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1. Introduction 

Self-sharpening phenomenon of the grain cutting edges during grinding is the main factor 

controlling the performance and the tool life of grinding wheels. Therefore, many studies on 

the relationship between the wear behavior and the self-sharpening of the grain cutting edges 

have been carried out (Yoshikawa, 1960; Tsuwa, 1961; Ichida et al., 1989, 1995; Malkin, 1989; 

Show, 1996). However, it is very difficult to evaluate this relation quantitatively because of the 

complexity in wear mechanism and the irregularity in shape and distribution of the grain 

cutting edges (Webster & Tricard, 2004). Especially, self-sharpening of the cutting edges in the 

grinding process with cBN wheels has not yet been clarified sufficiently (Ichida et al. 1997, 

2006; Guo etal., 2007). To develop an innovative machining system using cBN grinding 

wheels, it is essential to clarify the self-sharpening mechanism due to the micro fracturing of 

the cutting edges that is the most important factor controlling the grinding ability of cBN 

wheel during the grinding process (Ichida et al. 2006; Kalpakjian, 1995; Comley et al., 2006). 

The main purpose of this study is to evaluate quantitatively such a complicated self-
sharpening phenomenon of the cutting edges in cBN grinding on the basis of fractal 
analysis. The changes in three-dimensional surface profile of cBN grain cutting edge in the 
grinding process are measured using a scanning electron microscope with four electron 
detectors and evaluated by means of fractal dimension.  

2. Three-dimensional fractal analysis 

There are several methods for calculating fractal dimension (Mandelbrot, 1983; Mandelbrot 

et al. 1984; Hagiwara et al., 1995; Itoh et al., 1990). In this report, we have used a 3D-fractal 

analysis that is expanded based on the idea in the fractal analysis using two-dimensional 

mesh counting method (Sakai et al., 1998). The analysis method is shown as follows. A 3D-

profile under test is divided by cube grid with a mesh size of r. And then, the number of 

cubes intersected with 3D-profile N(r) is counted. If there is a fractal nature in this 3D-

profile, the relationship between N(r), r and fractal dimension DS is given by 

 ( ) DN r rα −
= ⋅ S    (1) 
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where α is constant number. 

Area of square with mesh size r is expressed r2. Therefore, the surface area of 3D-profile S(r) 
based on N(r) is given by 

 ( ) ( )2 2 SDS r r N r r rα −
= ⋅ = ⋅ ⋅   (2) 

If the logarithm of both sides is taken, eq. (2) is rewritten as follows; 

 ( ) ( )log log 2 logSS r D rα= + −   (3) 

Fractal dimension DS is calculated by the following equation using the proportionality 
constant between log S(r) and log r in  eq. (3). 

 
( )log

2
log

S

d S r
D

d r
= −   (4) 

However, actual fractal analysis is conducted according to the following procedures by 
computer processing in this study. As shown in Fig. 1 (a), a square grid with mesh size r1 is 
set on a 3D-profile of the top surface of grain cutting edge. It is divided to two triangular 
elements with mesh size r1. Surface areas of each triangle s1(r1) and s2(r1) are evaluated using 
height coordinates in each grid point and S(r1) is decided by sum of these surface areas. 
Next, as shown in Fig. 1 (b), each triangle is divided with mesh size r2 that is half a size of r1. 
Surface areas of 8 triangles s1(r2), …, s8(r2) are evaluated using height coordinates in 9 grid 
points and S(r2) is decided by sum of these surface areas. In addition, as shown in Fig. 1 (c), 
8 triangles are divided with mesh size r3 that is half a size of r2. Surface areas of 32 triangles 
s1(r3), …,S32(r3) are evaluated using height coordinates in 25 grid points and S(r3) is decided 
by sum of these surface areas. Afterward, mesh size r is scaled down and the surface area of 
3D-profile is evaluated as follows; 

 ( ) ( )
2 12

1

n

n i n
i

S r s r

−

=

=       (5) 

On the basis of these equations, r is taken on the horizontal log axis, and S(r) is taken on the 
vertical log axis. When data points are on a straight line in double log plot, fractal dimension 
DS is given by a slope of the straight line. Figure 2 shows an example of relationship 
between S(r) and r (Sample: surface profile of cBN cutting edge shown in Fig.1). Fractal 
nature is approved in a region of 0.4 < r < 4 µm. From a slope of the straight line, it is 
decided that fractal dimension is 2.015. 

