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1. Introduction 

Cisplatin, cis-Diamminedichloroplatinum (II), is one of the most effective anticancer agents 
(Rosenberg, 1969). It has demonstrated a remarkable chemotherapeutic potential in a large 
variety of human solid cancers, such as, testicular, ovarian, bladder, lung and stomach 
carcinomas (Wong and Giandomenico, 1999; Guo and Sadler, 2000). The successful use of 
platinum (II) complexes as potent anticancer drugs has attracted the interest of many 
scientists. It was observed that the nature and arrangement of the ligands can affect the 
mode of action and metabolism of the drug while crossing the cell membrane and inside the 
cell. Despite the widespread use of cis-platin as an anticancer drug there is still scope for 
improvement, with respect to: i) reduced toxicity; ii) increased clinical effectiveness; iii) 
broader spectrum of action; iv) elimination of side effects (e.g., nausea, hearing loss, 
vomiting, etc); v) increased solubility and vi) ability to use them in combination with other 
drugs, limited by severe toxicities so far. Replacement of the chloro ligands by carboxylate 
groups in carboplatin, cis-diamine(1,1cyclobutanedicarboxylate)platinum(II), is a widely 
used second-generation platinum anticancer drug showing less side effects than cis-platin. 
The development of several new anticancer platinum drugs including Carboplatin, 
Nedaplatin, Lobaplatin and Oxaliplatin (Scheme 1) still have draw-backs and offer no more 
clinical advantages over the existing cisplatin (Gill, 1984; Galanski et al., 2005; Momekov et 
al., 2005). Furthermore, the development of acquired resistance to cis-platin is frequently 
observed during chemotherapy (Heim, 1993).   

There is also much interest in Pd(II) analogues because they are usually isostructural with 
those of Pt(II), which show a very similar coordination process and geometry. However, 
Pd(II) systems attain equilibrium much more quickly than Pt(II) systems (~104-105 faster 
kinetics). The slow formation kinetics for Pt(II) complexes generally rules out the 
determination of stability constants. Therefore, Pd(II) complexes are frequently used as 
model complexes to study the interaction of Pt(II) with DNA and to mimic the binding 
properties of various platinum(II) species (Tercero-Moreno et al., 1996). It was also 
suggested that the faster aquation of palladium(II) compared with platinum(II) in vitro, 
makes the former a better model for studying Pt(II) reactions in vivo (Nelson, et al.,1976) 
with biological molecules, since these reactions always start with the aquation of the 
platinum(II) complexes. Several palladium complexes have been reported (Gill, 1984) with 
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bidentate amine ligands which have shown anticancer activity comparable to or greater than 
cisplatin. Moreover, a series of labile Pd(II) complexes have proved to be useful as models to 
obtain a reasonable picture of the thermodynamics of the reactions for closely related Pt(II) 
complexes. It has also been suggested that these palladium complexes may be useful for the 
treatment of tumors of the gastrointestinal region where cisplatin fails. Mono-dentate 
ligands can bind in both cis- and trans arrangements around the metal and the isomers 
stability depend on several factors. Consequently, bidentate ligands are more reliable for the 
preparation of cis-complexes, in particular with palladium(II) and platinum(II) (Misra et al., 
1998; Byabartta et al., 2001; Santra et al., 1999; Pal, et al., 2000; Rauth, et al., 2001; Roy et al., 
1996; Das, et al., 1997; Das, et al., 1998). The reaction of DNA bases with Pd(II)/Pt(II) 
complexes of chelating N,N'-donors having cis-MCl2 configuration constitutes a model 
system which may allow for exploration of the mechanism of the anti-tumor activity of 
cisplatin. Considering the importance of palladium complexes as potential anticancer drugs, 
we report here the coordination chemistry of mixed-ligand palladium complexes of 
bidentate amines with biologically active ligands. 

O

O

O

O

Pt
Cl

Cl

Pt

O

O

O

Pt

O

O

O

O

Pt

O

O

O

Pt

Carboplatin

H3N

H3N

Cisplatin

H3N

H3N

H3N

H3N

Nedaplatin

H2N

H2N

Oxaliplatin

H2N

H2N

CH3

Lobaplatin
 

Scheme 1. Platinum-based drugs currently in clinical use. 

2. Methods used for detection of aqueous solution complexes 

Ion-selective electrodes were used for determination of the position of dynamic equilibrium 
system and the most common one is the glass electrode or hydrogen gas electrode which 
can be used for hydrogen ion measurements. Metal-ion selective electrodes or metal-
amalgam electrodes can also be used for certain metal ions, but they are seldom as precise or 
convenient as the hydrogen ion electrode. 

A great advantage with the use of ion-selective electrode measurements is that series of data 
can be easily collected through a titration procedure. From an initial analytical composition, 
stepwise changes with a burette are made with intervening electrode recordings. The 
elapsed time between these changes must be certained to be sufficient for equilibrium to be 
attained. A good method to check for this pre-requisite is to make repeated high-resolution 
electrode readings at predetermined time intervals, since this will make sluggish 
attainments of equilibrium clearly visible. 
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In addition, other experimental techniques are sometimes available. For example, if the 

metal ion or the ligand is coloured, and the colour changes (in intensity and/or frequency) 

upon complexation, spectrophotometry can be used. If the metal ion is diamagnetic, or if the 

ligand contains a suitable nucleus, nuclear magnetic resonance (NMR) is a striking method. 

This latter method, which ideally gives one separated signal for each unique chemical 

surrounding, can provide information not only on the free metal ion or ligand 

concentration, but also on the number of species and their respective concentration for a 

given analytical composition. Furthermore, since the positions of these signals are 

susceptible to protonation/deprotonation reactions, they can also be used to gain 

information on acid/base reactions of ligands and their complexes. Stopped-flow technique 

can be applied for fast reactions. 

2.1 Determination of stability constants of mixed ligand complexes 

The solution equilibria between metal ions and ligands may be described by two word-

continuous competitions: The proton and a range of metal ions compete for a range of donor 

sites, the contest being ruled by concentration and pH conditions. The determination of 

equilibrium constants is an important process for many branches of chemistry (Motekaitis 

and Martell, 1988) Equilibrium constants can be determined from potentiometric data 

and/or spectrophotometric data. Developments in the field of computation of equilibrium 

constants from experimental data were reviewed by Leggett (Legget, 1985) and Meloun et 

al.[ (Meloum, et al., 1994). Since then, many more programs have been published, mainly so 

as to be able to use microcomputers for the computations. The most commonly used 

programs for solution equilibrium constant determination are given in Table 1 (Motekaitis 

and Martell, 1988; Sabatini et al., 1974; Gans et al.,1976; Gans et al.,1985; Zekany and 

Nagypal, 1985; Sabatini et al., 1992; Gordon, 1982; Chandler et al., 1984; Perrin and Stunzi, 

1985 ; Beltrán et al., 1993; Frassineti et al., 1995; Gampp et al.,1985; Tauler, et al., 1991). All of 

these programs use least-square refinements to reduce the differences between calculated 

and experimental data to get the best model from the best fit. The sum of square of residuals 

between experimental and calculated values are normally very small, it is typically between 

10-6-10-9. Potentiometry generally used for measurements of formation constants of metal 

complexes is based on pH-metric titration of the ligand in absence and presence of metal 

ions. The formation constants derived by the least squares analysis of potentiometric data 

can describe completely the solution equilibria. The measurements are usually carried out at 

a constant ionic strength higher than the metal ion concentration. Therefore, no appreciable 

change in the ionic strength of the solution medium occurs. In general for the reaction: 

 L(M) + p(L1) + q(L2) + r(H) [(M)l(L1)p(L2)q(H)r]  (1) 

The overall stability constant, ǃlpqr, can be calculated from: 

 ǃlpqr = [(M)l(L1)p(L2)q(H)r]/[M]l[L1]p[L2]q[H]r  (2) 

(charges are omitted for simplicity) 

where M, L1, L2 and H stand for [Pd(diamine)(H2O)2]2+ ion, ligand(1), ligand(2) and proton, 

respectively. For OH- the coefficient (r) for H = -1.  
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Program Data typea Reference 

PKAS V (Motekaitis and Martell, 1988) 

MINIQUAD V (Sabatini et al., 1974) 

MINIQUAD75 V (Gans et al.,1976) 

SUPERQUAD V (Gans et al.,1985) 

PSEQUAD V, A (Zekany and Nagypal, 1985) 

HYPERQUAD V, A (Sabatini et al., 1992) 

TITAN V (Gordon, 1982) 

SCOGS2a V (Chandler et al., 1984) 

SCOGS2b V (Perrin and Stunzi, 1985) 

STAR A (Beltrán et al., 1993) 

HYPNMR N (Frassineti et al., 1995) 

SPECFIT A(E) (Gampp et al.,1985) 

SPFAC A(E) (Tauler, et al., 1991) 

aAdditional data types used in calculations: E, ESR and N, NMR 

Table 1. The most commonly used programs for calculating equilibrium constants from 
potentiometric (V) and spectrophotometric (A) data. 

2.2 Determination of stability constants of Pd(II) complexes 

As mentioned earlier, determination of formation constants of the Pd(II) complexes is 

made more difficult than in the case of other metals as a result of the unstable nature of 

[Pd(H2O)4]2+ in aqueous solution. Some authors have used [PdCl4]2-, as the metal ion 

source, but in this case the inclusion of the Cl- as a ligand as well as other ligands in the 

calculation of formation constants becomes necessary (Bóka,  et al., 2001). Elding (Elding, 

1972) calculated log ǃ14 for [PdCl4]2- to be ~ 10. Therefore, [Pd(NH3)2(H2O)2]2+ and 

[Pd(diamine)(H2O)2]2+ were considered as the starting metal ions for Pd(II) and the acid-

base equilibria of the diaquo complexes were first determined. Secondary ligands were 

then introduced and the formation constant of the mixed ligand complex calculated using 

one of the above mentioned programs. Hydrolytic reactions of Pt(II) and Pd(II) complexes 

are important issues because they are related to the action of the cis-platinum(II) anti-

cancer drugs. The very high thermodynamic stability constants of the chelated diamine 

complexes of palladium(II) result in the complete formation of the species 

[Pd(diamine)(H2O)2]2+  even under very acidic conditions (pH <2), while the relatively 

high ratios of the stepwise stability constants suppress the bis(bidentatediamine) complex 

formation in equimolar solution (Nagy and Sóvágó, 2001). As a consequence, all the Pd(II) 

species are present in the form of [Pd(bidentatediamine)]2 +, and therefore, the ternary 

complex, Pd(bidentate diamine)-ligand, can be treated as a binary complex.  

