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1. Introduction 

If hydrophobic molecules are inserted into an aqueous medium, the water molecules order 
around the hydrophobic ones to build a quasi crystalline surface. In this way, the hydrogen 
bonding of the water molecules around a hydrophobic surface is maximized. If two 
hydrophobic molecules meet they will associate with their hydrophobic surfaces towards each 
other. The water molecules, previously attached to these surfaces, will be distributed back into 
the bulk solvent resulting in favourable entropy. The entropic gain is responsible for almost all 
associations in the medium water and hence extremely important for life (e.g. formation of 
membranes, micelles, and for protein folding where folding starts often with tryptophan 
residues forming a hydrophobic core). The hydrophobic effect is shown below (Figure 1). 

 

Fig. 1. Host-guest binding mechanism in aqueous medium. 

Similarly, in most cases the protein-substrate binding is a result of the hydrophobic effect. 
However, there are evidences suggesting that the water molecules play an important role in 
the protein-substrate binding. Water molecules could participate in hydrogen bonding 
networks that link side chain and main chain atoms with the functional groups on the bases, 
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and the phosphodiester backbone anionic oxygens.1 Macromolecular crystallography 
provided the necessary supportive view, that water molecules act as major contributors to 
stability and specificity.2,3,4  

Thermodynamic analyses of protein-DNA binding suggest that water released from protein-
DNA interfaces is favourable to binding. Structural analyses of the remaining water at the 
interface in protein-DNA complexes indicate that a majority of these water molecules 
promote binding by screening protein and DNA electrostatic repulsions between 
electronegative atoms/like charges. A small fraction of the observed interfacial waters act as 
linkers to form extended hydrogen bonds between the protein and the DNA, compensating 
for the lack of a direct hydrogen bond.5  

Is it by design or by default that water molecules are observed at the interfaces of some 
protein-DNA complexes? Both experimental and theoretical studies on the thermodynamics of 
protein-DNA binding overwhelmingly support the extended hydrophobic view that water 
release from interfaces supports binding. Structural and energy analyses indicate that the 
remaining waters at the protein-DNA complexes interfaces ensure liquid-state packing 
densities, screen the electrostatic repulsions between like charges (which seems to be by 
design), and in a few cases act as linkers between complementary charges on the biomolecules 
(which may well be by default). Protein-drug binding and DNA-small molecule binding also 
revealed the possibility of the role played by the water molecules in the receptors binding 
pockets. The binding of the cardiac toponin-I (cTnI) with the small molecule (Fluorescent 
probe) revealed the enzyme hydrophobic binding region as shown in Figure 2.6  

 

Fig. 2. Binding mode of cardiac toponin-I (cTnI) with the fluorescent probe. (Reproduced from 
J. Am. Chem Soc.133(38):14972-14974). 
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The protein enzymatic activity, being a surface function, depends on the recognition 
efficiency of negatively charged and polar amino acids of the substrate peptide.7 The bulk-
like environment in the close vicinity of the surface would enhance the interaction with the 
substrate (Figure 3). On the other hand, the structured water molecules are needed around 
the protein surface to be part of an efficient chemistry and possibly maintain a three 
dimensional structure.8 From these observations, it is clear that the water molecules play a 
crucial role in the receptor-substrate binding, probably be due to the hydration effect or 
hydrophobic effect. Scientist has always tried to find the answers related to the biological 
receptor-substrate interactions using the host-guest chemistry of synthetic counterparts. 

 

Fig. 3. High-resolution X-ray structure of the Subtilisin Carlsberg (SC) protein. This structure 
was downloaded from the Protein Data Bank and processed with WEBLAB-VIEWERLITE, 
Accelrys, San Diego, CA. (Top) Position of the protein single Trp residue. Note the bound 
water molecules around this residue. (Middle) Two of the nine potential binding sites for DC 
labeling are shown. (Bottom) Illustration of a micelle with a NATA molecule included. 
Molecular structures of the probes are presented on the right of each illustration. (Reproduced 
from Proc. Nat. Acad. Sci. 2002, 99(4): 1763–1768) 
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This chapter presents a survey of the current literature on water-soluble calix[4]arenes 
(hosts) complexes with various substrates (guests), elaborating the water-soluble 
calix[4]arenes applications. Moreover, a critique of various data interpretations, in the 
context of the water molecules role in host-guest binding and in general of the water-soluble 
calix[4]arene guest recognition principles, is also provided. 