3. Three-dimensional observation of wheel working surface  

3.1 Experimental procedure 

Grinding experiments were conducted with surface plunge grinding method on a horizontal 
spindle surface grinding machine. The schematic illustration of the experimental setup is 
shown in Fig. 3. A vitrified cBN wheel with a replaceable cBN segment shown in Fig. 3 was  
used to observe directly the profile of the wheel surface in the grinding process using a 
three-dimensional (3D) scanning electron microscope with four electron probes (3D-SEM/ 
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EDM3000) (Ichida, 2008). The cBN segment detached for the observation can be precisely 
returned to former state again. It was confirmed experimentally that the cBN wheel with the 
replaceable cBN segment has almost the same grinding ability as the usual complete cBN 
wheel (Fujimoto, 2006). 

 

Fig. 1. Method of 3D-fractal analysis (Sample: surface profile of cBN abrasive grain). 
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Fig. 2. Relationship between surface area S(r) and mesh size r  
(Sample: surface profile shown in Fig.1).  

Workpiece

Piezoelectric 

dynamometer

Peripheral 

wheel speed  vs

cBN wheel

Replaceable 

cBN segment

Coolant

Wheel depth of cut  a

20mm

10mm

W
ork sp

eed vw

Charge amplifier

PC

 

Fig. 3. Schematic illustration of the experimental setup. 
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Fig. 4. Measurements of grinding characteristic palameters.  

The expermental conditions are listed in Table 1. Representative single crystal cBN grain 

was used for cBN wheel. The dressing of cBN wheel was performed using a rotary diamond 

dresser (Dressing wheel: SD40Q75M) equipped with an AE sensor under the following 

dressing conditions: peripheral dressing speed 16.5 m/s, peripheral wheel speed ratio 0.5, 

dressing lead 0.1 mm/rev, dressing depth of cut 2µm×5 times. High speed steel SKH51/JIS 

(M2/ASTM) is used as the workpiece material. 

 
 

Grinding method Surface plunge grinding(Up-cut) 

Grinding wheel CBN80L100V 

Dimensions:200 D× 10T [mm] 

cBN grain Single crystal cBN 

Peripheral wheel speed vs 33 [m/s] 

Work speed  vw 0.1 [m/s] 

Wheel depth of cut a 10 [µm] 

Grinding fluid Soluble type (JIS W-2-2) 
2% dilution 

Workpiece High speed steel (JIS/SKH51) 
Hardness: 65HRC 
Dimensions:100l×5t×30h [mm] 

Table 1. Grinding conditions. 
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3.2 Measuring method of wheel surface profile with 3D-SEM 

This 4-channel secondary electron (SE) detection system enables quantitative surface 

roughness measurements and enhances the topography by displaying the differential signal 

calculated from the 4 signals. The intensities of these detected signals are determined by the 

tilt angle of the specimen surface in relation to the geometric positioning of the detectors. 

The quantitative angular information can be obtained by the subtraction between the signal 

intensities of the detectors. By calculating 4 tilting angles (two in X-direction and two in Y-

direction) on many spots in the X-Y matrix taken on the specimen, the surface topography of 

the specimen can be accurately re-constructed by integrating these angles over the matrix. 

In this system, no eucentric tiling for stereo pairs is required, thereby simplifying operation 

and allowing much better precision and resolution than conventional SEMs using stereo 

photogrammetry. The vertical resolution in measuring a 3D profile using this 3D-SEM is  

1 nm. 