2.3 Preparation of [Pd(diamine)(H2O)2]
2+

 complex 

[Pd(diamine)Cl2] complexes were prepared, by reaction of [PdCl4]2- with diamine in the 

molar ratio 1:1. For equilibrium studies, [Pd(diamine)Cl2] was converted into the diaqua 

complex [Pd(diamine)(H2O)2](NO3)2 by stirring the chloro-complex with two equivalents of 

AgNO3 overnight, and removing the AgCl precipitate by filtration through a 0.1 Ǎm pore 
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membrane filter. Great care was taken to ensure that the resulting solution was free of Ag+ 

ions and that the chloro-complex had been converted into the aqua species, the filtrate made 

up to the desired volume in a standard volumetric flask. Also, the ligands in the form of 

hydrochlorides were converted to the corresponding hydronitrate in the same way as 

described above.  

2.4 Speciation distribution as a function of pH 

Speciation (based on concentrations of metal ions and complexing species) refers to a 
program (Pettit) which calculates and plots the species distribution of a series of complexes 
over a specified pH range. In this program, the input data of total concentrations of metal 
and ligand, pH range and the best fit set of ǃ values are used to compute equilibrium 
concentrations of all the available complex species over the given pH range. All types of 
complexes can be calculated, including mixed complexes, protonated, hydroxo and 
polynuclear species. The graphical output can thus provide a visual record of the most 
predominant complex species at any pH especially within the physiological pH range. 

2.5 Determination of the acid-base equilibria of [Pd(diamine)(H2O)2]
2+

 complex 

The hydrolysis reactions of Pt(II) complexes are among the most important issues which 

should be considered under physiological conditions. As a consequence, hydrolysis of 

cisplatin and its derivatives has been thoroughly studied in both solution and solid state 

(Martin, 1983; Martin, 1999; Faggiani et al., 1977; Faggiani et al., 1977). It is clear from these 

studies that hydrolysis of cisplatin and other cis-diamine platinum(II) species can not be 

described by the formation of simple monomeric dihydroxo complexes, but various 

dinuclear (Faggiani et al., 1978) and trinuclear species are also formed (Faggiani et al., 1977; 

Faggiani et al., 1977). The very slow formation kinetics, however, hampers the 

determination of stability constants of platinum(II), but the corresponding palladium(II) 

complexes can be used as appropriate model compounds (Tercero-Moreno et al., 1996).  

The main species formed during the hydrolysis of [Pd(diamine)(H2O)2]2+ ion are 10-1, 10-2, 

20-1 and 20-2. The first two species are due to deprotonation of the two coordinated water 

molecules, as given by Eqs. 3 and 4.  

[Pd(N-N)(H2O)2]   [Pd(N-N)(H2O)(OH)]    +    H    
++2+

100 10-1

[Pd(N-N)(H2O)2(OH)]   [Pd(N-N)(OH)2]
+

  +          H
+

10-1 10-2

pKa1

pKa2

 

The third species, (20-1), is the hydroxo bridged-dimer formed as result of the combination 

of the monoaqua hydroxo species (10-1) with the diaqua species (100) [Pd(diamine)(H2O)2]2+ 

as given by Eq. 5.  

(3)
 
 
 

(4)
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The fourth species, 20-2, is the dimeric di-Ǎ-hydroxo complex of two 10-1 species according 

to Eq.6. 
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(6) 

According to the data in Table 2 (Britten et al., 1982; Lim et al., 1976; Hohmann, et al., 1991; 

Shoukry, et al., 1999; El-Sherif, et al., 2003 ; Shehata, 2001), the pKa1 and pKa2 values in the 

bipyridine as a non-leaving group were found to be 3.91 and 8.39, respectively and are 

lower than the corresponding values of all the PdII-diamine complexes. The 

[Pd(Pic)(H2O)2]2+ values are intermediate because Pic has one pyridine ring. This can be 

attributed to the increased positive charge on Pd atom due to the π-acceptor properties of 

the aromatic moiety of Pyridine ring, leading to an increase in the electrophilicity of the Pd 

ion and consequently to a decrease in the pKa of the coordinated water molecule. The 

equilibrium constant for the dimerization reactions (5) and (6) can be calculated with Eqs. 7 

and 8 respectively. 

 log10 Kdimer = log ǃ20-1 − log ǃ10-1  (7) 

 log10 Kdimer = log ǃ20-2 − 2 log ǃ10-1  (8) 

The concentration distribution diagram for [Pd(AMBI)(H2O)2]2+ and its hydrolysed species 

as a representative example of hydrolysis of [Pd(diamine)(H2O)2] is shown in Fig.1. The 

concentration of the monohydroxo species, 10-1 and the dimeric species, 20-2 increase with 

increasing pH, predominating in the pH range 4.8 to 7.8 with formation percentages of ca. 

44% and 54% for the monohydroxo (10-1) and dimeric species (20-2), respectively, i.e., they 

are the main species present in solution in the physiological pH range. A further increase in 

pH is accompanied by an increase in the dihydroxo species, which is the main species above 

a pH of ca. 11. In the high pH range the inert dihydroxo complex would be the predominant 

species, so that the reactivity of DNA to bind the Pd(amine) complex will considerably 

decrease. 
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Complexa Pka1 pKa2 Reference 

Cis-[Pt(NH3)2(H2O)2] 2+ 5.6 7.3 (Britten et al., 1982) 

 [Pt(en)(H2O)2] 2+ 5.8 7.6 (Lim et al., 1976) 

[Pd(en)(H2O)2] 2+ 5.6 7.3 (Hohmann, et al., 1991) 

[Pd(1,2-DAP)(H2O)2] 2+ 5.62 9.35 (Shoukry, et al., 1999) 

[Pd(Pic)(H2O)2] 2+ 4.81 8.46 (El-Sherif, et al., 2003) 

[Pd(BPY)(H2O)2] 2+ 3.91 8.39 (Shehata, 2001) 

aen, 1,2-DAP, Me2en, Pic and BPY represent ethylenediamine, 1,2-diaminopropane,  
N,N′-dimethylethylenediamine, picolylamine and 2,2′-bipyridyl, respectively. 

Table 2. Comparison of acid dissociation constants of some Pt and Pd-diaquo complexes. 
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Fig. 1. Concentration distribution of various species as a function of pH in the 

Pd(AMBI)(H2O)2 system at concentration of 1.25x10-3 mol-dm-3, I = 0.1 mol-dm-3 (NaNO3) 

and T = 25 ± 0.1 0C). 
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3. Interactions of [Pd(diamine)(H2O)2] with bio-relevant ligands 

3.1 Interactions of [Pd(diamine)(H2O)2] with amino acids 

The potential donor atoms in the amino acids are (the amino-N, the carboxylato- O, as well 
as the other donor atoms which may be present in the side chains). Pd(II) and Pt(II)  
form stable complexes with the N-, O-, S-donor atoms present in amino acids, with 
thermodynamic preference for S- and N- donors over O-donors. Though the 
thermodynamic preference of the metal ion for a particular donor atom is a very important 
parameter in determining the choice of donor atoms, at the pH value used for the 
experiment, these donor atoms may be protonated. Additionally, the effect of chelate ring 
size may also be a factor in determining the adopted coordination mode.  

3.1.1 Acid-base equilibria of amino acids 

All amino acids undergo two reversible proton dissociation steps in fairly well separated pH 
ranges, proceeding according to equilibrium reaction (9). 

                                         pH=2-3                                  pH=8-10  

 +NH3CH(R)COOH  +NH3CH(R)COO-

 
NH2CH(R)COO

- 
----------- (9) 

              ( H2L+ )                                        ( HL± )                                    (L- )  

Besides these two functional groups, most of the essential amino acids contain further 
functional groups in the side chains of amino acids. 

3.1.2 Interactions of [Pd(diamine)(H2O)2] with amino acids containing no functional 
group in the side chain 

3.1.2.1 Complexes formed when only one metal coordination site is available 

Multi-NMR studies (Appleton et al., 1986; Appleton, 1997) of complexes as 
[M(NH3)3(H2O)]2+, M = Pt(II) or Pd(II) with amino acids (AA) showed the initial formation 
of metastable isomer e.g. [Pd(NH3)3(HGly-O)]2+ is formed at low pH~3, which coordinate 
through the carboxylate oxygen. Since glycine nitrogen (pKa ~ 9.6) is protonated under these 
conditions and the carboxyl group (pKa ~ 2.3) partially deprotonated, carboxylate oxygen is 
more available for reactions than the amine nitrogen. This complex was slowly converted to 
[Pd(NH3)3(HGly-N)]2+ isomer and the conversion can be slowed at lower pH. ǃ-alanine has 
an additional methylene group. Its corresponding complex, Hǃala-O, did not isomerise at 
pH = 4.5, but slowly isomerise at higher pH to the complex with ǃ-ala-N. Appleton et al. 
(Appleton et al., 1986) using multinuclear NMR showed that γ–aminobutyric acid complex, 

[Pt(NH3)3(γaba-O)]2+, standing at pH = 10 caused only slow displacement of the carboxylate-
bound ligand by hydroxide. Generally, the O-bound isomer is thermodynamically more 
stable relative to N-bound form for Pd(II) relative to Pt(II), reflecting a kind of hardness 
Pd(II) compared to Pt(II) (Appleton, 1997). 

3.1.2.2 Complexes formed when two metal coordination sites are available 

It has been well established that N,O-chelation is a characteristic coordination mode for 

glycine bound to palladium(II) (Freeman and Colomb, 1964). The complex-formation 

equilibria for amino acids may be represented as shown in scheme 2. 
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Scheme 2. Coordination mode of amino acids 

The complexes of general fomula [Pd(diamine)(AA)], where AA = glycine, alanine, valine, 
proline, phenylalanine, Ǆ-aminobutyric acid, ǃ-alanine and proline are investigated. The 
potentiometric titration curves of the [Pd(diamine)] with amino acids, lie significantly below 
the amino acid alone ones. This reveals that the formation of complex species occurs 
through release of hydrogen ions.  

The stability constants of amino acids with [Pd(amine)(H2O)2] are showed in Tables 3 and 4 
(Shoukry et al., 1999; Lim, (1978); Mohamed. and Shoukry, 2001; El-Sherif et al., 2010; Shehata 
et al., 2008; Shehata et al., 2009; El-Sherif, 2006). The amino acids with no functional groups in 
the side chains generally form 1:1 complexes with [Pd(diamine)(H2O)2]2+. Their complexes are 
very stable, with stability constants of log ǃ110 ~ 10-12. They coordinate through both the 
amino group and the carboxylate oxygen, forming stable five-membered chelate ring. 