2. Stoichiometry of the water-soluble calix[4]arene complexes: The methods 

2.1 Binding constant 

The thermodynamic stability of a host-guest (e.g. metal–macrocycle) complex, in a given 
solvent (often water or methanol) at a given temperature, is gauged by the binding constant, 
K, measurement. The binding constant is the most widely used method for host-guest 
affinity assessment in solution, and it is of fundamental importance in supramolecular 
chemistry. The binding constant is merely the equilibrium constant for the reaction between 
a Host, H, and Guest, G, in water, described in the following equation: ܪሺܪଶܱሻ݊ + ଶܱሻ݊ܪሺܩ ⇌ .ܪ] [ܩ + ݊ሺܪଶܱሻ ܭ = .ܪ]  	[ଶܱሻ݊ܪሺܩ][ଶܱሻ݊ܪሺܪ][ܩ
Thus a large binding constant corresponds to a high equilibrium concentration of bound 
guest, and hence to a more stable host–guest complex.  

If a sequential process of more than one guest is involved in the binding process, then two K 
values may be measured for the 1:1 and 1:2 complexes, respectively: K1 and K2.  

ଶܱሻ݊ܪሺܪ + 	ଶܱሻ݊ܪሺܩ 1
K .ܪ] [ܩ + ݊ሺܪଶܱሻ 

.ܪ] ଶܱሻ݊ܪሺ[ܩ + 	ଶܱሻ݊ܪሺܩ 2
K .ܪ] [ଶܩ + ݊ሺܪଶܱሻ 

ଶܭ = .ܪ] .ܪ]][ଶܩ  [ଶܱሻ݊ܪሺܩ][ଶܱሻ݊ܪሺ[ܩ
In these circumstances, an overall binding constant, β, may be defined for the complete 

process, with the individual K values known as the stepwise binding constants: ߚ =  ଶܭ	ܺ	ଵܭ

Magnitudes of binding constants can widely change, so they are often reported as log K, 
hence: lߚ݃݋ = logሺܭଵ	ܺ	ܭଶሻ = logܭଵ + logܭଶሻ 
The host-guest complex binding constant depends on the complex stoichiometry. As shown 

in the equations above, a key aspect of such calculations is the use of the correct 

stoichiometry model (i.e. the ratio of host to guest, which must be assumed or determined), 

so it is worthy spending some time in understanding the method to determine it. 
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2.2 Job plot (method of continuous variation) 

There are different methods to determine the stoichiometry, e.g. Continuous Variation 
Methods (Figure 4),9 the Slope Ratio Method,10 the Mole Ratio Method,11 and others. Being 
the Continuous Variation Method the most popular among these, this method has been 
adopted here to determine the stoichiometry. 

 

Fig. 4. Job plot for a 1:1 host–guest complex. 

There is a strong bias in the host-guest chemistry literature towards the fitting of data to 1:1 
stoichiometries, and it is a common mistake to neglect higher complexes. Binding 
stoichiometry may be confirmed in most kinds of titration experiments, allowing the 
complex concentration to be determined by making up a series of solutions with varying 
host-guest ratios such that the total concentration of host and guest remains constant. 
Monitoring the changing concentration of the host–guest complex in these samples allows a 
plot of [Complex] against ([Host]/([Host] + [Guest])) to be constructed (Figure 4). For a 1:1 
complex, this kind of representation (referred to as a Job plot) should give a peak at 0.5 
(Figure 4), a peak at 0.66 would correspond to a 2:1 stoichiometry and so on. The complex 
concentration is generally taken to be related to an observable quantity such as Δδ according 
to following equation [Complex]	ߙ	Δߜ	X	mole	fraction	of	host 
In a spectrophotometric experiment, absorbance, at a properly chosen wavelength, is 
usually directly proportional to the complex concentration.  

2.3 Methods for association constant measurements 

Generally, the complex formation mechanism between a host and a guest is a basic and 
important process in supramolecular chemistry. Selectivity in the complexation is a crucial 
property in determining the molecular recognition ability of the host molecule, which 
discriminates among different guest species. The association constant’s ratio of the 
corresponding complexation is usually treated as a measure of the selectivity. However, 
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theoretically the association constants can be measured by any experimental technique 
yielding information about the concentration of a complex, [Host-Guest], as a function of the 
host or guest concentration changes. In practice, the methods described below are of 
common use. In every case a concentration range must be chosen to have equilibrium 
between significant amounts of complexed and free host and guest, limiting the range of 
binding constants that can be measured by a particular technique. If the binding by the 
target host is too strong, then a competing host is sometimes added, in order to reduce the 
apparent (measured) association constant according to the difference in guest affinity 
between the two hosts. The true affinity can then be extrapolated from the knowledge of the 
binding constant of the guest for the host with the lower affinity. 

