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1. Introduction 

1.1 Dispersion-strengthened copper alloys 

Pure copper exhibits high electrical and thermal conductivities, but it has low strength at 

room temperature as well as at elevated temperatures. Dispersion-strengthened (DS) copper 

alloy exhibits a high strength without sacrificing its inherent high conductivities, and 

maintains excellent thermal and mechanical stability at elevated temperatures by retaining 

its microstructures (Nadkarni, 1984). These unique characteristics are mainly attributed to 

the presence of uniformly dispersed thermally stable particles, which are typically oxides. 

Unlike precipitation-hardened copper alloys, which lose their strength by heating above the 

initial aging temperatures, the non-metallic oxide particles in oxide DS copper alloys, such 

as alumina, silica, and beryllia, neither coarsen nor go into solution, effectively preventing 

recrystallization and consequent softening of the alloys. Alumina DS copper alloys are not 

recrystallized even after exposure to temperatures approaching the melting point of copper 

(Preston & Grant, 1961). This is due to the pinning effect of the nano-sized alumina particles 

on the movement of the boundaries and dislocations. A unique combination of high 

strengths and high conductivities at elevated temperatures makes alumina DS copper alloys 

good candidates for high temperature electric materials (e.g., electrodes, lead wires, and 

connectors) (Nadkarni, 1984) as well as potential components in nuclear energy applications 

(Sumino et al., 2009). 

Alumina DS copper alloys can be recrystallized when boron is added (Kim & Lee, 2001, 

2002). Boron is often intentionally added as an oxygen scavenger during fabrication of the 

alloys (Gallagher et al., 1992). Long term annealing of boron-added alumina DS copper 

alloys results in an unexpected transformation from fine -Al2O3 to coarse 9Al2O3-2B2O3 

with a concurrent recrystallization of the matrix to form a large and elongated grain 

structure (Kim & Lee, 2002). Whereas Ni-based DS alloys are used in a coarse-grained 

condition to increase high-temperature creep resistance (Gessinger, 1976; Stephens & Nix, 

1985), key applications of alumina DS copper alloys require them to be in a fully work-

hardened state. Consequently, a large decrease in room temperature strength due to 

recrystallization is not desirable. Therefore, an understanding of the recrystallization 

behaviour of DS copper alloys is important from both practical and theoretical perspectives. 
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1.2 Recrystallization of particle-containing alloys 

The presence of dispersed particles critically affects the plastic deformation and 

recrystallization behaviour of the matrix. The presence of particles accelerates or retards 

recrystallization of the matrix, depending on the interparticle spacing, size, mechanical 

properties, and thermal stability of the particles (Humphreys & Hatherly, 1995). Closely 

spaced fine particles exert a pinning effect on the movement of boundaries (Zener drag) 

resulting in retardation or even complete suppression of recrystallization. However, alloys 

with widely spaced particles larger than ~1 m show accelerated recrystallization. Non-

deformable large particles can introduce deformation zones around the particles during 

deformation, providing favourable nucleation sites for recrystallization (particle stimulated 

nucleation, PSN). Under certain conditions, particle-containing alloys transform from a 

deformed structure to a recrystallized grain structure in the absence of conventional 

discontinuous recrystallization accompanying a long-range motion of the boundaries. 

During low-temperature annealing, small particles give rise to boundary pinning, and 

subsequent coarsening of the particles at high temperatures may allow the subgrains to 

grow, forming recrystallized grain structures. This phenomenon is sometimes known as 

continuous recrystallization. 

1.3 Purpose of the study 

While several studies exist on the fabrication methods, mechanical properties, and 

deformation behaviour of alumina DS copper alloys, there is a lack of understanding of their 

recrystallization behaviour. This study examines the recrystallization behaviour of boron-

added alumina DS copper strips rolled under different conditions. Particular attention is 

given to several anomalous phenomena, such as unique recrystallized grain structures and 

textures, as well as the dependency of recrystallization characteristics on prior rolling 

conditions. The results of several microscopy studies to elucidate microstructural evolution 

during rolling and annealing are presented, and the effects of dispersed particles on 

recrystallization are examined. 

2. Research methods 

2.1 Materials 

The material used in this study was commercially available alumina DS copper alloy strips, 

Glidcop Al25, produced by SCM Metal Products. This material contains 0.25wt% Al in the 

form of Al2O3 particles as well as 0.02wt% B used for oxygen scavenging. The thickness of 

the as-received strips was 840 m. The chemical composition of the as-received strips was 

measured by inductively coupled plasma (ICP) analysis and given in Table 1. 