The stability constant of 1:1 complex with imidazole have a smaller value than those of 
amino acids, further supporting that amino acids are coordinating as bidentate ligands. 
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The stability constants log ǃ110 of [Pd(AEPY)alanine]2+ (10.46) > [Pd(AEPY)-ǃ-alanine]2+ 

(9.81) > [Pd(AEPY)-Ǆ-aminobutyric acid] (7.81). This trend is attributed to extra stability of 

five-membered chelate rings for alanine complexes compared to six and seven-membered 

rings for ǃ-alanine and γ-aminobutyric acid, respectively (Shehata  et al., 2009). 

3.1.3 Interactions of [Pd(diamine)(H2O)2] with amino acids containing sulphur atom in 
the side chain 

Sulphur containing amino acids (e.g. cysteine, methionine and S-methylcysteine) easily react 

with Pd(II) because of the great tendency of sulphur (a soft Lewis base) to form bonds with 

these metals (soft Lewis acids). 

NH
2

O

S

CH
3

OHS

CH
3

NH
2

O

OH S

H

NH
2

O

OH

S-Methyl cysteine Methionine Cysteine

 

The interaction of Pt(II) and Pd(II) with methionine in aqueous solution primarily occurs 

through the sulphur atom and chelates only in a further step, binding through the amino 

group (Norman et al., 1992).  

The stability constants of S-methyl cysteine (SMC) and methionine with Pd(II) (tables 3 and 

4) are lower than those of ordinary amino acids, suggesting that they are not coordinated as 

glycine complexes. The stability constants with SMC are generally higher than those with 

methionine due to the formation of more stable 5-membered ring. The reaction between 

[Pd(diamine)(H2O)2]2+ and S-containing amino acids is showed in scheme 3. At low pH 

values the coordination site is through S-atom, slowly forming bidentate ligand followed by 

deprotonation of the carboxylic group. 
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Scheme 3. Interaction of [Pd(diamine)(H2O)2]2+ with S-containing amino acids. 

3.1.4 Interactions of [Pd(diamine)(H2O)2] with amino acids containing hydroxy group 
in the side chain 

Serine and threonine are ǂ-amino acids with ǃ-OH group in the side-chain. They contain 

only two dissociable protons in the measurable pH range (-NH3+ and -COOH), as the 

alcoholic hydoxy group is so weakly acidic (pKa > 14), that it does not undergo dissociation 

in the measurable pH range. The ǃ-alcoholate group in the side chain of the amino acids 

serine and threonine have been found to play an essential role in the action mechanism of a 

number of proteolytic enzymes, e.g. chymotrypsin and subtilisin (Bernhard, 1986). 

NH
2

OHOH

O

NH
2

O

OH
OH

CH
3

Serine Threonine
 

[Pd(diamine)(H2O)2]2+ promotes the ionization of the alcohol group of serine and threonine, 

the presence of the species 11-1 indicates the ionization of the OH side-chain. The pKa of the 

ionization can be calculated using Eq.10 

 pKa =log ǃ110 - log ǃ11-1  (10) 

The pKa of ionization for serine and threonine are 8.26 and 7.53 with Pd(1,2-DAP), 

respectively (Shoukry et al.,1999). Values of 8.51 and 8.05 were obtained with Pd(en), Table 3 

(Shoukry, et al., 1999; Lim, 1978; Mohamed and Shoukry, 2001; El-Sherif et al., 2010; Shehata, 
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et al., 2008). This large acidification of ~ 6 log units indicates a large contribution of the OH 

group in the coordination process at higher pH and participation of the OH group in 

complex formation is not contributing significantly in the physiological pH range. The pKa 

value of the alcoholate group incorporated in the Pd(II)-AMBI-serine complex is 8.21 (El-

Sherif, 2006). This value is lower than that of the Pd(N,N´-dimethylethylenediamine)-serine 

complex (8.43) (Mohamed and Shoukry, 2001). This may be due the π-acceptor property of 

the pyridine ring, which increases the electrophilicity of the Pd(II) ion and consequently 

decreases the pKa value of the coordinated alcoholate group. 

System p q rb enc (Me)2end 1,2-DAPe 1,3-DAPf SMCg 

Glycine 1 1 0 11.21 11.79 11.01 11.12 10.13 

Alanine 1 1 0 11.22 10.89 11.42 11.22 10.21 

ǃ-Phenylalanine 1 1 0 - 10.09 11.06 - 9.97 

ǃ-Alanine 1

1 

1 

1 

0 

1 

- - - - 9.75 

13.37 

Valine 1 1 0 - 11.59 11.36 - 9.82 

Proline 1 1 0 12.16 11.14 11.55 - 10.62 

Iso-leucine 1 1 0  - - - 10.44 

Methionine 1 1 0 9.14 11.27 10.37 10.31 8.75 

S-Methylcysteine 1 1 0 9.38 - 10.83 10.64 8.94 
Cysteine 1

1 
1 
1 

0 
1 

- - - - 14.32 
22.67 

Serine 1
1 

1 
1 

0 
-1 

11.01 
2.50 

10.92 
2.49 

12.00 
3.74 

- 9.87 
0.67 

Threonine 1
1 

1 
1 

0 
-1 

10.96 
2.91 

- 11.76 
3.83 

10.57 
2.11 

9.76 
0.38 

Ornithine 1
1 

1 
1 

0 
1 

 13.34 
20.85 

13.65 
19.86 

- 11.23 
20.21 

Lysine 1
1 

1 
1 

0 
1 

 11.19 
21.19 

11.49 
20.44 

- 10.87 
20.69 

Histidine 1
1 

1 
1 

0 
1 

 14.45 14.75 - 11.50 

Histamine 1
1 

1 
1 

0 
1 

 12.61 
17.03 

13.22 - 10.92 

Aspartic acid 1
1 

1 
1 

0 
1 

 10.70 - - - 

Glutamic acid 1
1 

1 
1 

0 
1 

 10.56 - 9.72 
13.60 

10.61 
13.99 

aN-N = aliphatic diamine, bp, q and r are stoichiometric coefficients corresponding to 
[Pd(diamine)(H2O)2], ligand and H+ respectively, cen = ethylenediamine, data taken from reference 
(Lim, 1978), dMe2en = N,N′-dimethylethylenediamine, data taken from reference (Mohamed and 
Shoukry, 2001), e1,2-DAP=1,2-diaminopropane, data taken from reference (Shoukry, et al., 1999); f1,3-
DAP=1,3-diaminopropane, data taken from reference (El-Sherif et al., 2010); gSMC=S-Methyl-L-cysteine, 
data taken from reference (Shehata, et al., 2008). 

Table 3. Formation constants (log ǃ110) of [Pd(diamine)(H2O)2]a with amino acid at 25 0C and 
0.1 mol dm-3 NaNO3. 
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System p q rb Picc AEPYd AMBIe 

Glycine 1 1 0 9.95 10.33 9.71 

Alanine 1 1 0 10.89 10.46 9.98 

ǃ-Phenylalanine 1 1 0 11.05 9.86 11.01 

ǃ-Alanine 1 

1 

1 

1 

0 

1 

- 9.81 

13.37 

- 

Valine 1 1 0 10.33 10.22 9.91 

Proline 1 1 0 11.16 10.81 10.85 

Iso-leucine 1 1 0 11.76 10.56 11.10 

Methionine 1 1 0 9.49 9.08 9.12 

S-Methylcysteine 1 1 0 10.52 9.16 10.15 

Cysteine 1 

1 

1 

1 

0 

-1 

- 15.11 

19.20 

- 

Tyrosine 1 1 0 14.61 - - 

Tryptophan 1 1 0 10.95 - - 

Serine 1 

1 

1 

1 

0 

-1 

11.35 

3.05 

10.34 

2.04 

10.61 

2.40 

Threonine 1 

1 

1 

1 

0 

-1 

10.40 

- 

10.29 

2.19 

- 

Ornithine 1 

1 

1 

1 

0 

1 

13.13 

20.54 

13.27 

20.53 

10.21 

18.68 

Lysine 1 

1 

1 

1 

0 

1 

- 10.62 

19.49 

- 

Histidine 1 

1 

1 

1 

0 

1 

13.36 13.37 

16.32 

13.14 

19.15 

Histamine 1 

1 

1 

1 

0 

1 

13.19 12.85 

 

10.34 

Aspartic acid 1 

1 

1 

1 

1 

1 

0 

1 

2 

10.02 - - 

Glutamic acid 1 

1 

1 

1 

1 

1 

0 

1 

2 

- 9.19 

13.27 

15.79 

- 

aN-N = aromatic diamine, bp, q and r are stoichiometric coefficients corresponding to 

[Pd(diamine)(H2O)2], ligand and H+ respectively, cPic = picolylamine, data taken from reference (El-

Sherif et al., 2003), dAEPY = 2-aminoethylpyridine, data taken from reference (Shehata, et al., 2009), 
eAMBI=2-aminomethylbenzimidazole, data taken from reference (El-Sherif, 2006).  

Table 4. Formation constants (log ǃ110) of [Pd(diamine)(H2O)2]a with amino acid at 25 0C and 

0.1 mol dm-3 NaNO3.  
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The pKa value (9.20) for the Pd(SMC)-serine complex as reported in Table 3 is higher than 

the corresponding values of the Pd(N, N´-dimethylethylenediamine)-serine (8.43) [52] and 

Pd(Picolylamine)-serine complexes (8.30) (El-Sherif et al., 2003). This is due to the strong 

trans labilization effect of sulfur on the coordinated alcoholate group, and in turn hinders 

the induced proton ionization. This will increase the pKa value of the alcoholate group in the 

case of the Pd(SMC)-serine complex. 

3.1.5 Interactions of [Pd(diamine)(H2O)2] with amino acids containing amino group in 
the side chain 

Ornithine and lysine are ǂ- amino acids having an extra terminal- amino group. They 

coordinate with [Pd(diamine)(H2O)2]2+ as bidentate either by the two amino groups (N,N-

donor set) or glycine-like, through the ǂ-amino and carboxylate groups (N,O-donor set). 