2.3.1 Potentiometric titrations 

If the host molecules are susceptible to protonation (e.g. the aminocalix[4]arenes with their 
basic tertiary amine nitrogen), the protonation constants, and consequently the pKa values, 
may be readily determined using pH electrodes to monitor a simple acid–base titration. 
Initially, this will give the acid dissociation constant (pKa) of the hosts conjugate acid, 
H.H+.12 Addition of a guest cation will perturb the hosts basicity by competition with H+ 
ions for the ligand lone pair(s) and hence will affect the titration curves shape. Analysis of 
the various equilibrium by a curve-fitting computer program (such as sigmaplot or 
Hyperquad), along with knowledge of the hosts pKa, allows the determination of the amount 
of uncomplexed host and subsequently the concentration of the complex and the stability 
constants for the host-guest complexation reaction, as shown in the following equation, 

ܭ = [Hା][ܪ][ܩ. [ାܪ  

2.3.2 Nuclear magnetic resonance titration 

If the exchange of complexed and un-complexed guest is slow on the nuclear magnetic 
resonance (NMR) time scale, then the association constant may be approximately evaluated 
under the prevailing conditions of concentration, temperature solvent etc. by simple 
integration of the NMR signals for complexed and un-complexed host or guest. However, 
most host–guest equilibrium are fast on the (relatively slow) NMR spectroscopic time scale, 
and the chemical shift observed for a particular resonance (that is sensitive to the 
complexation reaction) is a weighted average between the chemical shift of the free and 
bound species.  

In a typical NMR titration experiment, small aliquots of guest are added to a host solution of 
known concentration in a deuterated solvent, and the NMR spectrum of the sample 
monitored as a function of guest concentration, or host:guest ratio. Commonly, changes in 
chemical shift (Δδ) are noted for various atomic nuclei present (e.g. 1H in 1H NMR) as a 
function of the guest binding influence on their magnetic environment. As a result, two 
kinds of information are gained. Firstly, the location of the most affected nuclei may give 
qualitative information about the guest binding regioselectivity (e.g. is the guest inside the 
host cavity?). More importantly, the treatment of the titration curve data (a plot of Δδ 
against added guest concentration, e.g. Figure 1.4) by different methods such as the Benesi-
Hildebrand (Hanna-Ashbaugh) treatment,13 the Rose-Drago,14 the Scatchard (Foster-Fyfe) 
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method,15,16 and the non-linear curve fitting analysis (few examples of the software 
programs are EQNMR, AGRNMRL, GRAFIT, and GRAPHPAD PRISM)17, give quantitative 
information about the association constant. NMR spectroscopic methods are useful for 
binding constants in the range 10–104 M-1. Recently, the diffusion NMR spectroscopy has 
become popular in supramolecular chemistry, due to its application in determining 
association constants in many systems.18,19 

2.3.3 Fluorescence titration 

Fluorescence titration measurements are based on the proportion of fluorescence intensity to 
fluorophore concentration (i.e. concentration of fluorescent species in solution; this is often a 
fluorescent guest, G). For a 1:1 complex with host, H, with stability constant Ks= 
[HG]/[H][G] the fluorescence intensity F is given by the following equation: 

F = kG [G] + ks [HG] 

Where, the kG and ks represent proportionality constants for the guest and the 1:1 host–

guest complex respectively. In the absence of host the fluorescence intensity, Fo, is given by: 

F0 = K o Gtotal  

Where Gtotal = [G] + [HG]. 

Combining these two relationships gives the following equation, which provides the basis 

for almost all the fluorimetric methods for stability constant (K11) measurements: ܨܨ଴ = ሺீܭ ⁄଴ீܭ ሻ + ሺܭ௦ ⁄଴ீܭ ሻܭ௦1ܪ + ܪ௦ܭ  

This equation is greatly simplified when either the guest or host–guest complex are non-

fluorescent (i.e. the fluorescence is ‘turned on’ by complexation, or, in the case of quenching, 

by the host), in which case either KG or Ks become zero. For example, for KG = K0G 0 and  

Ks = 0, we obtain: ܨ଴ܨ = 1 +  ܪ௦ܭ

A simple plot of Fo/F against [H] from the quenching host titration into a guest solution 

should yield a straight line of slope Ks. 

