular processes are dependent on protein-protein
interactions. In the immune system, protein-protein interactions are the main mechanisms
leading the regulation of lymphocyte activation, and indeed, rule the initiation and
termination of the immune response by various cells of the immune system. Understanding
the molecular mechanisms underlying these multi-protein complexes requires the
characterization of their composition and stoichiometry.

Below, we describe major techniques for exploring protein-protein interactions regulating
immune cell activation and function, with the focus on technologies used for determining
the stoichiometric ratios of protein complexes.
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Fig. 1. Band T cell signalling cascades.

The above scheme describes key events downstream of TCR (right panel) or BCR (left panel)
activation that are mentioned in the current review. The black spots represent
phosphorylation sites.

2. Methods used in researching the stoichiometry of leukocyte regulatory
complexes

As protein/protein interactions regulate and control a multitude of cellular functions,
various methods for investigating protein-protein binding were developed. Here we review
leading methods used for the investigation of inter protein binding and to determine the
stoichiometry of these interactions.
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2.1 Surface Plasmon Resonance (SPR)

Surface Plasmon Resonance-based sensing makes use of the photonic excitation of electrons
into surface plasmons - delocalized electrons that oscillate at the interface between a
molecule adsorbed onto a metal film and a dielectric medium (Ritchie, 1957).

The interaction between photons, electrons in the metal film, and the adsorbent allow the
investigation of inter-molecular interactions. Binding of molecules, such as proteins or small
molecular ligands, to proteins immobilized to the metal film changes the interaction of the
projected light photons and the electrons in the metal, causing a shift in the intensity of
reflected light, and thus allows the investigation of protein-protein binding, as detailed
below (McDonnell, 2001; Rich & Myszka, 2000).

Light is beamed at the metal through a prism. As light passes between two media differing
in their refractive indices, some of the light can be reflected at the point of the inter-medium
interface. Projection of light at a certain angle, called "critical angle" (itself dependent on the
proportion of the two refractive indices), or at larger angles, results in the entirety of the
light to be reflected, a phenomenon called total internal reflection. Even though photons are
reflected at the interface between the two media, the reflected photons create an electric field
reaching about one wavelength beyond the inter-medium boundary (Pattnaik, 2005). This
field, called evanescent wave, allows photons reaching the metal surface at a certain angle to
excite surface plasmons at the opposite side of the metal sheet (Fig. 2) (Pattnaik, 2005).
Exciting photons are absorbed by the electrons of the metal film, leading to a detectable
reduction in reflected light (Fig. 2).

Mobile phase
Dielectric medium

Metal film

Detector

Fig. 2. lllustration of the principles underlying Surface Plasmon Resonance (SPR)
technology.

Light reflected at the intermedium boundary can cause surface plasmon resonance on a
metal film, reducing the intensity of the reflected light. The induction of surface plasmon is
highly dependent on the angle of light incident, as the evanescent waves responsible for SPR
propagate into the other side of the metal film, and the angle at which incident light can
induce surface plasmon is dependent on the conditions proximate to the metal film. Proteins
are adsorbed to the metal film either by direct immobilization or with the use of antibodies.
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As proteins adsorbed to the metal film bind ligands (either other proteins or small
molecules), the angle of maximal SPR changes, enabling the monitoring of the binding.

The angle at which photons are capable of exciting plasmon is dependent on the refractive
indices of the metal and the adjacent. As proteins are adsorbed, the refractive index at the
boundary changes, thus affecting the degree at which light can excite surface plasmons. By
plotting the intensity of reflected light as a function of incidence angle and finding the angle
at which light reflection is minimal, it is possible to find the angle of maximal surface
plasmon induction. Comparison of the difference between angles of maximal surface
plasmon induction before and after protein adsorption allows the calculation of the
difference in refractive index of the medium, from which the mass of the protein adsorbate
is easily calculable (due to the high identity between the reflective indices of all proteins)
(Pattnaik, 2005).