The way of coordination is depending on three factors: 

1.  The chelate ring size. 

2.  The steric effects. 

3.  The pH of the solution. 
 

NH
2

NH
2

OH

O

NH
2

OH

O

NH
2

LysineOrnithine

 

The stability constant of the Pd(DAP)-Ornithine complex (logǃ110 = 13.65) is higher than 

those of ǂ- amino acids. This may indicate that ornithine most likely chelates by the two 

amino groups at higher pH, this is being supported by the great affinity of palladium to 

nitrogen donor centres. Unlike ornithine, The stability constant of the Pd(DAP)-lysine 

complex (logǃ110 = 11.49) is extremely fair with those of ǂ- amino acids. This may indicate 

that lysine most likely chelates by the amino and carboxylate groups (glycine-like), because 

chelates formed through binding with the two amino groups will form unstable eight-

membered ring. The concentration distribution diagram of [Pd(AMBI)(ornithine)] complex 

is given in Fig. 2. It clearly shows that lysine starts to form the protonated species (111) at 

low pH and predominates between pH (4-9) and attains maximum concentration of ~ 98%, 

i.e it is the main complex species in physiological pH range. The complex species (110) 

predominates after pH ~ 9. The (10-1) hydrolysed species is present in very low 

concentration and the (10-2) species starts to form at higher pH, ca. ~ 10. Therefore, in the 

physiological pH range the OH- ion doesn't compete with ornithine in the reaction with the 

palladium (II) complexes. 
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Fig. 2. Concentration distribution of various species as a function of pH in the Pd(AMBI)-
Ornithine system at concemtrations of 1.25x10-3 mol-dm-3 for  Pd(AMBI)2+ and ornithine,  

I = 0.1 mol-dm-3 (NaNO3) and T = 25 ± 0.1 0C). 

3.1.6 Interactions of [Pd(diamine)(H2O)2] with amino acids containing carboxylic acid 
group in the side chain 

Aspartic and glutamic are ǂ- amino acids having two carboxylic and one amino group as 

potential chelating sites. They coordinate with [Pd(diamine)(H2O)2]2+ as bidentate either 

by the two carboxylate groups or by the amino and one carboxylate group. The stability 

constant of the aspartic and glutamic acid complexes is in the range of those for amino 

acids. This may reveal that both amino acids coordinate by the amino and one carboxylate 

group.  

O

N H
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O H

C O O H

H O O C
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3.1.7 Interactions of [Pd(diamine)(H2O)2] with amino acids containing imidazole group 
in the side chain 

The protonated histidine contains three dissociable protons, which can dissociate in the 
following sequence: carboxylic acid, imidazolium N(3)-H and side chain NH3+. The 
imidazole N(1)-H is very weekly acidic (pKa = 14.4), and thus it does not dissociate in the 
measurable pH range (Burger, 1990).  

Histidine has three binding sites, provided imidazole, amino and carboxylate groups. It 
coordinates with [Pd(diamine)(H2O)2]2+ as bidentate either by the ǂ-amino group and 
imidazole groups (N,N-donor set) or glycine-like, through the ǂ-amino and carboxylate 
groups (N,O-donor set).  

N H
2

NH

N
NH

N N H
2

O

O H

  H istid ine  H istam ine

1
3

2
1

2 3

 

O

O

NH
2

N

Pd

N

CH
2

NH
2

N
H

NN

Pd

N
 

(Glycine-like)                                                              (Histamine-like) 

The formation constant value of the (110) species is in fair agreement with that of histamine 
complex, but higher than those of ǂ-amino acids. This indicates that histidine interacts with 
[Pd(diamine)(H2O)2] in the same way as histamine does i.e. through the amino and 
imidazole. 

Histidine has shown to form both protonated (111) and deprotonated (110) complex species. 
The acid dissociation constant of the protonated species is given by the following Eq. (11). 

 pKH = log ǃ111 - log ǃ110  (11)  

In the reaction with [Pd(AEPY)(H2O)2]2+ species only two of the above three binding sites 
are involved in complex formation. The stability constants of the histidine complexes 
(logǃ110 = 13.37) is higher than that of histamine (logǃ110 = 12.85) by 0.52 log ǃ units. 
Moreover, it is higher than those of amino acids (e.g. logǃ110 of glycine = 10.33) by 3.04 log 
units, indicating that both kinds of chelation are involved glycine-like (N,O) at lower pH 
and histamine-like (N,N) at higher pH. In general, histidine forms more stable complex than 
histamine due to the negative charge of histidine compared to neutral histamine. 
Furthermore, palladium may form back bonding to the π–system of imidazole ring, which 
brings more stable complexes. 
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3.2 Interactions of [Pd(diamine)(H2O)2] with peptides 

Amide bonds or groups provide the linkage between adjacent amino acids. A protein is 
composed of a chain of (n) amino acids contains (n-1) peptide (amide) bonds in the 
backbone. The tetrahedral amino nitrogen in an amino acid with pKa ~ 9.7 loses its basicity 
upon reaction to give trigonal nitrogen in an amide bond. Amide groups are planar due to 
40% double-bond character in the C-N bond, and the trans form is strongly favoured (Sigel 
and Martin, 1982).  

O

N

R

R

H

N

R

R

H

O

..

..
.. ..

..
..

+

_

60% 40%  

The presence of the peptide linkage decreases the basicity of the amino group and the 
acidity of the carboxylic group. 

An amide group offers two potential binding atoms, the oxygen and nitrogen atoms. 
Throughout most of pH range, in the absence of metal ions, the amide group is neutral. It is 
being a very weak acid for proton loss from the trigonal nitrogen to give a negatively 
charged species. This very weak acidity makes quantitative equilibrium measurements very 
difficult. For acetamide it was reported that pKa = 15.1, and the pKa for glycylglycinate is 
14.1. 

 

 
 
 

There are at least four donor groups in the dipeptide (Sigel and Martin, 1982) (amino-N, 
carboxylate-O, amide-N and carbonyl-O), all are capable of metal ion coordination. Because 
of the neutrality of the amide group, the terminal amino and carboxylate groups are the 
most effective binding sites for metal ions in peptides. The coordination of amide group can 
occur after deprotonation. Other groups may additionally be present in the side chains R1 
and R2.  

N
H

O
NH

2

COOHNH
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O
NH
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COOH
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O

NH
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glycinamide
glycylglycine

glutamine  

Peptides form complexes with stochiometric coefficients 110 and 11-1 according to Scheme 
(4). Peptides with Pd(II) are known for promoting ionization of the peptide linkage with pKa 
value calculated by Eq.10. 
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It is found that, most metal ions form complexes with peptides by coordinating with 
carbonyl oxygen of the peptide group. Only certain specific metal ions are able to promote 
the deprotonation of the peptide nitrogen and become coordinated with it. Among these 
metals are Co(II), Ni(II), Cu(II) and Pd(II). The affinity for nitrogen bonding sites over 
oxygen bonding sites increases from cobalt to palladium corresponding to the stability of 
their deprotonated complexes. This is consistent with the idea that the deprotonated amide 
nitrogen is a "soft" base.  

It is clear that, the stability of the complex with glycylglycine (log ǃ110) is generally higher than 
glycinamide as indicated in Tables 5 and 6 (Shoukry et al., 1999 ; El-Sherif, 2003 ; Lim, 1978 ; 
Mohamed and Shoukry 2001 ; El-Sherif et al., 2010 ; Shehata et al., 2008 ; Shehata et al., 2009; 
El-Sherif, 2006) due to the negative charge of glycylglycinate compared to neutral glycinamide. 
The electrostatic interaction between dipositively charged palladium complex and the 
negatively charged glycylglycine would result in a general free formation energy lowering.  
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Scheme 4. Mode of coordination of [Pd(diamine)(H2O)2] with peptides 

The pKa value for glycinamide complex is lower than those for other peptides. This is due to 
the bulky substituent group on the other peptides that may hinder the structural changes 
when going from species 110 to 11-1 (peptide ionization). Glutamine complex has the 
highest stability, probably due to the presence of ǂ-NH2 that can coordinate first (glycine-
like). The ǂ-NH2 of glutamine is more basic than those of other peptides resulting in more 
stable complexes compared to other peptides. The concentration distribution diagrams of 
Pd(diamine)-peptide complexes indicate that all peptides form the complex species (110) at 
low pH with the species (11-1) as the main product at higher pH.  
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System p q rb enc (Me)2end 1,2-DAPe 1,3-DAPf SMCg 
Glycinamide 1

1 
1
1 

0
-1 

8.64
2.47 

7.40
3.03 

8.58
5.35 

8.63
5.23 

7.56 
-3.38 

Glutamine 1
1 

1
1 

0
-1 

10.76
9.03 

10.73
5.82 

11.02
2.12 

9.24
-0.32 

8.73 
1.08 

Glycylalanine 1
1 

1
1 

0
-1 

- 7.63
0.84 

- - - 

Glycylglycine 1
1 

1
1 

0
-1 

9.60
3.76 

7.75
2.69 

9.41
6.02 

8.01
4.24 

7.73 
2.61 

Asparagine 1
1 

1
1 

0
-1 

10.46
6.46 

12.31
4.71 

12.79
6.38 

- 8.92 
2.08 

Glycylleucine 1
1 

1
1 

0
-1 

- 8.36
0.01 

7.73
3.30 

- 7.69 
1.98 

Glycylvaline 1
1 

1
1 

0
-1 

- - - - 7.66 
2.00 

aN-N = aliphatic diamine bp, q and r are stoichiometric coefficients corresponding to 
[Pd(diamine)(H2O)2], ligand and H+ respectively, cen = ethylenediamine, data taken from reference 
(Lim, 1978), dMe2en = N,N′-dimethylethylenediamine, data taken from reference (Mohamed and 
Shoukry 2001), e1,2-DAP=1,2-diaminopropane, data taken from reference (Shoukry et al., 1999); f1,3-
DAP=1,3-diaminopropane, data taken from reference (El-Sherif et al., 2010); gSMC=S-Methyl-L-cysteine, 
data taken from reference (Shehata et al., 2008). 

Table 5. Formation constants (log ǃ110) of [Pd(diamine)(H2O)2]a with peptides at 25 0C and 
0.1 mol dm-3 NaNO3. 