2.3.4 UV-Vis Spectrophotometric titration 

UV-Vis spectroscopic titration (or Spectrophotometric titration) involves monitoring the 
intensity of an electronic absorption band at a particular wavelength, characteristic of either 
the complex or free host or guest, and it is closely related to the fluorescence titration 
method. An absorbance intensity vs. concentration plot is generated by adding a guest to a 
solution of constant host concentration.10,11,12,13,14 Software such as Specfit® can then be used, 
in association with an appropriate stoichiometry model, to evaluate the association constant. 
Both fluorescent and UV-Vis spectroscopic methods have the advantage over NMR methods 
of being more sensitive, hence lower concentrations of host and guest can be used. Unlike 
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fluorescence methods, the observation of one or more clear isosbestic points is common in 
absorption spectroscopic titrations. An isosbestic point is reached when the observed 
absorption intensity remains constant throughout the titration. Furthermore, the observation 
of an isosbestic point is a good evidence for the free host conversion into a complex without 
any other significant intermediate species involved. The understanding of the statistical 
treatment of the obtained data to determine the association constants with the knowledge of 
primary statistics is the main feature of this method. When the complex stoichiometry is not 
1 to 1, or when other premises are not satisfied, the data treatment should be changed or 
modified. Nonlinear least square data manipulation is one of the best approximations.  

2.3.5 Calorimetric titration 

Calorimetric titration, also known as isothermal titration calorimetry (ITC), involves 
accurate measurement of the heat (enthalpy) evolved from a carefully insulated sample as a 
function of added guest or host concentration.20,21,22 The gradient of the ITC curve can be 
fitted to determine the binding constant and ΔGcomplex. Integration of the total area under the 
ITC plot gives the complexation enthalpy (ΔHcomplex)which allows for all the system 
thermodynamic parameters evaluation, being ΔGcomplex = ΔHcomplex - TΔScomplex. ITC is useful 
for determination of binding constants in range from ca.102 - 107 M-1. 

2.3.6 Mass spectrometry 

Several electrospray-mass spectrometry (ESI-MS)-based methods are available for 
association constants (KS) determination between a protein and a small substrate. 
Electrospray ionization is today the most widely used ionization technique in chemical and 
biochemical analysis. Interfaced with a mass spectrometer, it allows the investigation of the 
molecular composition of liquid samples. A large variety of chemical substances can be 
ionized with electrospray. Moreover, there is no limitation in mass which thus enables even 
the investigation of large non-covalent protein complexes. Its high ionization efficiency 
profoundly changed biomolecular sciences because proteins can be identified and 
quantified on trace amounts in a high throughput fashion.23,24,25 

3. Molecular recognition by water-soluble calix[4]arenes 

3.1 Cation recognition 

Non-covalent interactions play a dominant role in many forefront areas of modern 
chemistry, from materials design to molecular biology. A detailed understanding of the 
physical origin and scope of such interactions has become a major goal of physical organic 
chemistry. The cation-π interaction is an important non-covalent kind of interaction, 
including hydrogen bonds, ion pairs (salt bridges), and the hydrophobic interaction.  

3.1.1 Metal ion recognition 

The first patent explicitly describing a calixarene for a practical application of p-tert-
butylcalix[8]arene for the recovery of cesium from nuclear wastes, came in 1984. Numerous 
papers relating to the complexation of cesium by modified calixarenes have appeared since 
then.  
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Several other calixarenes for complexation of nuclides have also garnered attention 

(Figure 5), including a water-soluble calix[4]arene-bis-benzocrown-6 (1) for selective Cs+ 

complexation (1:1) in moderately salted media.26 The water-soluble calix[4]arene-bis-

benzocrown-6 (1) derivatives are also reported to separate the caesium–sodium by 

nanofiltration–complexation.27 The voltammetric study on a water-soluble calix[4]arene 

(calix[4]arene-triacid-monoquinone (2), CTA, and calix[4]arene-triacid-diquinone (3)), 

which bind with the Ca2+, Sr2+, Ba2+ in basic aqueous solution, provided important 

information about the unique electrochemical behaviour of Ca2+–CTA 1:1 complex at  

pH= 8.2.28,29 

 

Fig. 5. water-soluble calix[4]arene derivatives 1 - 6 

The 1:1 stoichiometric complexation of lanthanoid(III) nitrates (La-Gd, Tb) with water-

soluble calix[4]arenesulfonate (4), and its structurally similar derivatives (5) and (6) is 

reported (Table 1).30 The water-soluble calix[4]arenesulfonates (5) possessing four 

carboxylic groups at the lower rim of parent calix[4]arenesulfonate (4), displayed the 

enhanced binding abilities for Sm3+. As compared with (4) and (5), p-

sulfonatothiacalix[4]arene (6) gives not only the lower binding constants for all of 

lanthanoid(III) ions but also lower cations selectivity. Thermodynamically, the resulting 

complexes of lanthanoid(III) ions with (4) and its derivatives (5) and (6) are entirely entropy-

driven in aqueous solution, typically showing larger positive entropy changes. These 

changes (T∆S◦), and somewhat smaller positive enthalpy changes (∆H◦), are directly 

contributed to the stability of the complexes as a compensative consequence. 