In the SPR based inter-protein interaction assays, a protein is first immobilized on one side
of the metal film, via binding to different bait molecules attached to the metal film such as
streptavidin or carboxymethyl groups. During the experiment, changes in the intensity of
reflected light, occurring due to the excitation of surface plasmon, are detected with a
charge-coupled device (CCD). As ligand proteins in the mobile phase bind to the
immobilized proteins, the refractive index at the inter-medium boundary changes, affecting
light reflection, from which various aspects of the protein-protein binding can be
deciphered. By measuring protein adsorption and dissociation from the immobilized
proteins bound to the metal film, the equilibrium constant (Kd), the association and
dissociation constants (ka and kd, respectively) and the stoichiometry governing the protein
complex formation can be calculated (McDonnell, 2001; Pattnaik, 2005).

Biacore is the oldest and most commonly commercially available SPR system.

2.2 Isothermal Titration Calorimetry (ITC)

Inter-protein interactions results in the formation and termination of non-covalent bonds
such as van der Waals interactions, hydrogen bonds and hydrophobic interactions.
Isothermal titration calorimetry takes advantage of the thermodynamic outcomes of such
reactions to measure molecular interactions. By recording heat changes due to binding
enthalpy, isothermal titration calorimetry allows the monitoring of molecular interactions.
Measurement of the heat change occurring during the reaction allows for the determination
of the thermodynamic variables of the molecular interaction: changes in enthalpy, entropy
and free energy (AH, AS and AG, respectively), binding constants (Ka), heat capacity (A Cp)
and the reaction stoichiometry (n) (Ladbury, 2007).

The ITC apparatus is composed of two identical cells, or chambers, housed in an isothermal
jacket. One chamber contains a solution of one of the components participating in the
reaction, while the second chamber is filled with buffer (or water) and serves as a control
(Fig. 3). The jacket is cooled, thus requiring energy investment to maintain the temperature of
the chambers. Temperature detectors (thermopile/thermocouple circuits) allow heaters to
keep the temperature of each chamber fixed (Ladbury, 2007; Liang, 2008; Roselin et al., 2009).

At the beginning of the experiment, the two chambers are at the same temperature. The
reacting component is injected into the sample chamber, resulting in enthalpic change; in the
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case of an exothermic reaction, less heat per time will be needed to maintain the sample
chamber at a temperature equal to that of the reference chamber, while an endothermic
reaction will require more heat to maintain the equilibrium between the two chambers. As
titrant aliquots are injected into the sample chamber, changes in power required to maintain
the sample chamber at the same temperature of the reference chamber are recorded (Fig. 3).
In addition to heat changes due to the reaction between the two macro-molecules, dilution
of the reactant adds its own enthalpy. In order to compensate for dilution heat, the reactants
are independently added to the buffer, with heat changes recorded and subtracted from raw
ITC data.

Using data from multiple titrations, a titration plot is drawn, with the relation between
energy released or used during the reaction plotted against the reactants” molar ratio. From
the curve, the reaction enthalpy, binding constant and stoichiometry are calculated in a
single experiment, using non-linear regression. Using these variables, the other
thermodynamic constants can be calculated with the use of basic thermodynamic relations
(Ladbury, 2007).

Titrant injector
and stirrer

' Adiabatic jacket

Cell feedback
heater

Reference

Sample cell Reference cell heater

Calibration
heater

Fig. 3. Illustration of the principles of Isothermal Titration Calorimetry (ITC).

The sample cell is filled with one of the reactants, and the injector is filled with the other.
The reference cell is filled either with distilled water or buffer. Continuous power is applied
to the reference heater, while the cell feedback heater keeps the temperature of the sample
cell equal to that of the reference cell. As titrant is injected into the sample cell, heat is either
taken up or evolves. This causes the power required by the cell feedback heater to keep the
temperature of the cells equal to either increase or decrease, respectively. These changes are
monitored to produce ITC data.
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While both ITC and SPR are powerful methods for the real-time in-vitro analysis of protein-
protein interactions, ITC is preferable to SPR in the study of stoichiometry ratios of units of
protein complexes, as it offers greater resolution and does not require prior immobilization
of one of the proteins (Jecklin et al., 2009).

2.3 Analytical Ultracentrifugation (AUC)

Making use of the analysis of the sedimentation of macromolecules under centrifugal forces,
analytical ultracentrifugation allows the observation of the shape, size, and stoichiometry of
complexes, as well as association constants, molecular mass and intermolecular interactions.
Analytical Ultracentrifugation was first developed by Nobel Prize laureate Theodor
Svedberg in 1925, but costly instrumentation and arduous data acquisition and processing
limited its usage. With the development of computerized data management and new types
of detectors, the increased usability and versatility of AUC occurred starting in the 1990s
(Cole et al., 2008).