System p q rb Picc AEPYd AMBIe 
Glycinamide 1

1
1
1

0
-1

9.30 
5.73 

8.01
4.16

8.63 
5.23 

Glutamine 1
1

1
1

0
-1

10.02
0.36 

9.11
0.47

9.24 
-0.32 

Glycylalanine 1
1

1
1

0
-1

8.31 
3.08 

- - 

Glycylglycine 1
1

1
1

0
-1

8.29 
4.37 

8.20
3.56

8.01 
4.24 

Asparagine 1
1

1
1

0
-1

10.06
2.65 

9.42
1.90

8.81 
-0.42 

Glycylleucine 1
1

1
1

0
-1

8.22 
3.06 

7.75
2.18

- 

Glycylvaline 1
1

1
1

0
-1

7.73 
2.39 

- - 

Leucylalanine 1
1

1
1

0
-1

7.73 
2.39 

- - 

aN-N = aromatic diamine, bp, q and r are stoichiometric coefficients corresponding to 
[Pd(diamine)(H2O)2], ligand and H+ respectively, cPic = picolylamine, data taken from reference (El-
Sherif, 2003), dAEPY = 2-aminoethylpyridine, data taken from reference (Shehata et al., 2009), eAMBI=2-
aminomethylbenzimidazole, data taken from reference (El-Sherif, 2006). .  

Table 6. Formation constants (log ǃ110) of [Pd(diamine)(H2O)2]a with peptides at 25 0C and 
0.1 mol dm-3 NaNO3. 
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Fitting the potentiometric data for the Pd(DAP)-glutathione system indicated the formation 

of complex species with the stoichiometric coefficients 110 and 111. Glutathione has various 

binding sites, namely oxygen atom of carboxylic group, nitrogen atom of amino group and 

sulphur atom of sulfhydryl group. The stability constant of the (110) complex (log ǃ = 15.92) 

is higher than the ones of ǂ-amino acids (log ǃ[Pd(DAP)(glycine)] = 11.12). This indicates that 

glutathione interacts with Pd(II) ion by the amino and deprotonated SH groups and not by 

the amino and caboxylate group like simple ǂ-amino acids. This is in good agreement with 

the fact that Pd(II) has a high affinity for S-donor ligands. The concentration distribution 

diagram of [Pd(DAP)(glutathione)] given in Fig. 3, shows the formation of the protonated 

complex 111 with a formation degree of 81% at pH 3.1. At pH 6, the complex species (110) 

predominates with a concentration of 99 % i.e. the reaction of [Pd(DAP)]2+ goes to 

completion in the physiological pH range. This may suggest that GSH will compete with 

DNA for the reaction with the Pd(II) complex. 
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Fig. 3. Concentration distribution of various species as a function of pH in the Pd(DAP)-

Glutathione system at concentrations of 1.25x10-3 mol-dm-3 for Pd(DAP)2+ and glutathione,  

I = 0.1 mol-dm-3 (NaNO3) and T = 25 ± 0.1 0C). 

3.3 Interactions of [Pd(diamine)(H2O)2] with DNA constituents  

3.3.1 Nucleosides, nucleotides and nucleic acid 

Nucleosides are composed of a purine or pyrimidine base attached to the sugar ribose via 

the N-9 and C-1 atoms, respectively. In nucleotides, the sugar is linked to a phosphate 

group. 
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The nucleic acids are polymers built up from nucleotides via phosphodiester bond formation 
between the 3´-OH group of one nucleotide and the 5´-OH group of the adjacent nucleotide. 
The sequence of the nucleotides is extremely important as it constitutes the genetic code in 
DNA. Different nucleotides vary in the nature of the purine and pyrimidine bases (Hay, 1985).  

3.3.2 Ternary complexes involving DNA constituents and [Pd(diamine)(H2O)2] 

The accepted models for DNA complex formation with [Pd(diamine)(H2O)2]2+ are consistent 
with the formation of 1:1 and 1:2 complexes, as shown in Tables 7 and 8 (Shoukry et al.,1999; 
El-Sherif et al., 2003; Lim, 1978; Mohamed and Shoukry, 2001; El-Sherif, et al., 2010; Shehata, 
et al., 2008); Shehata, et al., 2009; El-Sherif, 2006). Generally, from Table 8, the complexes 
with DNA constituents are more stable (higher log ǃ values) with bipyridine than with all 
other amine ligands. They are probably stabilized by intramolecular stacking between the 
bipyridine aromatic ring and the purine rings (Fisher and Sigel, 1980). The stability of the 
corresponding complexes with picolylamine has intermediate log ǃ values, probably 
because in this case there is only one pyridine ring.  

The pyrimidines, uracil and thymine have only basic nitrogen donor atoms (N3-C4O group). 
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System p q rb enc (Me)2end 1,2-
DAPe 

1,3-
DAPf 

SMCg 

Uracil 1 
1 

1 
2 

0 
0 

8.35 
14.88 

8.35 
14.88 

8.74 
15.43 

8.61 
14.76 

8.18 
12.40 

Uridine 1 
1 

1 
2 

0 
0 

8.70 
14.37 

8.70 
14.37 

- - 8.10 
12.21 

Thymine 1 
1 

1 
2 

0 
0 

- 8.56 
15.14 

8.90 
15.80 

9.02 
15.65 

8.63 
13.28 

Thymidine 1 
1 

1 
2 

0 
0 

8.84 
14.69 

8.75 
14.53 

8.92 
14.84 

- 9.27 
14.10 

Cytosine 1 
1 

1 
2 

0 
0 

- - - - 5.73 
8.54 

Cytidine 1 
1 

1 
2 

0 
0 

- - - - 4.93 
8.44 

Inosine 1 
1 
1 

1 
1 
2 

0 
1 
0 

6.83 
- 

11.26 

8.03 
12.40 
12.74 

- 7.62 
9.69 

6.81 
10.16 
10.84 

UMP 1 
1 
1 

1 
1 
2 

0 
1 
0 

- - - - 8.35 
13.62 
14.17 

IMP 1 
1 
1 
1 
1 
1 

1 
1 
1 
2 
2 
2 

0 
1 
2 
0 
1 
2 

8.76 
15.26 
18.50 
12.31 

8.76 
15.26 
18.50 
12.31 
21.69 
28.45 

- - 7.25 
10.60 

- 
10.51 

- 
- 

GMP 1 
1 
1 

1 
1 
2 

0 
1 
0 

- - - - 8.20 
11.35 
14.52 

Adenine 1 
1 
1 

1 
1 
2 

0 
1 
0 

- 12.15 
- 

11.14 - 9.14 
11.96 
12.57 

CMP 1 
1 
1 

1 
1 
2 

0 
1 
0 

- - - - 5.34 
7.67 
11.59 

TMP 1 
1 
1 

1 
1 
2 

0 
1 
0 

 - - - 8.41 
13.53 
13.84 

aN-N = aliphatic diamine bp, q and r are stoichiometric coefficients corresponding to 
[Pd(diamine)(H2O)2], ligand and H+ respectively, cen = ethylenediamine, data taken from reference 
(Lim, 1978), dMe2en = N,N′-dimethylethylenediamine, data taken from reference (Mohamed and 
Shoukry 2001), e1,2-DAP=1,2-diaminopropane, data taken from reference (Shoukry et al., 1999);  
f1,3-DAP=1,3-diaminopropane, data taken from reference (El-Sherif, et al., 2010); gSMC=S-Methyl-L-
cysteine, data taken from reference (Shehata et al., 2008). 

Table 7. Formation constants (log ǃ110) of [Pd(diamine)(H2O)2]a with DNA constituents at  
25 0C and 0.1 mol dm-3 NaNO3. 
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 System p q rb Picc AEPYd BPYe AMBIf 

Uracil 1
1 
1 
1

1
2 
1 
2

0
0 
1 
1

9.17
15.98 

8.03
14.47 

- 
-

10.96
17.17 
13.50 
22.15

9.08 
12.98 

Uridine 1
1 
1 
1

1
2 
1 
2

0
0 
1 
1

9.00
14.96 

- 9.71
16.88 
13.29 
22.65

9.43 
13.11 

Thymine 1
1

1
2

0
0

8.96
15.62

- - 8.89 
12.94 

Thymidine 1
1

1
2

0
0

9.17
15.21

8.25
13.72

- 9.12 
12.93 

Cytosine 1
1 
1

1
2 
1

0
0 
1

- 5.98
8.91 

10.86

- - 

Adenosine 1
1

1
2

0
0

- 2.84
5.25

 

Guanosine 1
1

1
2

0
0

- 10.48
19.03

 

Adenine 1
1 
1 
1 
1

1
2 
1 
2 
2

0
0 
1 
1 
2

- 9.47
14.05 
18.56 

- 
-

11.95
16.59 
15.97 
25.76 
30.25

- 

Inosine 1
1 
1 
1 
1 
1

1
2 
1 
2 
2 
1

0
0 
1 
1 
2 
2

- 7.78
11.64 
11.89 

- 
- 
-

9.71
14.89 
12.55 
20.11 
25.37 

-

10.02 
- 

12.06 
- 
- 

14.40 
IMP 1

1 
1 
1 
1 
1 

1
2 
1 
2 
2 
1 

0
0 
1 
1 
2 
2 

10.42
- 

16.46 
- 
- 

18.73 

9.18
16.35 
13.93 

- 
- 
- 

10.17
14.80 
16.65 
21.49 
28.50 
20.98 

10.05 
- 

15.81 
- 
- 

17.79 
GMP 1

1 
1 
1 
1 
1 

1
2 
1 
2 
2 
1 

0
0 
1 
1 
2 
2 

10.83
- 

17.35 
- 
- 

21.01 

9.23
13.44 
15.16 

- 
- 
- 

- 10.40 
- 

16.57 
- 
- 

19.78 
CMP 1

1 
1 
1 
1

1
2 
1 
2 
2

0
0 
1 
1 
2

- 5.89
8.57 

10.86 
- 
-

11.95
16.59 
15.97 
25.76 
30.25

- 

aN-N = aromatic diamine, bp, q and r are stoichiometric coefficients corresponding to 
[Pd(diamine)(H2O)2], ligand and H+ respectively, cPic = picolylamine, data taken from reference  
(El-Sherif, 2003), dAEPY = 2-aminoethylpyridine, data taken from reference (Shehata et al., 2009),  
eBPY = 2,2′-bipyridyl, data taken from reference (Shehata, 2001), eAMBI=2-aminomethylbenzimidazole, 
data taken from reference (El-Sherif, 2006) 

Table 8. Formation constants (log ǃ110) of [Pd(diamine)(H2O)2]a with DNA constituents at  
25 0C and 0.1 mol dm-3 NaNO3. 
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The thymine complex is more stable than the uracil one, most probably owing to the high 

basicity of the N3 group of thymine resulting from the extra electron donating methyl 

group. As a result of the high pKa values of pyrimidines (pKa ≈ 9) and the fact that they 

are monodentates, the complexes are formed only above pH 6, supporting the view that 

the negatively charged nitrogen donors of pyrimidine bases are important binding sites in 

the neutral and slightly basic pH ranges. The purines like inosine have two metal ion 

binding centres N1 and N7 nitrogens. Inosine can be protonated at N7 forming a (N1H- 

N7H) monocation. The pKa of N1H is 8.43 (El-Sherif, 2006) and the pKa of N7H is 1.2 

(Martin, 1985). It was reported that, in the acidic pH range, N1 remained protonated, 

while the metal ion is coordinated to N7 i.e. these N-donors are pH dependent binding 

sites and there is a gradual change from N7- binding to N1-binding with increase of pH 

(Maskos, 1985). The results showed that inosine form the complexes 110 and 111. The 

speciation diagrams of Pd(diamine)-inosine complexes indicated that the species 111 is 

formed in acidic pH range and it corresponds to the N7 coordinated complex, while N1 

nitrogen is in protonated form. Inosine is slightly more acidic than the pyrimidine bases, a 

property which can be related to the existence of a higher number of resonance forms for 

the inosine anion. Based on the existing data, uracil and thymine ligate in the 

deprotonated form through the N3 atom. 