 
 

Fig. 5. Illustration of the 4-channel SE detector layout detailing the measurement principle of 

3D-SEM.   
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4. Grinding wheel wear and wheel working surface  

Grinding wheel wear is an important consideration because adversely affects the shape and 

accuracy of ground surface. Grinding wheel wear by three different mechanisms: attritious 

grain wear, grain fracture and, and bond fracture, as shown in Fig.6. In attritious wear, the 

cutting edges of a sharp grain dull by attrition, developing a wear flat. Wear is caused by the 

interaction of the grain with the workpiece material, involving both physical and chemical 

reactions. These reactions are complex and involve diffusion, chemical degradation or 

decomposition of the grain, fracture at a microscopic scale, plastic deformation, and melting. 

If the wear flat caused by attritious wear is excessive, the grain becomes dull and grinding 

becomes inefficient and produces undesirable high temperatures. Optimally, the grain 

should fracture or fragment at a moderate rate, so that new sharp cutting edges are 

produced continuously during grinding. This phenomenon is self-sharpening. However, 

self-sharpening by a large fracture is not suitable for precision grinding, because it gives 

large wheel wear and bad surface roughness during grinding. Therefore, self-sharpening 

due to micro fracture as shown in Fig.6 is suitable for effective precision grinding, because it 

offers small wheel wear and good surface roughness. We call this phenomenon 'micro self 

sharpening'(Ichida, 2008). 

 

Fig. 6. Wear mechanisms of abrasive grain during grinding. 

Fig. 7 shows the change in radial wheel wear ∆R with increasing the accumulated stock 
removal (cumulative volume of material removed per unit grinding width) Vw’ when grinding 
under the conditions indicated in Table 1. At the same time, some typical sequential SEM 
images of the wheel working surface with an increase of stock removal are shown in this 
figure. The wear process of grinding wheel can be divided into two different regions: a) initial 
wear region over stock removal range from 0 to 1000 mm3/mm, in which a rapid increase of 
wheel wear occurs with increasing stock removal, b) steady-state wear region over stock 
removal range larger than 1000 mm3/mm, in which the wheel wear rate maintains a nearly 
constant value. In the initial wear region, a releasing of grain due to bond fracture and grain 

www.intechopen.com



 
Scanning Electron Microscopy 

 

400 

fracture are sometimes observed, as shown in grains C, D and so on. However, they are not 
observed so much in the steady-state wear region. The wheel wear in steady-state region 
dominantly occurs due to attritious wear and micro fracture, as shown in grains A, B and so 
on. As a typical example, a high magnification SEM image of grain A is shown in Fig.8 (a). 
Fig.8 (b) is its contour map. Wear flat developed due to attritiou wear and some brittle surfaces 
generated by micro fracture can be observed on the point of the grain.  

 

Fig. 7. Change of radial wheel wear with increasing stock removal and typical sequential 
SEM images of wheel working suraface.   

There is little research that has quantitatively evaluated self-sharpening phenomenon of 
grinding wheel. We have tried to grasp the actual behavior of self-sharpening and evaluate 
it by the attritious wear flat area percentage of the grain cutting edge (Ichida, 2008, 2009). 
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Fig. 8. High magnification SEM image and its contour map of grain A in Fig.7  

(Vw’=4 000mm3/mm). 

 

Fig. 9. Measuring method of attritious wear flat percentage. 
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Figure 9 shows the measuring method of the attritious wear flat percentage. Attritious wear 
flat area ag in the area S to be observed is measured using SEM image and contour map 
made by 3D-profiles. Here, attritious wear flat percentage Ag is given by: 

 [ ]100 %
g

g

a
A

S
= ×  (6) 

5. Self-sharpening phenomenon due to micro fracture of cutting edges 

Grain cutting edges on the wheel surface change their shapes in various forms with the 
progress of wheel wear when the accumulated stock removal Vw’ increases. Many sequential 
observations of the grain cutting edge with accumulated stock removal have been carried 
out using 3D-SEM. The typical result is shown in Fig. 10. Those are high magnification 
images of area X on grain A in Fig. 8(a).  