It is interesting to notice that in all cases the solvated metal ions are the guests which form 

respective complexes with the water-soluble calix[4]arene derivatives (hosts) in the aqueous 

medium. Therefore, further studies are needed to evaluate the cations hydration shell effect 

on the complexation with water-soluble hosts.  
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Host Guest (Cation) Log Ks -∆G◦ ∆H◦ T∆S◦ 
4  
 

La3+ 4.23  24.1 ± 0.3  9.2 ± 0.1  33.3 ± 0.4 

Nd3+ 4.08 23.3 ± 0.3 9.5 ± 0.2 32.8 ± 0.5 

Sm3+ 3.82 21.8 ± 0.2 10.4 ± 0.2 32.2 ± 0.4 

Eu3+ 3.83 21.9 ± 0.2 12.5 ± 0.2 34.4 ± 0.4 

Gd3+ 3.94 22.5 ± 0.3 9.8 ± 0.3 32.2 ± 0.6 

5  
 
 

La3+ 3.73 ± 0.03 21.3 ± 0.4 5.1 ± 0.5 26.5 ± 0.3 

Ce3+ 3.82 ± 0.01 21.8 ± 0.1  5.1 ± 0.3  26.9 ± 0.4 

Pr3+  3.97 ± 0.04  22.7 ± 0.3  4.5 ± 0.4  27.2 ± 0.1 

Nd3+  4.09 ± 0.03  23.4 ± 0.6  4.0 ± 0.1  27.4 ± 0.2 

Sm3+ 4.08 ± 0.02  23.3 ± 0.4  3.9 ± 0.1  27.2 ± 0.8 

Eu3+ 3.51 ± 0.04  20.1 ± 0.1  7.3 ± 0.3  27.4 ± 0.1 

Gd3+ 3.86 ± 0.05  22.0 ± 0.3  5.5 ± 0.2  27.5 ± 0.3 

Tb3+ 3.63 ± 0.01  20.9 ± 0.2  6.8 ± 0.7  27.7 ± 0.5 

6  
 

La3+ 3.45 ± 0.02  19.7 ± 0.1  7.2 ± 0.2  26.8 ± 0.3 

Ce3+ 3.41 ± 0.02  19.4 ± 0.2  7.0 ± 0.1  26.5 ± 0.2 

Pr3+ 3.42 ± 0.03  19.6 ± 0.3  6.9 ± 0.1  26.5 ± 0.3 

Nd3+ 3.40 ± 0.01  19.4 ± 0.1  6.8 ± 0.3  26.2 ± 0.1 

Sm3+ 3.37 ± 0.04  19.2 ± 0.2  7.2 ± 0.2  26.4 ± 0.4 

Eu3+ 3.26 ± 0.03  18.6 ± 0.4  7.5 ± 0.3  26.0 ± 0.3 

Gd3+ 3.30 ± 0.02  17.7 ± 0.6  9.0 ± 0.1  26.6 ± 0.1 

Tb3+ 3.33 ± 0.02  19.0 ± 0.1  7.7 ± 0.1  26.7 ± 0.5 

Values are the averages of more than three independent measurements in pH = 2 acidic aqueous 
solution 

Table 1. Complex stability constants (log Ka) and thermodynamic parameters (kJ mol-1) for 
complexation of lanthanoid(III) nitrates with 4, 5, and 6 in acidic aqueous solution (pH = 2) 
at 25 ◦C. 

3.1.2 Molecular cation recognition and hydrophobic cavity depth of water-soluble 
calix[4]arenes 

The complexation of molecular cations by the water-soluble calix[4]arenes is widely studied. 

Shinkai and coworkers31 were the first to investigate molecular cation complexation with p-

sulfonatocalix[4]arenes (7) (Figure 6) as hosts and trimethylanilinium as a guest.  