Several solid Pd(II) complexes of guanosine and inosine have suggested to exhibit N7-O6 

chelation (Pneumatikakis, 1984 ; Pneumatikakis et al., 1988). Also, according to ab initio SCF 

calculations, N7-O6 chelation is the energetically favored bonding mode (Del Bene, 1984) ; 

Anwader et al., 1987).  

O
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NN
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N

O
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The IR spectrum of [Pd(BPY)(Inosine)]NO3 showed a shift of the ǎ(C=O) stretching 

vibration from 1700 cm-1 and 1676 cm-1 in the free inosine (which corresponds to keto-enol 

forms) to 1639 in the complex (Shehata, 2001). This clearly indicates the involvement of C=O 

in coordination. At higher pH, the N1H is deprotonated and the negative charge on N1 

resonates with C=O, increasing the negative charge on the oxygen atom. This is in consistent 

with the large acidification of the N1H.  

Inosine-5′-monophosphate (5′-IMP) forms a stronger complex with [Pd(diamine)(H2O)2] 

than does inosine. The extra stabilization can be attributed to the triply negatively charged 

5′-IMP3- ion. The purines, inosine-5´-monophosphate and guanosine-5´-monophosphate 

form 110, 111 and 112 complexes. The protonated species are easily detected with aromatic 

amine (BPY, Pic and AMBI) rather than with aliphatic amines (en, Me2en, 1,2-DAP and 1,3-

DAP). This may be interpreted on the basis that the protonated species are stabilized 

through the back bonding to the π–system of aromatic rings, which makes more stable 
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complexes. For Pd(AMBI)-complexes, the pKa values of the protonated species of the IMP 

complex (112) are 1.98 (log ǃ112 - log ǃ111) and 5.76 (log ǃ111 - log ǃ110). The corresponding 

values for GMP are 3.21 and 6.17. The former pKa value for IMP and GMP corresponds to 

the N1H group while the second is assignable to the -PO2(OH) group. The N1H groups 

were acidified upon complex formation by 7.23 (9.21-1.98) and 6.07 (9.28-3.21) pK units for 

IMP and GMP, respectively. Acidification of the N1H group upon complex formation is 

consistent with previous reports for IMP and GMP complexes (Sigel et al. 1994). In the 

fully protonated species (112), the two protons bound to N1 and the phosphate groups, 

exist at pH ~ 3 or lower. In the (111) complex species, which reaches its maximum 

concentration of 88 % at pH ~ 4.8 (Fig. 4), the single proton binds to phosphate. Therefore, 

monoprotonated species (111) is an N1-coordinated. The stability constant difference 

between the (112) and (111) complexes is 3.21, due to the pKa of the N1 deprotonation 

process. The phosphate group was not acidified upon complex formation since it is too far 

from the coordination center. A proposed coordination process of Pd(AMBI)2+ with 5′-

GMP is reported in Scheme 5. 
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Fig. 4. Concentration distribution of various species as a function of pH in the Pd(AMBI)-5´-
GMP system at concentrations of 1.25x10-3 mol-dm-3 for Pd(AMBI)2+ and 5´-GMP, I = 0.1 

mol-dm-3 (NaNO3) and T = 25 ± 0.1 0C). 
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Scheme 5. Proposed coordination process of Pd(AMBI)2+ with 5′-GMP 

The IMP and GMP complexes are more stable than those of the pyrimidines. The extra 

stabilization can be explained on the basis of different columbic forces operating between 

the ions resulting from the negatively charged phosphate group. Hydrogen bonding 
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between the phosphate and the exocyclic amine is also thought to contribute to the higher 

stability of the nucleotides over that of the nucleosides (Reedik, 1992).  

3.3.3 Comparison of thermodynamic and kinetic data 

It is interesting to compare the the stability constants obtained from earlier kinetic results of 

Pd(diamine) with DNA and those estimated from potentiometric measurements. Much of 

the kinetic work was done in an acidic pH range in order to simplify the speciation of the 

system. Under these conditions, Pd(Pic)2+ for example, binds to IMP through the N7 site, 

leaving the N1 site and the phosphate groups protonated. The stability constant (K) of the 

species formed under this condition is calculated using Eq. 12. 

 log K = log ǃ112 – log ǃ012  (12) 

The log K value was found to be 3.52. This is comparable with the value obtained from the 

kinetic investigation (log K = 2.09) (Rau et al., 1997). The difference can be related to 

different experimental conditions (the kinetic study was performed at 10 0C with an ionic 

strength of 0.5 M), techniques employed and the acidity range selected for the kinetic 

measurements, where more than one PdII complex and/or IMP acid-base forms may 

contribute to the kinetic result.  

It was previously shown that N-donor ligands such as DNA constituents have an affinity for 

[Pd(AEPY)(H2O)2]2+, which may have important biological implications. However, the 

preference of Pd(II) to coordinate to S-donor ligands was demonstrated as shown in Tables 3 

& 4. These results suggest that Pd(II)-N adducts can easily be converted into Pd-S adducts. 

Consequently, the equilibrium constant for such conversion is of biological significance. If 

we consider inosine as a typical DNA constituent (presented by HL) and cysteine as a 

typical thiol ligand (presented by H2B), the equilibria involved in the complex-formation 

and displacement reactions are: 

HL  H+ + L- 

 [Pd(AEPY)]2+ + L-  [Pd(AEPY)L]+ (13a)  

(100)                                           (110) 

 ǃ110[Pd(AEPY)L]+=[Pd(DAP)L]+/ [Pd(AEPY)]2+ [L-]  (13b) 

H2B  2H+ + B2-  

 [Pd(AEPY)]2+ + B2- [Pd(AEPY)B] (14a)  

 (100)                                            (110) 

 ǃ110[Pd(AEPY)B] = [Pd(AEPY)B] / [Pd(AEPY)]2+ [B2-]  (14b)  

Keq 

 [Pd(AEPY)L]+ + B2-  [Pd(AEPY)B] + L-  (15)  
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The equilibrium constant for the displacement reaction given in equation (15) is given by:  

 Keq =[Pd(AEPY)B] [L- ] / [Pd(AEPY)L]+[B2-]  (16) 

Substitution from eq. (13b) and (14b) in eq. (16) results in : 

 Keq = ǃ110[Pd(AEPY)B]/ ǃ110[Pd(AEPY)L]+  (17)  

The 100 species, [Pd(AEPY)(H2O)2]2+, is represented in the above equations as [Pd(AEPY)]2+ 
for simplicity reasons. logǃ110 values for [Pd(AEPY)(L)]+ and [Pd(AEPY)B] complexes taken 
from Tables 4 and 8 amount to 7.78 and 15.11, respectively, and by substitution in equation 
(17) it was found that log Keq = 7.33. In the same way the equilibrium constants for the 
displacement of coordinated inosine by glycine and S-methylcysteine are log Keq = 2.55 and 
1.38, respectively. These values clearly indicate how sulfhydryl ligands such as cysteine and 
by analogy glutathione are effective in displacing the DNA constituent, i.e., the main target 
in tumour chemotherapy. Chelated cyclobutanedicarboxylate (log Keq = 7.11) may undergo 
displacement reaction with inosine. Log Keq for such a reaction was calculated as described 
above and amounts to 0.68. The low value of the equilibrium constant for reaction is of 
biological significance since it is in line with the finding that carboplatin interacts with DNA 
through ring opening of chelated CBDCA and not through displacement of CBDCA. 

3.4 Ternary complexes involving CBDCA 

Cyclobutane-1,1-dicarboxylic acid (H2CBDCA) is a diprotic acid with pKa1 and pKa2 of 2.75 
and 5.48, respectively at 25 0C and 0.1M ionic strength (El-Sherif, et al., 2010 ; Shehata, et al., 
2009). The acid-base equilibria are schematized as follows: 

 

 

3.4.1 Ternary complexes involving CBDCA and [Pd(diamine)(H2O)2] 

The potentiometric data for H2CBDCA complex-formation with [Pd(diamine)(H2O)2]2+ were 
fitted considering the formation of 110 and the monoprotonated complex species 111 (Table 
9) (Shoukry et al., 1999; El-Sherif et al., 2003 ; Shehata, 2001; El-Sherif et al., 2010; El-Sherif, 
2006) according to Scheme (6). 

 
 
 
 
 
 
 
 
 
 

Scheme 6. Coordination mode of CBDCA with [Pd(diamine)(H2O)2] 
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Complex log ǃ110 log ǃ111 Reference 

1,2-DAPa 6.05 - (Shoukry et al., 1999) 
1,3-DAPb 7.16 - (El-Sherif et al., 2010) 
Pica 8.09 10.91 (El-Sherif et al., 2003) 
AMBIa 7.55 10.53 (El-Sherif, 2006) 
BPYa 8.47 11.37 (Shehata, 2001) 

a1,2-dap,1,3-DAP, Pic, AMBI and BPY are 1,2-diaminopropane, 1,3-diaminopropane Picolylamine,  
2-aminomethylbenzimidazole, and 2,2′-bipyridyl respectively at 25 ˚C and I = 0.1 M. 

Table 9. Stability constants of [Pd(diamine)(CBDCA)]. 