Analytical Ultracentrifugation aims to differentiate and characterize macromolecules based
on their behaviour under acceleration. Prior to centrifugation, the distribution of the
macromolecules in the solution is dependent on inter molecular forces and on entropy, with
the effect of gravity being negligible. During centrifugation, molecules in the solution are
redistributed, as centrifugal forces compete with diffusion (Fig. 4).

Incident
light

Centrifugal force

Sample cell

(|
Sample

Reference cell /
Imaging
system

Detector

Fig. 4. Illustration of the principle technology of Analytical Ultracentrifugation (AUC).

Under centrifugation, protein complexes are redistributed according to their mass and
hydromantic properties. In sedimentation velocity experiments, an optical detector is used
to measure the radial concentration of proteins during sedimentation. In sedimentation
equilibrium, the sedimentation gradient is monitored not during its formation but at the end
of the process, when the centrifugal force is at equilibrium with diffusion. Sample cell
readings are compared to those of a reference cell.

Concentration distribution under centrifugation is described by the Lamm equation:

2
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The solution concentration at time t and position r is represented by c. D is the diffusion
coefficient; s represents the sedimentation coefficient; and ® is the angular speed of the
rotor.

In sedimentation equilibrium experiments, the equilibrium state of molecule distribution
under acceleration is monitored. The sedimentation equilibrium is the state where
sedimentation due to centrifugation (simulating gravity) equals diffusion-driven transport.
By examining the rate at which the solution reaches the new equilibrium it is possible to
observe intermolecular interactions and define the shape, the size, and the stoichiometry of
the complexes. On the other hand, in sedimentation equilibrium experiments, the
concentration distribution at equilibrium is examined, allowing the determination of
molecular mass, association constants and complex stoichiometry. In sedimentation
equilibrium experiments, the hydrodynamic properties of the investigated molecules do not
influence the results, which are dependent only on thermodynamic properties, simplifying
data analysis (Balbo et al., 2005; Schuck, 2010b; Zhao et al., 2011).

However, the advantages of sedimentation velocity measurements, namely, shorter run
time (hours instead of days), higher precision, wider versatility and the collection of
multiple data points, combined with the robust data processing offered by modern analysis
programs, make it the most commonly used AUC technique.

During centrifugation, molecules are radially redistributed. Measurements of radial
concentration distribution, also called “scans”, are acquired at various time intervals
(minutes in sedimentation velocity experiment, hours in sedimentation equilibrium
experiments) (Demeler, 2010). Detection of proteins in analytical ultracentrifugation
experiments is performed via optical detectors. Absorbance detection is the most commonly
used method, making use of the strong excitation peaks of proteins (and nucleic acids, when
relevant) in the UV range. It does require the use of non-absorbing buffer, preventing its use
in cases where the sedimentation experiment is performed in the presence of UV absorbing
additives, such as nucleotides or certain reducing agents, such as dithiothreitol.

Interference optics uses differences in refractive indices between the centrifuged sample and
a reference. In addition to being unaffected by UV absorption of medium components,
interference optics offers greater precision than absorbance-based detection, and has a
higher dynamic range, a characteristic advantageous for the measurement of highly
concentrated solutions. Data density is also higher than that gained from absorbance optics.
A disadvantage of interference optics is that all the components dissolved in the medium
affect its interference pattern; thus, the reference buffer components must match in content
and concentration to the buffer used for the sample. Use of interference optics also requires
the use of measurement cell windows that do not affect the refraction pattern. The sample
should also be devoid of components with absorbance at the wavelength of the laser used in
this system (commonly 675nm). Another option is the use of fluorescence detection; this
method allows greater sensitivity and selectivity compared to absorbance optics, but
requires the prior labelling of the proteins. This requirement negates a major advantage of
AUC, namely, the ability to use untagged proteins (Cole et al., 2008; Demeler, 2010).

Data analysis is performed wusing dedicated programs such as SEDANAL,
SEDFIT/SEDPHAT, BPFIT and ULTRASCAN. In sedimentation velocity experiments, the
analytical programs are commonly used to interpret the data by computationally fitting it to
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the Lamm equation, an approach called discrete Lamm equation modelling (DLEM) (Brown
et al., 2009; Schuck, 2009, 2010a).