By measuring the 1H NMR shift values over a temperature range of 0–800C, they 

calculated ∆Go, ∆Ho and ∆So values and concluded that complexation with the cyclic 

tetramer (7.8, n=4) was driven by a favourable enthalpy change (stronger electrostatic 

interaction). It was emphasized that in studies with water soluble calixarenes an 

important feature that had to be taken into consideration was their aggregation 

properties.32 A calix[4]arene with anionic groups (SO3- and CO2-) on both exo and endo 

rims, forms fairly strong complexes with cations such as PhCH2NMe3+ (Ks = 2500M-1) 

(15).33 For cations derived from amines, the organic moiety introduces a significant steric 

factor, with the ammonium cation included in the host cavity.34,35,36 A closely related 
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study37 involving a variety of ammonium guests, including acetylcholine and N-

methylquinuclidinium, reached the same conclusion that the guest is in the cavity and 

that its ammonium portion is closely associated with the calixarene aromatic rings. This 

interaction was discussed as a π-cation interaction.38,39,40 The N,N,N,-trimethylanilinium 

(TMA) cation (14) orientation was reported to have a dual binding mode (charged group 

vs. aromatic moiety inclusion) which occurs in a nonselective fashion with flexible water-

soluble calix[4]arene hosts (7a, n=4). The binding mode can, however, be effectively 

controlled and turned into a selective process by preorganization of the calixarene cavity 

into the cone structure (7b, n=4). The presence of sulfonate groups at the upper rim 

provides, anchoring points for the positively charged guests, the sulfonate groups 

significantly deepening the cavity of host (7), thus improving its inclusion capability. 

 

Fig. 6. Water-soluble calix[4]arene host(s) 7 and guests 8, 9. 

 

Fig. 7. Hosts with deep hydrophobic cavities (10 - 12), and guests 14 
(Phenyltrimethylammonium chloride), 15 (Benzyltrimethylammonium chloride). 
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The complexation of the water-soluble aminocalix[4]arenes containing deep hydrophobic 

cavities with cations have been reported.41 However, the guest recognition and the orientation 

in the cavity of the host were reported to be dependent on the depth of the host hydrophobic 

cavity. The host (11, 12) interacts with both the cationic function and the aromatic moiety in the 

guests (14, 15), but with a slight preference for the cationic functions. The host (13) selectively 

recognizes the trimethylammonium functions of the guests (14 and 15).  

 

Fig. 8. A) Inclusion mode of the guest 15 by hosts 11-13; B) Inclusion mode of the guest 15 by 
host 10 

However, the host (10) selectively recognizes the aromatic moiety of the ditopic 

trimethylammonium guests (14 and 15). These results suggest that the water molecules 

around the calix[4]arene nucleus in the hosts (11 – 13) may assist the hydrophilic 

trimethylammonium function in entering the cavity. Furthermore, in case of the host (10), 

possessing a deep hydrophobic cavity, the trimethylammonium function cannot deeply 

enter into the calix[4]arene nucleus, being solvated by the water. As the guest molecules 

trimethylammonium function is engaged on the mouth of the host (10) deep hydrophobic 

cavity, the guest aromatic moiety is selected by the host (10) to form the inclusion 

complexes. These results suggest that the guest recognition and orientation in the cavity of 

the host are directly dependent on the host hydrophobic cavity depth.  

The water-soluble iminecalix[4]arene (16, Figure 9) with deep hydrophobic cavity was also 

recognized for its selective recognition of the guest.42,43 The negatively charged four 

carboxylate functions on the top of the deep hydrophobic cavity play a major role in the 

recognition of charged molecular species. The 1H NMR titration experiments revealed that 

host (16) binds with cationic (15, 21, 22) and neutral guests (17-20) in water, with high 

binding constants in order of 104-105 M-1. Cationic guest (15) showed the highest binding 

constant of 2.81× 105 M-1 . These studies revealed that except for the -CH···π and π-π 

stacking interactions, the hydrophobic interactions proved to be crucial in the molecular 

recognition process in aqueous medium. 
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Fig. 9. Water-soluble iminecalix[4]arene 16, 28 and guests 17-27. 

3.2 Anion recognition  

Anion recognition (binding) plays an important role in a variety of chemical reactions and 
biochemical events as outlined in various reports.44 This molecular recognition process has 
been the subject of numerous experimental and theoretical studies in recent years.45,46 

3.2.1 Inorganic anions 

The hydrogen-bond dynamics of water molecules solvating a Cl-, Br-, or I- anion is slow 
compared with neat liquid water, indicating that the aqueous solvation shells of these ions 
are rigid. This rigidity can play an important role in the overall dynamics of chemical 
reactions in aqueous solution.47  

Furthermore, the anions complexation can be more difficult than that of cations, and a 
variety of considerations come into play, including (a) the charge, (b) the size, which is often 
larger than the metal cation one, (c) the shape; whereas the metal cations are spherical, the 
anions frequently are not, (d) pH dependence, often more critical than in the case of metal 
cations and (e) solvation, which has a strong influence on the binding strength. There are 
enormous reports on the recognition of various anions (inorganic) by the calix[4]arene 
derivatives in the organic solvents but there are only few reports on the anion complexation 
by the water-soluble calix[4]arenes in the aqueous medium,48 which opens a new direction 
for such studies. 