The stability constants of the CBDCA complex with [Pd(aromaticdiamine)(H2O)2]2+ is higher 

than those for [Pd(aliphaticdiamine)(H2O)2]2+. Moreover, the protonated species were not 

observed in similar palladium complexes of CBDCA and aliphatic amines (Shoukry et al., 

1999; El-Sherif et al., 2010) using potentiometric technique. The higher stability of CBDCA 

complexes with [Pd(aromaticdiamine)(H2O)2] and the stabilization of the protonated species 

may be attributed to the π-acceptor properties of the pyridine rings. The pKa of the 

protonated species of Pd(BPY) with CBDCA is 2.92; lower value than the one measured for 

HCBDCA-, indicating acidification upon first chelation to Pd through one carboxylate group 

by 2.56 pK units (5.48-2.92). The pKa value of this protonated species was estimated 

previously from UV-Vis. measurements to be ca. 2.5 at 25 °C and 0.1 M ionic strength 

(Shoukry et al., 1998). The involvement of the carboxylic oxygen in coordination is 

confirmed by the shift of the asymmetric and symmetric stretching frequencies of COO- to 

lower and higher frequencies, respectively. υas and υs, which can be found at 1706 and 1293 

cm-1 in H2CBDCA are shifted to 1645 and 1354 cm-1 in the [Pd(BPY)(CBDCA)] complex. This 

corresponds to a unidentate chelation mode (Nakamoto, 1997).  

3.4.2 Ring-opening of [Pd(DAP)(CBDCA)] and the formation of [Pd(DAP)(CBDCA-O) 
(DNA)] 

The potentiometric data for the system consisting of [Pd(diamine)(H2O)2]2+, CBDCA and 
DNA constituents were fitted assuming different models. The accepted model for the 
investigated DNA constituents is consistent with the formation of the 1110, 1111 and 1112 
species (Table 10) (El-Sherif et al., 2003; Shehata, 2001; Mohamed and Shoukry, 2001). The 
results were further verified by comparing the experimental potentiometric data with the 
theoretically calculated curve. This supports the formation of the quaternary complex. It is 
interesting to notice that the quaternary complex of inosine is more stable than those of 
pyrimidines. This may be explained on the premise that the cyclobutane ring forms a close 
hydrophobic contact with the purine ring of inosine. Such contacts may contribute to the 
stabilization of the quaternary complexes. These studies bring to the conclusion that CBDCA 
is attached through one carboxylate oxygen while 5´-GMP is attached through N7 of the 
purine base. The same finding was obtained from an NMR investigation of the ring opening 
reaction of carboplatin with phosphate, chloride, and 5´-guanosine monophosphate (5´-
GMP) in aqueous solution at 310 K using 1H, 15N and 31P NMR spectroscopy (Frey et al., 
1993). In each case a ring-opened species containing monodentate CBDCA was detected 
during reaction development. A structure of cis-[Pt(NH3)2(CBDCA-O)(5´-GMP)] is 
proposed, taking into account the equivalence of all six cyclobutane ring protons. There is a 

www.intechopen.com



 
Stoichiometry and Research – The Importance of Quantity in Biomedicine 

 

108 

close hydrophobic contact between the cyclobutane ring of monodentate CBDCA and the 
purine ring of coordinated 5´-GMP. The reaction of carboplatin with 5´-GMP (kobs 4.1 × 10-6 
s-1) was faster than that with phosphate (kobs 4.3 × 10-7 s-1) and chloride (kobs 1.2 × 10-6 s-1), or 
water alone (< 5 × 10-9 s-1), suggesting that direct attack of nucleotides on carboplatin may be 
importance crucial step in the mechanism of action for this drug. Estimation of the 
concentration distribution of the various species in solution provides a useful picture of 
metal ion binding. To illustrate the main features observed in the species distribution plots 
in these systems, the speciation diagram obtained for the Pd(Pic)-CBDCA-IMP system as a 
representative example of [Pd(Pic)(CBDCA-O)(DNA)] is shown in Fig. 5. The Pd(Pic)-
CBDCA species (1100) predominates at pH = 4.3 with maximum concentration of 73%. The 
Pd(Pic)-IMP species (1010) reaches the maximum concentration of 16 % at pH = 7.4. The 
quaternary species Pd(Pic)-CBDCA-IMP (1110) attains a maximum of 80 % in the pH range 
7.6-9. This reveals that in the physiological pH range the ring opening of chelated CBDCA 
by DNA is quite feasible.  

System l P q ra (Me)2en b Picc BPYd 
Uracil 1

1 
1

1
1 
1

1
1 
1

0
1 
2

16.18
- 
-

14.18
- 
-

18.31 
24.76 
27.05 

Uridine 1
1 
1

1
1 
1

1
1 
1

0
1 
2

15.17
- 
-

14.18
- 
-

20.14 
26.74 
28.62 

Thymine 1
1 
1

1
1 
1

1
1 
1

0
1 
2

15.71
- 
-

14.34
- 
-

- 

Thymidine 1
1 
1

1
1 
1

1
1 
1

0
1 
2

16.26 - - 

Adenine 1
1 
1

1
1 
1

1
1 
1

0
1 
2

- - 17.06 
23.24 
27.08 

Inosine 1
1 
1

1
1 
1

1
1 
1

0
1 
2

12.29
17.72 

-

- 16.64 
22.77 
25.58 

GMP 1
1 
1

1
1 
1

1
1 
1

0
1 
2

- 15.07
21.58 

-

- 

IMP 1
1 
1 
1

1
1 
1 
1

1
1 
1 
1

0
1 
2 
3

- 14.65
20.86 

- 
-

16.00 
22.42 
27.92 
31.49 

a l, p, q and r are the stoichiometric coefficients corresponding to Pd(diamine)(H2O)2], cyclobutane-1,1′-
dicarboxylate, DNA and H+, respectively. bMe2en = N,N′-dimethylethylenediamine, data taken from 
reference (Mohamed and Shoukry, 2001), cPic = picolylamine, data taken from reference (El-Sherif et al., 
2003), dBPY = 2,2′-bipyridyl, data taken from reference (Shehata, 2001). 

Table 10. Formation constants (log ǃ1110) for mixed ligand complexes of [Pd(diamine)(H2O)2] 
with cyclobutanedicarboxylic acid and some DNA units at 25 0C and 0.1M ionic strength. 
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Fig. 5. Concentration distribution of various species as a function of pH in the Pd(Pic)-

CBDCA-IMP system at concentrations of 1.25x10-3 mol-dm-3 for Pd(Pic)2+; CBDCA and IMP, 

I = 0.1 mol-dm-3 (NaNO3) and T = 25 ± 0.1 0C). 

4. Effect of solvent on the stability constants 

Traditionally, water has been considered as the solvent that best represents biological 
conditions. Although this is a general assumption, a lower polarity has been detected in 
some biochemical micro-environments, such as active sites of enzymes and side chains in 
proteins (Rees, 1980 ; Rogersa et al., 1985; Akerlof and  Short, 1953). It was suggested that 
these properties approximately correspond to those (or can be simulated by those)  
existing in the water/dioxane mixtures. Consequently, a study of the Pd(Pic)-CBDCA  
and Pd(1,3-DAP)-CBDCA complex formation, taken as a typical example for 
[Pd(aliphaticdiamine)CBDCA] and [Pd(aromaticdiamine)CBDCA] respectively, in dioxane-
water solutions of different compositions could be of biological significance. In order to 
characterize the formation equilibria of the Pd(diamine)-CBDCA complex in dioxane-water 
solutions, all other equilibria involved, namely acid-base equilibria of CBDCA and 
[Pd(diamine)(H2O)2]2+, have to be studied in the same solvent. The equilibrium constants are 
reported in Table 11 (El-Sherif et al., 2003, 2010). The hydrolysis of Pd(diamine)2+ complex in 
dioxane-water solution leads to the formation of mono- and dihydroxy species. The 
dihydroxo bridged dimer was not detected. The pKa values of CBDCA and those of the 
coordinated water molecules in [Pd(diamine)(H2O)2]2+ increase linearly with increasing of 
dioxane concentration. This may be correlated with the ability of a relatively low dielectric 
solvent to increase the electrostatic attraction between the proton and the ligand anion in 
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case of CBDCA and between a proton and the hydrolysed form of Pd(II) species. The 
variation in the stability constant of the [Pd(diamine)(H2O)2]2+ complex with CBDCA as a 
function of solvent composition, is shown in Fig. 6. The stability constant for the 
Pd(diamine)-CBDCA complex increases linearly with increasing dioxane concentration. This 
is explained in terms of complex formation involving oppositely charged ions as in the 
Pd(diamine)-CBDCA complex, which is favoured by the low dielectric constant of the 
medium, i.e. with increasing dioxane concentration. The results show that the CBDCA 
complex with Pd(diamine)2+ will be more favoured in biological environments of lower 
dielectric constant. 

% Dioxane p q ra Picb 1,3-DAPc 

12.5 1 1 0 8.93 8.13 
25 1 1 0 9.36 8.57 
37.5 1 1 0 9.89 8.98 
50 1 1 0 10.58 9.48 
62.5 1 1 0 10.99 10.13 

ap, q and r are stoichiometric coefficients corresponding to [Pd(diamine)(H2O)2], ligand and H+ 
respectively, bPic = picolylamine, data taken from reference (El-Sherif et al., 2003), c1,3-DAP = 1,3-
diaminopropane, data taken from reference (El-Sherif et al., 2010).  

Table 11. Effect of dioxane on the formation constant (log ǃ110) of [Pd(diamine)(H2O)2] with 
CBDCA at 25 0C and 0.1 mol dm-3 NaNO3. 
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Fig. 6. Effect of dioxane concentration on the stability of the Pd(diamine)-CBDCA system 
and logK refers to the 110 species. 
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5. Effect of chloride on the stability constants 

Carboplatin or Cis-diamine(1,1-cyclobutanedicarboxylate)platinum(II), is a clinically successful 

second generation platinum complex. When Pt antitumor drugs are injected into the blood, 

it is crucial that they reach their final target, the intracellular DNA, without reacting with 

other nucleophiles within the cytoplasm. In human blood plasma the chloride content is 

quite high (~ 100 mM), so that hydrolysis of cis-[PtCl2(NH3)2] is less likely to occur than 

within the cell where the chloride concentration is as low as 4 mM (Rosenberg, 1980). The 

high chloride concentration allows the neutral complex, cis-[PtCl2(NH3)2], to flow almost 

unchanged through the blood. It then diffuses through the cell membrane and finally 

hydrolyzed to give more reactive aquated species as shown in scheme 7. Due to the lower 

chloride concentration the aquated complexes can react with DNA.  
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Scheme 7. The cellular uptake of cisplatin and its targets. 