The surface with a micro unevenness formed by the diamond dresser is observed on the tip of 
the grain cutting edge after dressing, as shown in Fig. 10 (a). And after grinding the stock 
removal V’w = 500 mm3/mm, an attritious wear flat is observed in the center part on the top 
surface of the grain cutting edge, as shown in  Fig. 10 (b). Moreover, at V’w = 2000 mm3/mm, 
the wear  flat becomes larger than  that at V’w = 500 mm3/mm, as indicated in the comparison 
between Figs. 10 (b) and (c). The ductile attritious wear flat area takes the largest value at V’w = 
2000 mm3/mm in the grinding process, as seen from all SEM images in Fig.4. However, 
between the stock removals from 2000 to 4000 mm3/mm, some micro fractures take place at 
the lower left side part of cutting edge and consequently the wear flat area decreases a little, as 
indicated in the comparison between Figs. 10(c) and (d). Moreover,between the stock removals 
from 4000 to 10000 mm3/mm, as many micro fractures take place repeatedly, the ductile 
attritious wear flat area is decreased and some new sharp edges are formed on the top surface 
of cutting edge, as shown in the comparison between Figs. 10 (e) and (f).  

In addition, between the stock removals from 10000 to 12000 mm3/mm, a small fracture 

takes place at the right side part of cutting edge and some new sharp edges are formed, and 

at the same time the wear flat is formed slightly in the center part on the cutting edge 

surface, as indicated in the comparison between Figs. 10 (f) and (g). Afterward, between the 

stock removals from 12000 to 14000 mm3/mm, some new sharp edges due to the micro 

fracture are observed in the middle part on the cutting edge top surface, while the new 

attritious wear flat is formed again at the upper part of the cutting edge, as indicated in the 

comparison between Figs. 10 (g) and (h). 

Thus, although the grain cutting edges become dull due to the ductile attritious wear, they 

can reproduce and maintain their sharpness due to the micro fractures occurred repeatedly 

on their top surfaces. Namely, an actual behavior of the self-sharpening phenomenon due to 

the micro fracture may be grasped on the basis on the sequential SEM observation method 

used in this study.  

6. Evaluation of self-sharpening using fractal dimension 

As mentioned above, the shape of the cutting edges on the wheel working surface is 
variously changed due to the fracture wear or the attritious wear when the accumulated 
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stock removal increases. Such a complicated wear process is evaluated using 3D-fractal 

dimension. Fractal dimension is calculated in an area of 27.4 × 20.6 µm2 enclosed with white 
frame in Fig. 10. The center of these areas is almost located in the top part of the cutting edge 

that acts as an effective edge. The range of mesh size r is 0.11 < r < 6.4 µm.  

 

Fig. 10. Change in shape of grain cutting edge with accumulated stock removal (Area X on 
grain A in Fig.8(a)) (A: attritious wear, MF: micro fracture, F: fracture).  
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Figure 11 shows the 3D-profiles of the typical eight areas a, b, ----, h on the cutting edge 
used for fractal analysis (areas enclosed with white frame in Fig. 10). The relationships 
between mesh size r and surface area S(r) obtained in these typical eight areas are shown in 
Fig. 12. This figure indicates that the fractal nature is approved in a region of 0.4 < r < 4 µm. 
Using this relationship, fractal dimension is calculated. The results obtained are shown in 
Fig. 13. The fractal dimension changes complexly and randomly when the accumulated 
stock removal increases. 

 

Fig. 11. Sequential 3D-profiles of typical area on grain cutting edge used for fractal analysis 
(DA: ductile attritious wear, MF: micro fracture). 
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Fig. 12. Relationship between surface area S(r) and mesh size r in areas shown in Fig.11. 
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Fig. 13. Change in fractal dimension on top surface profile of grain cutting edge with 

accumulated stock removal. 