Functionalisation of calix[4]arenes with carbohydrate moieties results in receptors which 
show considerable water solubility. A number of calixsugars have been developed49 and 
their binding characteristics studied. Neutral guests such as carbohydrates and N-protected 
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amino acids failed to bind. However, 1:1 complexation of dihydrogen phosphate was seen 
for (28), offering opportunities for the binding of larger, phosphate containing biological 
substrates. 

 

Fig. 10. Water-soluble π-metalated calix[n]arene 29 and complexes 

A series of π-metalated calix[n]arenes were synthesised, among which compounds 29 are 
water-soluble due to the presence of six positive charges.50 The calixarenes cavities are 
therefore electron-poor and able to complex anions both in the solid state and in water. The 
X-ray crystal structures of compounds 29a, 29c and 29d showed that a BF4-, SO42-, and I- 
anion is complexed in the calixarene cavity, respectively, tetrafluoroborate being the most 
deeply included one. Acetate, phosphate and sulfate anions are not bound by host (29b), 

due to their high hydrophilicity. An interesting inversion of the expected selectivity, on the 
basis of the free hydration energy order (Hofmeister series), is observed for halide ions due 
to size complementarity between the guest and the calixarene cavity.51  

3.2.2 Molecular anion recognition and depth of hydrophobic cavity of water-soluble 
calix[4]arenes 

Very few examples of anion complexation by water-soluble calixarenes have been reported 
so far. This is probably due to the fact that anion recognition is a rather new field in 
supramolecular chemistry and that anions are more highly hydrated than cations of 
comparable size and, therefore, their complexation in water is a remarkably difficult task. In 
the case of l-anilino-8-naphthalenesulfonate (ANS)52 and 2-p-toluidino-6-
naphthalenesulfonate (TNS) 53 the lipophilic residue of the guest is included inside the 
calixarene cavity.54  

A cationic calix[4]arene derivative (30) binds both aliphatic (31, 32) and aromatic, sulfonate 

(23) and carboxylate (26) anions in aqueous solution with a Log K of 1.50, 1.48, 2.44, 2.32, 

respectively, as a result of concerted electrostatic and hydrophobic interactions. The 

sulfonate ion in guest 23 may show good electrostatic interaction with the cations on the top 

of the cavity. However, the sulfonate guest inclusion is affected by the host different 

mobility caused by the pH change. An interesting example of the anionic host (10) 

complexation with the anionic sulfonate (23) (Log K= 4.3, pH=7.3; Log K= 0, pH=5.8) has 

www.intechopen.com



Water-Soluble Calix[4]arene Derivatives:  
Binding Stoichiometry and Spectroscopic Evaluation of the Host-Guest Recognition Mechanism 

 

41 

been recently reported.55 The pH of the solution shows a significant effect on the dynamics 

of the gate (formed by eight benzylic functions) and portal on the hydrophobic cavity of the 

water-soluble aminocalix[4]arene host (10). At pH 5.8 the gate closes and prevents the entry 

of anionic guests. However, at pH 7.3 the gate opens and allows the entry of anionic guests 

(23, 24) to the hydrophobic cavity. Host 10 not only shows a similar behaviour towards 

guests 23 and 24 but also shows a preference for sulfonate derivatives. This preference can 

be assigned to the tripodal symmetry of sulfonate function, instead of dipodal in 

carboxylate, and its electron withdrawing effect. The tripodal symmetry gives extra room 

for negative charges of guest molecules on the cavity of host 10 reducing the electrostatic 

repulsion. The electron withdrawing effect prevails and increases the π-π stacking 

interactions between the guest (23) and the host (10). The deep hydrophobic cavity of the 

water-soluble aminocalix[4]arene role in the recognition of anionic guests cannot be 

neglected, despite the absence of favourable electrostatic interaction shown by host 30 

towards guests 23 and 24, host 10 showing strong binding with them. 

 

Fig. 11. Water-soluble calix[4]arene derivatives 30 (cationic), 33. 