2.4 Analytical Native Antibody-based Mobility-Shift (NAMOS) assay

Gel electrophoresis is a common process utilized in multiple protein research methods.
Unlike the widely used sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) and other gel electrophoresis assays preformed under denaturing conditions, blue
native polyacrylamide gel electrophoresis (BN-PAGE) allows the separation of proteins
according to their sizes in a native, non-denaturing environment (Schagger & von Jagow,
1991; Schamel & Reth, 2000; Swamy et al., 2006). The negatively charged Coomassie blue
reagent binds nonspecifically to all proteins, bestowing its negative charge uniformly, thus
allowing the proteins to migrate through the polyacrylamide gel during electrophoresis.
Unlike electrophoresis performed in the presence of denaturing agents, the BN-PAGE assay
allows the conservation of multi-protein complexes (Schagger & von Jagow, 1991; Schamel
& Reth, 2000; Swamy et al., 2006). The native antibody-based mobility-shift (NAMOS) assay,
developed and used to investigate the stoichiometry of the TCR complex, uses antibodies
specific to various components of the TCR protein complex (Swamy et al., 2006). Samples of
the complex are incubated in the presence of various antibodies at different concentrations
prior to electrophoresis. Antibody binding to the complex increases its overall mass and
size, thereby slowing down its passage through the gel. Furthermore, antibody binding to
the complex is dependent on the availability of sites recognized by the antibody (epitopes)
and the complex/antibody ratio. In the absence of antibodies, all the protein complex
molecules migrate in the gel according to the original size of the complex, forming a single
band. As antibody binding slows down the movement of the protein complex, bound
complexes will form additional bands, corresponding to the increased size of the complex
that includes bound antibody. As complexes are treated with increasing concentration of
antibodies, the band corresponding to the unbound complex begins to disappear while the
band or bands corresponding to bound complexes increase in intensity. If two antibodies are
able to bind to the complex, as antibody concentration is increased, the band corresponding
to the binding of one antibody begins to disappear as well, with the band corresponding to
the protein bound to two antibodies increasing in strength. Additional binding sites will
result in bands corresponding to higher molecular weight. It is thus possible to learn from
the resulting band pattern the number of complex sites recognizable by the antibodies, and
thereby deduce complex stoichiometry (Swamy et al., 2006).

The NAMOS assay allows the investigation of the stoichiometry of complexes in a relatively
simple manner, requires only small amounts of protein complexes (femtograms to
nanograms), and does not require their prior purification. On the other hand, the NAMOS
assay is highly dependent on the ability of the antibodies to reach and bind to all relevant
binding sites, as well as on the properties of the antibodies used. Some antibodies form
aggregates, creating an unintelligible “ladder” pattern instead of bands, and are thus
unusable for this assay. Bivalent antibodies may bind two complex molecules at the same
time, creating an additional band interfering with correct stoichiometry analysis. This
problem may be mitigated with the use of monovalent antigen binding fragments (Fab
fragments) derived from the whole antibodies. Epitopes of the target can also be sterically
inaccessible, thereby causing an underestimation of the complex stoichiometry. If the
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inaccessibility is caused by the proximity of the epitopes, with one antibody sterically
interfering with the binding of an antibody to the adjacent epitope, use of Fabs may also
negate this problem, as they are considerably smaller than full sized antibodies (Swamy et
al., 2006).

Based on an understanding of the most common analytical techniques, we will now review
major studies that contributed to the understanding of the stoichiometry of regulatory
protein complexes in immune cells.

3. Current understanding of stoichiometry of the complexes involved in
immune cell regulation

With the development and application of new technologies allowing the investigation of
protein-protein contacts, studies conducted to understand the key mechanisms of immune
cell regulation have shed light on the stoichiometric ratios in fundamental immune
regulatory complexes.

The stoichiometry of the BCR was initially investigated by quantifying radioactivity of
protein complexes incorporating 35S-labeled methionine. As the number of methionine
residues in each of the BCR proteins is known, it was possible to calculate the molar ratios
between different subunits of the receptor complex. A 1:1 stoichiometry was found between
the immunoglobulin and the Iga/ heterodimer required for signal transduction (Swamy et
al., 2006).