A realistic extrapolation of the present study to biologically relevant conditions will require 

information on the effect of the chloride concentration on the reported stability constants. 

The reactivity of CBDCA toward the different Pd(II) species increases markedly when 

chloride ions of Pd(AMBI)Cl2 are replaced successively by one and two water molecules. A 

similar qualitative conclusion has been reached in the case of Pt(en)Cl2 by Lim and Martin 

(Lim and Martin, 1976), based on equilibrium distribution of Pt(en) and on rates of reactions 

of pyridine with Pt(dien) complexes. 

The equilibrium constants for Pd(AMBI)-CBDCA complex obtained for different chloride 

ion concentrations, keeping the ionic strength constant at 0.30 mol-dm-3, are summarized in 
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Table 12 (El-Sherif et al., 2003; El-Sherif, 2006). The stability constants of the Pd(AMBI)-

CBDCA complex, tend to decrease while increasing the chloride ion concentration. This can 

be accounted for on the basis that the concentrations of the active species, the mono- and the 

diaqua complexes, decrease with increasing [Cl-]; this will in turn affect the stability of the 

complexes formed. The variation in stability constant of the Pd(diamine)2+ complex with 

CBDCA as a function of Cl- ion concentration, is shown in Fig. 7. 

[Cl-]/M p q ra Picb AMBIc 

0.05 1 1 0 3.95 3.55 
0.10 1 1 0 3.56 3.15 
0.15 1 1 0 3.30 2.80 
0.20 1 1 0 3.00 2.40 
0.25 1 1 0 2.62 - 

ap, q and r are stoichiometric coefficients corresponding to [Pd(diamine)(H2O)2], ligand and H+ 
respectively, bPic = picolylamine, data taken from reference (El-Sherif et al., 2003), cAMBI = 2-
aminomethylbenzimidazole, data taken from reference (El-Sherif, 2006).  

Table 12. Effect of chloride on the formation constant (log ǃ110) of [Pd(diamine)(H2O)2] with 
CBDCA at 25 0C and 0.3 mol dm-3 (KCl + NaNO3). 
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Fig. 7. Effect of chloride ion concentration on the stability of the Pd(diamine)-CBDCA 
system and logK refers to the 110 species. 
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6. Biological activity of mixed ligand Pd(II) complexes with biologically active 
ligands 

Four new palladium(II) and platinum(II) complexes of formula [M(BPY)(AA)]+ (where BPY 
is 2,2´-bipyridylamine, AA is an anion of glycine or L-alanine, and M is Pd(II) or Pt(II) have 
been synthesized (Paul et al., 1993) and characterized with amino acids bound as bidentate 
ligands. These complexes are 1:1 electrolyte in conductivity water. Among the studied 
complexes, the two L-alanine complexes show ID50 values against lymphocytic leukemia 
cells lower than cis-diammine dichloroplatinum(II), whereas the two glycine complexes 
show ID50 values higher than cisplatin. The interaction of calf thymus DNA with the above 
complexes shows significant spectral changes in the presence of [Pt(BPY)(gly)]Cl, 
[Pd(BPY)(ala)]Cl, and [Pt(BPY)(ala)]Cl and the binding mode between these complexes and 
DNA seems to be noncovalent. 

Nine palladium(II) complexes of the formula [Pd(BPY)(AA)]n+ (where BPY is 2,2´-
bipyridylamine, AA is an anion of L-cysteine, L-aspartic acid, L-glutamic acid,  
L-methionine, L-histidine, L-arginine, L-phenylalanine, L-tyrosine, L-tryptophan, n = 0 or1) 
have been synthesized by the interaction of [Pd(BPY)Cl2] with an appropriate sodium salt of 
amino acids in water. The Pd(II)-complexes have shown growth inhibition against L1210 
lymphoid leukemic, P388 lymphocytic leukemic sarcoma 180 and Ehrlich ascites tumor cells. 
Some of these complexes show ID50 values comparable to cis-platin (Puthraya et al.,1986).  

The amino acids (AA) complexes of [Pt(phen)(AA)]NO3·xH2O and [Pd(phen)(AA)]NO3·x 
H2O have been prepared by the interaction of palladium and platinum complexes, 
[Pt(phen)Cl2] and [Pd(phen)Cl2] with salts of amino acids in methanol and characterized by 
1H NMR and IR spectroscopy which confirmed the formation of a very large variety of 
compounds (Jin et al., 2000). All of these new compounds have been isolated and tested for 
cytotoxicity on Molt-4, a human leukaemia cell line. The IC50 values of 
[Pt(phen)(Pro)]Cl·2H2O and [Pd(phen)(Asp)]Cl·1.5H2O are 9.8 and 7.31 ǍM, respectively, 
exhibiting a significant activity which is close to cis-[PtCl2(NH3)2]. 

PaIladium(II) complexes of type [Pd(phen)(AA)]+ (where AA is an anion of glycine,  
L-alanine, L-leucine, L-phenylalanine, L-tyrosine, L-tryptophan, L-valine, L-proline, or  
L-serine), have been synthesized. These palladium(II) complexes have been characterized by 
ultraviolet-visible, infrared, and 1H NMR spectroscopy. They have also been screened for 
cytotoxicity in P388 lymphocytic cells. Only two complexes, [Pd(Phen)(Gly)]+ and 
[Pd(phen)(Val)]+, showed a comparable cytotoxictty with cisplatin (Mital, et al., 1991).  

Five new palladium(II) complexes of the formula [Pd(AMBI)(AA)]n+ (where AMBI =  
2-aminomethyl benzimidazole, AA is an anion of glycine, alanine, cysteine, methionine and 
threonine) have been synthesized (El-Sherif, 2011). These palladium(II) complexes have been 
ascertained by elemental, molar conductance, infrared and 1HNMR spectroscopy. The 
isolated Pd(II)-complexes were screened for their antibacterial and cytotoxic activities and 
the results are reported and discussed. The activity of these compounds against 

Staphylococcus pyogenes decreased in the order Tavanic (standard) > [Pd(AMBI)(Met)]∼ 
[Pd(AMBI)(Cys)] > [Pd(AMBI)(Ser)] > [Pd(AMBI)(Ala)] > [Pd(AMBI)(Gly)] and against  

E. coli decreased in the order Tavanic ∼ [Pd(AMBI)(Met)] > [Pd(AMBI)(Cys)] > 
[Pd(AMBI)(Ser)] > [Pd(AMBI)(Ala)] > [Pd(AMBI)(Gly)] under experimental conditions. 
Cytotoxic study of the compounds against colon carcinoma (HCT116) and larynx carcinoma 
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(HEP2) cells indicate that, [Pd(AMBI)(Met)]Cl.H2O complex shows significant activity 

against (HCT116) cells with IC50 value of 0.74 µg/ml, while [Pd(AMBI)(Cys)] complex 

shows significant activity against (HEP2) with IC50 value of 0.60 µg/ml. These results 
confirm the chemotherapeutically significance of these compounds (El-Sherif, 2011).  

7. Conclusions 

In this review, a detailed survey of the formation equilibria of [Pd(diamine)(H2O)2]2+ with 
ligands of biological significance is presented. The main conclusions may be summarized as 
follows: 

1. The stability constants of the hydroxo complexes are higher for 
[Pd(aromaticdiamine)(H2O)2]2+ than [Pd(aliphaticdiamine) )(H2O)2]2+, suggesting that 
the presence of aromatic residues increases the affinity of palladium(II) for hydrolysis. 

2. Combining of stability constants data of such diaqua-complexes with amino acids, 
peptides and DNA constitutents, it would be possible to calculate the equilibrium 
distibution of the metal species in biological fluids where all types of ligands are 
present simultaneously. This would constitute a powerful starting point for 
understanding the mode of action of such metal species under physiological conditions.  

3. Amino acids form highly stable complexes, with the substituent on the ǂ- carbon atom 
possessing a significant effect on the stability of the formed complex. The thioether 
group in S-methylcysteine increase the stability constant of its complex due to the 
highest coordination potentiality of the sulphur atom. The imidazole group in histidine 
increases the stability of the complex due to high affinity of PdII to the nitrogen donor 
group. On the other hand the extra carboxylic group in aspartic acid does not contribute 
to the stability of the formed complex, as the extra-carboxylic group is not competing 
with the amino group in complex formation. 

4.  The present study clearly shows clearly that [Pd(diamine)(H2O)2]2+ complex can form 
strong bonds with peptides and promote easy deprotonation of the peptide. The relative 
magnitudes of the pKa values of the Pd(II) complexes with peptides have interesting 
biological implications. Under normal physiological condition (pH 6-7), the peptides 
would coordinate to [Pd(diamine)(H2O)2]2+ in entirely different ways. Glutaminate exists 
solely in its protonated form, whereas the other peptides are present entirely in the 
deprotonated form. Furthermore, the slight difference in the side chain of the peptides 
seem to produce dramatic differences in their behaviour toward the Pd(II) complex. 

5. Anti-tumour Pt(II) amines are usually administrated as cisdichloro complexes. This 
form persists in human blood plasma because of its high chloride content (0.1 M). The 
net zero charge on the complex facilitates its passage through cell walls. Within many 
cells the chloride ion concentration is much lower (only ca. 4 mM), giving more reactive 
aquated species. Due to the lower chloride concentration, the complex diffuses through 
the cell membrane and is then hydrolyzed to give the more reactive aquated complexes 
which can then react with DNA 

6.  The reactivity of CBDCA toward the different Pd(II) species increases markedly when 
chloride ions of Pd(diamine)Cl2 are replaced successively by one and two water 
molecules. A similar qualitative conclusion has been reached in the case of Pt(en)Cl2 by 
Lim and Martin, based on equilibrium distribution of en Pt(II) and on rates of reactions 
of pyridine with dien Pt(II) complexes (Lim, and Martin, 1976). 
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7. Pd(diamine)-CBDCA complex formation is more favoured in biological environments 

of lower dielectric constant. 

8. Hopefully that these data will bring a significant contribution in carrying out 

mechanistic studies in biological media. 
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Pic = Picolylamine (2-Aminomethylpyridine); BPY = 2,2′-bipyridyl; 1,3-DAP = 1,3-

diaminopropane; 1,2-DAP = 1,2-diaminopropane; AEPY  = 2-aminoethyl pyridine; UMP = 

Uridine-5′-monophosphate; TMP = Thymidine-5′-monophosphate; GMP = Guanosine-5′-

monophosphate; CMP = Cytidine-5′-monophosphate; IMP = Inosine-5′-monophosphate; Phe 

= Phenylalanine; Ala = Alanine.  
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