3.3 Recognition of neutral molecules 

The complexation of neutral molecules by water-soluble calixarenes was carried out in the 
eighties and has been already critically reviewed.56,57,58 The pioneering work59 on the 
complexation of aromatic hydrocarbons by hosts 33 (n=4) has however to be mentioned, 
since it disclosed a rough correlation between binding constants and host-guest 
complementarily. Calix[4]arenes are too small to host durene or naphthalene, calix[5]- or -
[6]arenes preferring naphthalene, anthracene and phenanthrene. 

Sciotto et al. have studied the interactions between alcohols, ketones, nitriles and p-

sulfonatocalixarenes (4) and its derivatives by 1H NMR spectroscopy,60,61 proving that the 

apolar aliphatic portions of the guests were included into the host hydrophobic cavity with 

the terminal polar groups directed towards the polar sulfonate groups of the host and to the 

solvent. The two most important factors for the complexation of the investigated hosts and 

guests are conformational properties of the receptors and electrostatic effects. Methanol is 

not included by p-sulfonatocalixarenes at all, probably due to the fact that the small methyl 

group inclusion inside the hydrophobic cavity would lead to a partial inclusion of polar OH 

group, causing the polar hydroxyl group to be less exposed to polar solvent.  

The interactions of aromatic substrates (34, 35, 36, and 37) (Figure 12) with 4 were studied 

by Schatz and co-workers via 1H NMR titration experiments and molecular modelling 
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studies combined with abinitio NMR shift calculation at neutral aqueous solutions.62 All the 

guests are included into the hosts cavities, with a mechanism which is mainly driven by 

enthalpy term. In most cases, the five aromatic protons are pointing inside and the guest 

functional group is located outside the hosts cavities due to hydrophobic and π-π 

interactions. For (34), the complex binding mode is different, probably because the methyl 

group is included into the host cavity, contributing to the favorable C–H-π interactions and 

hydrophobic interactions.63  

 

Fig. 12. Aromatic neutral guests (34-37), and cationic guests 38, 39. 

 

Fig. 13. Hosts 11 and 12, A) host 12 (side view), B) host 11 (side view). 

The new water-soluble aminocalix[4]arene hosts 11 and 12 with deep hydrophobic cavity 
facilitate hydrophilic mouth and hydrophobic mouth, respectively.64 The 1H NMR titrations 
revealed that host 12 shows high selectivity for neutral guests (18 and 19), with log K of 4.2 
and 4.6, respectively. The host 11 shows log K of 4.9 for binding with guest 39. Moreover, 
the host 11 binding ability for guest 38 is stronger by a factor of 1000 than that of the host 12. 
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The NMR investigations indicate that host 11 and 12 can form 1:1 host–guest inclusion 
complexes with aromatic cationic guests and pyridine derivatives with high binding 
constants. Both hosts refused to recognize the hydrophilic anionic guests, possibly due to 
the electrostatic repulsion arising from carboxylate functions on the cavity of the host. The 
host 12, with hydrophobic mouth, showed high binding constant for 4-
methylbenzylammonium, as the carboxylate functions of the mouth showed strong 
electrostatic interactions with the ammonium function. However, the hydrophilic mouth of 
host 11 enhances the binding of 4-ethylpyridine. It is clear from the data that the cavity of 
both hosts has a preference for structurally flat guests containing methyl groups (either a 
CH3 in para position of an aromatic ring or a presence of trimethylammonium group) and a 
very poor one for smaller but more hydrophilic primary ammonium groups, which indeed 
do not enter the hydrophobic cavity. 

4. Conclusion 

Mimicry of the molecular recognition features of naturally occurring proteins by synthetic 
receptors is one of the challenging research topics of supramolecular chemistry. The 
substrates and enzymes (host-guest) features can be studied by Potentiometry, NMR 
Spectroscopy, UV-Visible Spectroscopy, Fluorescence Spectroscopy, and Calorimetry. In 
some cases the ESI-MS can be employed to study the protein-protein, or protein-small 
molecule interactions. It is quite obvious that the exact host-guest complex stoichiometry is 
the most critical parameter in the evaluation of the host-guest interactions. The molecular 
recognition properties of the water-soluble calix[4]arene derivatives revealed that the 
hydrophobic cavity of these hosts play an important role in the guests recognition. 
Increasing the hydrophobic cavity depth, like in the water-soluble aminocalix[4]arene hosts, 
results in an increased binding of the guest into the hosts deep hydrophobic pockets. 
Synthetically tailored hosts based on the calix[4]arene framework can be used to probe the 
naturally occurring biomolecular reactions based on the non-covalent interactions.  
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