This finding was later confirmed in a study utilizing quantitative fluorescence resonance
energy transfer (FRET) analysis to characterize the distances between the different chains of
the BCR, its conformation during cell rest and during activation, and the clustering of
multiple BCRs during antigen binding. In that experiment, FRET between BCR complex
proteins genetically tagged with the fluorescent protein, monomeric YFP (mYFP), and Cy3-
labeled antibodies specific to either the immunoglobulin or to the Igp chain, indicated a 1:1
stoichiometry between the immunoglobulin and the Iga/ heterodimer (Tolar et al., 2005).

Knowledge of the stoichiometric ratio between the Ig-a/p heterodimer and the
immunoglobulin was later used in the development of the NAMOS assay, validating its use
in the investigation of the TCR complex stoichiometry (Swamy et al., 2007).

In the past, stoichiometry of the TCR complex was determined using classical methods,
making use of 35S5-labeled methionine incorporation into the proteins, followed by the
purification of the radiolabeled protein complexes, as described above for the BCR. The
subunits were detected by phosphoimaging and quantified by densitometry. The results
indicated that a TCRa-TCRp heterodimer binds a single CD36-CD3¢ heterodimer, a single
CD3y-CD3e heterodimer and a CD3{-CD3{ homodimer. Thus, the overall stoichiometry of
the TCR complex was found to be 1:1:1:1:2:2 (for aTCR, PTCR, CD3y, CD36, CD3e, and
CD3¢, respectively) (Rudolph et al., 2006; Wucherpfennig et al.,, 2010) These findings
corroborated the stoichiometry proposed in a previous study (Blumberg et al., 1990), and are
supported by other results, as well (Call et al., 2004). However, other works suggested that a
second af heterodimer was incorporated into the complex, suggesting an (af})2yede(Q
stoichiometry (Exley et al., 1995; Fernandez-Miguel et al., 1999; San Jose et al., 1998). Finally,
an ap (ye)20e(C configuration was also suggested (Rubin et al., 2002).
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A later study utilized the NAMOS technique to study the stoichiometry of the TCR-CD3
complex (Swamy et al., 2007). The assay was first validated using the BCR complex, whose
stoichiometry (two heavy chains, two light chains and a single Ig-a/ heterodimer) is well
characterized (Reth et al., 2000; Schamel, 2001; Schamel & Reth, 2000). Purified BCRs were
incubated with increasing concentrations of antibodies specific to various subunits of the
complex. The protein complexes incubated with antibodies were then subjected to
electrophoresis. Antibody binding to protein complexes slows their movement through the
electrophoresis gel. With increasing concentration of antibodies specific to the Ig-a/p
heterodimer, the band corresponding to BCR not bound to antibodies began to disappear,
and a single band at a higher molecular weight appeared. However, increasing the
concentration of antibodies specific to the heavy chain caused two bands to appear along
with the disappearance of the original band, with the first band corresponding to the
binding of one heavy chain specific antibody appearing at lower antibody concentration,
and a second one, corresponding to the binding of two antibodies specific to the BCR heavy
chain appearing at higher antibody concentrations, along with the disappearance of the
band corresponding to the binding of a singular antibody. Use of antibodies specific to the
BCR light chain yielded the same pattern. From this, a 2:2:1 heavy chain, light chain, Ig-a/{
heterodimer was suggested, in accordance with previous findings (Reth et al., 2000;
Schamel, 2001; Schamel & Reth, 2000; Tolar et al., 2005).

The NAMOS assay was then used to explore the stoichiometry of the TCR-CD3 complex.
Use of antibodies specific for either TCRa or TCRp each resulted in the appearance of a
single band, indicating a single TCRa and TCRp subunit in the complex. Use of antibodies
specific to CD3( chain yielded the appearance of two bands, indicating the presence of two
CD3(¢ chains in the complex (Swamy et al., 2007). It should be noted that even at high
concentrations of CD3( specific antibodies, the band corresponding to a complex bound to a
single antibody did not disappear completely, possibly due to the small size of the CD3¢
subunit, resulting in steric interference with the simultaneous binding of two antibodies at
once to the spatially proximate CD3{ monomers. Next, antibodies specific to CD3e were
used. The band pattern included, aside from the original band of complexes not bound to
antibodies, the appearance of three bands, interpreted as the TCR-CD3 complex bound to
either one antibody, two antibodies, or the binding of one antibody to two TCR-CD3
complexes. In order to avoid this complicated pattern, monovalent CD3e binding antibody
fragments were used, yielding a band pattern consistent with the presence of two CD3e in
the complex. Complexes incubated with antibodies specific for CD3y yielded an
electrophoresis pattern consistent with the binding of a single antibody per complex.
Finally, use of CD36 specific antibodies did not result in an intelligible band pattern, as
these antibodies tend to form aggregates, resulting in a smear. Therefore, it was impossible
to directly observe CD306 stoichiometry in the TCR-CD3 complex from these results.
However, given that the presence of two CD3e and one CD3y, and that previous studies
showed that CD3e forms heterodimers with CD3y and with CD36 (Alarcon et al., 2003) an
overall stoichiometry of the TCR-CD3 complex as afye6e(C was suggested (Swamy et al.,
2008; 2007).