To consider the reason for such complicated change of fractal dimension, the attritious wear 

flat area percentage of the cutting edge was measured. In this study, a percentage of ductile 

attritious wear area in same area of 27.4 × 20.6 µm2 used for fractal analysis is measured and 

defined as attritious wear flat area percentage Ag. Figure 14 shows the change in the 

attritious wear flat area percentage Ag of the grain cutting edge with increasing accumulated 

stock removal. 
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Fig. 14. Change in attritious wear flat percentage on top surface of grain cutting edge with 
accumulated stock removal. 

 

Fig. 15. Relationship between fractal dimension DS and attritious wear flat percentage Ag 

As shown in Figs. 13 and 14, the cutting edge after dressing comparatively takes a high 
fractal dimension (Ds =2.02), because it has complicated surface with a micro ruggedness 
formed by the diamond dresser. And then, between the stock removals from 500 to 
3000mm3/mm, fractal dimension decreases because the attritious wear flat increases with 
the accumulated stock removal. In addition, between the stock removals from 2000 to 4000 
mm3/mm, fractal dimension indicates the lowest value (Ds =2.01) because the attritious 
wear flat takes the highest value. Afterward, over a range of stock removals from 4000 to 
6000 mm3/mm, fractal dimension tends to increase because the attritious wear flat decreases 
and new sharp cutting edges are formed by self-sharpening due to micro fractures. 
However, between the stock removals from 6000 to 8000 mm3/mm, fractal dimension 
decreases slightly because of a little increase in attritious wear flat area. Moreover, fractal 
dimension increases rapidly over a range of stock removals from 8000 to 10000 mm3/mm 
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because the attritious wear flat area decreases and micro fracture occurs repeatedly, i.e., self- 
sharpening due to micro fracture takes place actively. Afterward, although the fractal 
dimension decreases because of increasing in attritious wear flat at the stock removal 13000 
mm3/mm, it increases again because self-sharpening due to micro fracture takes place 
actively over a range of stock removals from 13000 to 14000 mm3/mm. 

As mentioned above, self-sharpening of the grain cutting edge can be characterized using 

fractal dimension. Especially, these results show that there is a close relationship between 

fractal dimension DS and attritious wear flat percentage Ag. Figure 15 shows relationship 

between fractal dimension and attritious wear flat percentage. The alphabets in Fig.15 

correspond to those in Figs.10, 11, 12, 13 and 14. As shown in this figure, fractal dimension 

decreases with increasing the attritious wear flat percentage and then becomes 2.0 at Ag = 

100 % (perfect smooth surface) as a limit value. Thus, there is a negative correlation between 

fractal dimension and attritious wear flat percentage. 

7. Effect of self-sharpening on grinding characteristics  

Fig.16 and 17 show the changes of grinding forces and ground surface roughness with 

increasing accumulated stock removal, respectively. Under this grinding condition, grinding 

forces maintains a stable level in the steady-state wear region. Especially, tangential 

grinding force keeps a small variation between 4 and 6 N/mm in this wear region. On the 

other hand, although surface roughness increases with increasing stock removal, its 

increasing rate maintains comparatively low level. Thus, high grinding ability of cBN wheel 

is brought from such self-sharpening due to micro fracture of grain cutting edges, that is, 

micro self-sharpening phenomenon.  
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Fig. 16. Changes in grinding forces with increasing accumulated stock removal. 
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Fig. 17. Change of ground surface roughness with increasing accumulated stock removal. 

8. Conclusions 

The changes in three-dimensional surface profile of grain cutting edge in the grinding 
process with cBN wheels have been measured using a 3D-SEM and evaluated by means of  
fractal dimension. The main results obtained in this study are summarized as follows; 

1. Actual behavior of self-sharpening phenomenon due to the micro fracture in the 
grinding process can be grasped using sequential observation method with 3D-SEM. 

2. The fractal dimension for surface profile of the cutting edge formed by the micro 
fracture is higher than that of the cutting edge formed due to ductile attitious wear. An 
increase in ductile attritous wear flat area on the grain cutting edge results in a decrease 
in fractal dimension for its surface profile. 

3. The complicated changes in shape of the cutting edge due to self-sharpening can be 
evaluated quantitatively using fractal dimension. 
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