A later study used electron microscopy to characterize the structure of the TCR-CD3
complex. It revealed that the actual three dimensional structure of the complex is larger than
expected given a composition of apyede(C. Due to this discrepancy, the authors suggested
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the possible existence of a second af3 heterodimer in the complex, sterically inaccessible to
antibodies, which would explain its lack of detection with the use of the NAMOS assay and
in previous studies. This study therefore contradicts the model of afyede(C stoichiometry,
reviving the suggestion of (af)2ye6e( complex stoichiometry (Arechaga et al., 2010). Further
research is therefore necessary to clarify the issue of the stoichiometry of the TCR-CD3
complex.

At the initiation of the T cell activation, recognition of the peptide bound MHC by the TCR
is accompanied by binding of the appropriate co-receptor (CD4/8) to the MHC protein,
bringing together the co-receptor bound protein kinase, Lck, with its target ITAMs in the
TCR complex, and allowing ZAP-70 to be recruited to the TCR complex. The stoichiometric
ratios between the clustered TCR molecules and the Lck-bound co-receptors, also governed
by the dynamics of lipid rafts, remain the subject of further studies.

ZAP-70, with its recruitment to the TCR complex, phosphorylates LAT, thereby enabling its
recruitment to cellular membrane and allowing the recruitment of additional signalling
proteins to the activation site. LAT constitutes a major adaptor protein, forming a complex
of multiple proteins taking part in T cell activation.

Grb2 is an adaptor protein that recruits SOS1 to LAT, thereby allowing SOS1 to perform as a
guanine exchange factor, activating GTPases of the Ras family (Koretzky, 1997; Samelson,
2002; Zhu et al., 2003). Alternatively, Grb2 molecules bind Cbl, an E3 ubiquitin-protein
ligase capable of chemically attaching ubiquitin monomers to proteins involved in the
cellular activation process, modifying their functionality and regulating their degradation
(Samelson, 2002). Binding of these two proteins is facilitated by the Grb2 SH3 domain,
capable of recognizing their proline rich domains. SPR was used for determining the
binding affinity of the signalling adaptor molecule, Grb2, to the epidermal growth factor
receptor (EGFR) and to SOS1 and the stoichiometry of the complex. Grb2 uses the same
binding motifs for interacting with either EGFR or, in T cells, with LAT (Lowenstein et al.,
1992; Weber et al.,, 1998). Therefore, these findings are also relevant for the Grb2-SOS1
binding-mediated regulation of Ras activity during the activation of T cells. Using the
BIAcore SPR system, the binding of Grb2 to the epidermal growth factor receptor was
determined to be of 1:1 stoichiometry, while the binding stoichiometry of Grb2 to SOS1 was
2:1 (respectively) (Lemmon et al., 1994). A later study utilized SV ultracentrifugation to
measure the binding of Grb2 to SOS1 and to LAT. It was found that two Grb2 molecules are
able to bind to a single SH3 ligand (either SOS1 or Cbl). ITC was used to examine Grb2
binding with either the N terminal domain or the C terminal domains of SOSI1. It was
determined that the binding stoichiometry Grb2 to either protein fragment was 1:1, while
binding of Grb2 to SOS1 proteins containing both proline rich Grb2 binding domains was
found to be 2:1 (Houtman et al., 2006). These results were in disagreement with those of a
previous study that described a 1:1 stoichiometry between Grb2 and SOS1 (Chook et al.,
1996); the cause of this discrepancy may be due to the usage of gel filtration analysis and of
SE ultracentrifugation, which are of relatively lower resolution compared to the SV
ultracentrifugation method; the techniques used may be less suitable to differentiate
between 2:1 and 1:1 Grb2:50S1 sedimenting species, along with the use of the full length
SOS1 in the older study (Houtman et al., 2006). Stoichiometric analysis of the binding of
Grb2-SOS1 complexes to LAT molecules was performed with the use of SV
ultracentrifugation. While a 1:2:1 LAT-Grb2-S0OS1 complex was observed, detection of

www.intechopen.com



Stoichiometry of Signalling Complexes in Immune Cells: Regulation by the Numbers 227

peaks signifying of sedimentation of larger complexes indicates that Grb2-SOS1 complexes
can bind additional LAT molecules, facilitating the clustering and oligomerization of LAT.
The presence of these rapidly sedimenting species is indeed highly dependent on the
concentration of LAT, Grb2 and SOSI, indicating that they are formed by clustering of LAT
in the presence of Grb2-SOS1 complexes. This mechanism serves to oligomerize LAT
molecules subsequent to TCR activation. LAT clustering serves as a mechanism enhancing T
cell activation, and may play a critical role in T cell activation under weakly stimulating
conditions, occurring in-vivo. Indeed, transfection of Jurkat E6.1 T cell line with truncated
SOS1 proteins, containing only the C-terminal proline-rich, Grb2- binding domain, reduced
T cell activation in comparison to mock transfected cells and to cells transfected with the
SOS1 containing both proline rich Grb2 binding domains. This effect was more pronounced
with the use of low concentration of anti-CD3 activating antibody (Houtman et al., 2006).
The function of Grb2-SOS complexes in LAT clustering was later verified with the use of
ITC technology (Houtman et al., 2007).

To analyze the interaction between SLP-76, a scaffold protein and a key player in T cell
activation, and Gads, an adaptor protein responsible for the recruitment of SLP-76 upon
cellular activation events downstream to TCR engagement, ITC was used. To this end, an
18mer oligopeptide of SLP-76, and the Gads C-SH3 domain to which it binds were titrated.
Calorimetric analysis showed that the stoichiometry of this inter-protein interaction
responsible for T cell activation is 1:1 (Seet et al., 2007).

Characterization of the stoichiometric ratios between LAT and SLP-76 and PLCy was also
performed. Using ITC, these proteins were found to exhibit a 1:1 binding ratio (Houtman et
al., 2004). The interactions of SLP-76 with its binding partners VAV1 and Nck was studied
by our group. Study of these interactions and their stoichiometry was preformed with the
use of SV ultracentrifugation and ITC technologies (Barda-Saad et al., 2010)

First, ITC was used to measure the affinity, specificity and stoichiometry of the binding of
Nck and VAV to SLP-76. To that end, short (17mers) phosphopeptides bearing the
sequences of phosphorylated SLP-76 binding domains were prepared. Our results indicated
that VAV1 and Nck both bind at the pY113 and pY128 sites. We then used longer peptides
(49mers), containing both pY113 and pY128, both pY113 and pY145, both pY128 and pY145,
or pY113, pY128 and pY145. Binding stoichiometry of VAV1 to the pY113-pY128 doubly
phosphorylated peptide was surprisingly 1:1, while VAV1 was able to bind to both the
pY113 and the pY128 containing peptides. Although Nck binding to the pY113-pY145 or to
pY113-pY145 peptides was of a 1:1 stoichiometry, Nck engaged in low affinity binding to
pY145, in contrast to VAVI. Surprisingly, binding of either Nck or VAV1 to the pY113-
pY128-pY145 triply phosphorylated peptide was of 2:1 stoichiometry.

In order to further study the SLP76-Nck-VAV1 complex, we utilized ultracentrifugation. We
performed SV analytical ultracentrifugation, using full sized Nck protein, the SH3-SH2-SH3
domains of VAV1 (which are responsible for its inter-protein interactions), and SLP-76
peptides containing different combinations of binding sites. The VAV1 truncated protein
was tagged with a site specific label (VAV-FAM), and SLP-76 peptides were labelled with
rhodamine TAMRA. We examined the formation of complexes of different SLP-76 derived
peptides, Nck and truncated VAV1, by monitoring the effects of different combinations of
SLP-76 derived peptides, in the presence of either Nck, VAV1, or both, on the sedimentation
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velocity. The AUC results corroborated the results of the ITC experiments, suggesting that
the stoichiometry of the complex SLP76-Nck-VAV1 was 1:2:2, respectively (Barda-Saad et
al., 2010).

The activity of WASp, an actin nucleation-promoting factor, is required for reorganization of
the actin cytoskeleton and therefore is crucial for T cell activity (Jordan et al., 2006; Reicher &
Barda-Saad, 2010). WASpP is recruited to the site of TCR activation by Nck, and is activated
by VAV1. WASp, by activating the Arp2/3 complex, promotes the branching of actin
filaments and the development of cytoskeletal networks (Machesky et al., 1999; Rohatgi et
al., 1999). The C-terminal domain of WASp, called VCA, binds to the Arp2/3 complex. The
VCA domain is divided into three regions, with the C and A regions contributing most to
the association energy of the Arp2/3 complex (Marchand et al., 2001), driving a
conformational change in Arp2/3 and facilitating its activity (Chereau et al., 2005; Dayel &
Mullins, 2004; Rodal et al., 2005); the V region binds an actin monomer, delivering it to the
Arp2/3 complex upon Arp2/3-WASp binding (Dayel & Mullins, 2004; Machesky & Insall,
1998; Marchand et al., 2001; Rohatgi et al., 1999). The increased activity of dimerized VCA
domains suggests that more than one WASp molecule is able to bind to the Arp2/3 complex
(Padrick et al., 2008; Padrick et al., 2011). To study the binding stoichiometry of Arp2/3 and
WASp, the WASp VCA domain was tagged with Alexafluor-488 (Padrick et al., 2011). Its
binding stoichiometry with Arp2/3 was then investigated using SV AUC. Experiments were
performed in the presence of excess VCA molecules. The co-sedimentation pattern of
Arp2/3 and the tagged WASp VCA domain indicated a 2:1 VCA:Arp2/3 binding
stoichiometry. While Arp2/3 was shown to bind two VCA molecules simultaneously, it is
possible that it can accommodate only one VCA molecule bound to an actin monomer at the
same time. To address this issue, VCA bound to actin was used. Analysis of SV
ultracentrifugation results indicated that two VCA-actin molecules were able to
simultaneously bind to the Arp2/3 complex. Mass spectroscopic analysis of these species
yielded an apparent mass of 333 kDa, consistent with the molecular mass predicated for one
Arp2/3, two VCA and two actin molecules (Padrick et al.,, 2011). Together with the
increased activity of VCA dimers (Padrick et al.,, 2008), these findings suggest that
VCA:Arp2/3 complexes of 2:1 stoichiometry are likely to be the main mechanism for WASp
activation of Arp2/3. WASp proteins are bound to scaffolding proteins, limiting their
orientation. Since simultaneous binding of two WASp molecules may bias the orientation of
the Arp2/3 complex, this new insight suggests that the 2:1 binding stoichiometry may limit
the directions in which Arp2/3 may promote actin filament branching. This mechanism
may guide the creation of actin networks towards the cellular membrane, facilitating cell
spreading required for its immune functions (Padrick et al., 2011).

4. Conclusion

The study of the stoichiometry of the protein complexes governing immune-cell activity
constitutes an important element in understanding the processes controlling the immune
system. Methods used for the investigation of the stoichiometric ratios between these
proteins yield new insights regarding the mechanism and the function of immune signalling
complexes. As illustrated, the binding stoichiometry of Grb2 and SOS1 to LAT serves as a
mechanism of LAT oligomerization responsible for a lower cellular activation threshold,
thus facilitating T-cell activation under physiological conditions (Houtman et al., 2006). The
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study of the stoichiometry of WASp binding to the actin nucleating factor Arp2/3 suggests a
mechanism that is responsible for the directionality of actin-filament branching, guiding
actin polymerization, and thus assisting in the cell spreading necessary for the function of
immune cell (Padrick et al., 2011).

While the new, innovative technologies and techniques have greatly assisted in the ongoing
effort to decipher the mechanisms controlling the activation of immune cells, especially
those regulating T-cell activity, much remains to be discovered in the field of interactions
and stoichiometric ratios between immune regulatory proteins.
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