 

Al B P Fe S As Mn Cu 

0.275 0.023 0.0001 0.0001 0.0001 0.0034 0.0001 Balance 

Table 1. Chemical composition of the as-received strips measured by ICP (wt%) 

www.intechopen.com



 
Recrystallization of Dispersion-Strengthened Copper Alloys 

 

25 

2.2 Rolling and annealing 

The as-received strips were rolled under lubrication using a two-high rolling mill whose roll 
diameter was 126 mm to make two different specimens, as listed in Table 2. The cold-rolled 
strips were further rolled to reduce their thickness by 25% with one pass at room 
temperature. The thickness of the hot-rolled strips was reduced by 27% with one pass after 
heating the strips at 813 K for 10 minutes. Isothermal annealing of the as-received and rolled 
strips was carried out in a salt bath. After the heating, the strips were quenched in water. 

 

Specimen 
Number of 

passes 
Total reduction

Rolling 
temperature 

Lubrication 

Cold-rolled strip 1 25% Ambient Yes 

Hot-rolled strip 1 27% 813 K Yes 

Table 2. Rolling conditions of the as-received strips 

2.3 Microstructure and texture analysis 

The microstructures of the strips were investigated by optical microscopy and transmission 

electron microscopy (TEM) in the transverse direction (TD) and the normal direction (ND). 
The specimens were cut from the strips, mechanically polished, and chemically etched in 

FeCl3 solution prior to optical microscopy. For the TEM study, the specimens were 
electrically polished in a nitric acid solution to make a thin foil using a twin-jet electro-

polisher, while the dispersed alumina particles were extracted from the material using a 
carbon replica method. 

The macroscopic textures of the strips were determined by measuring (111), (200), and (220) 

pole figures with an X-ray diffraction goniometer in the back reflection mode with Co K 

radiation. The specimens were mechanically polished parallel to the rolling plane and 
chemically etched in a nitric acid solution. Three-dimensional orientation distribution 

functions (ODFs), complete pole figures, and orientation densities were calculated from the 
measured pole figures using the WIMV program (Matthies et al., 1987). The orientations of 

individual crystallites were calculated from the Kikuchi patterns obtained by TEM (Young, 
et al. 1973) in the TD section of the specimens. Misorientations between adjacent crystallites 

were calculated using 24 symmetry operations (Randle, 1993). 

2.4 Analysis of the mechanical properties 

Tensile tests of specimens with a gauge length of 30 mm along the rolling direction (RD) 
were carried out at room temperature at a crosshead speed of 1 mm/min. The micro-Vickers 
hardness of the specimens was measured under a load of 25 g for 10 s. 

3. Results 

3.1 Characterization of the as-received strips 

Figure 1 shows the microstructures of the as-received strips observed under an optical 
microscope. The material exhibited a highly deformed microstructure consisting of fine 
band-like substructures aligned nearly parallel to the RD. Figure 2 shows the longitudinal 
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section TEM microstructure observed in the surface and centre regions of the as-received 
strips. The average band thicknesses of the surface and the centre regions were 0.127 and 

0.129 m, respectively. Additional band boundary characteristics measured on the centre 
region are given in Table 3. The grain structure of the as-received strips was characterized 
by a fine band-like grain structure with a high-angle boundary character. 

The mechanical properties of the as-received strips are given in Table 4. The high strengths 

and hardness indicate that the strips were heavily deformed. 

     
Longitudinal section Rolling plane view 

Fig. 1. Optical micrographs of the as-received strips 

    
Surface region Centre region 

Fig. 2. Longitudinal section TEM micrographs of the as-received strips 

 

Specimen 

Average band 

thickness 

(m) 

Average boundary 

misorientation 

(deg) 

High angle boundary 

fraction 

(misorientation  15 deg) 

As-Received 0.129 30.6 0.52 

Table 3. Band boundary characteristics of the as-received strips 

 

Specimen 
Tensile strength 

(MPa) 

Yield strength 

(MPa) 

Elongation 

(%) 

Hardness 

(Hv) 

As-Received 553 515 14 169 

Table 4. Mechanical properties of the as-received strips 
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Figure 3 shows the texture evolution of the as-received strips. The texture was 

characterized by the -fibre, running from the copper orientation {112}<111> over the S 
orientation {123}<634> to the brass orientation {011}<211> in the Euler orientation space. 

The well-developed -fibre texture indicated that the received strip was in a heavily rolled 
state, which is consistent with the microstructure evolution shown in Figures 1 and 2. 

Figure 4 shows the orientation densities along the -fibre of the surface and the centre 
regions. The orientation densities of the brass and the S components were higher than the 
copper component, which is unlike plane-strain rolled pure copper sheets where the 
copper component is dominant (Hirsch & Lücke, 1988). Also noteworthy is the fact that 
the density of the brass component was lower than that of the S component in the surface 
region, while the brass and the S components were almost equally dominant in the centre 
region. 

 
 
 
 
 

   
Surface region Centre region 

 
 
 
 
 

Fig. 3. (111) pole figures and ODFs of the surface and the centre layers of the as-received 
strips (Kim & Lee, 2002) 
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Fig. 4. Orientation densities along the -fibre of the surface and the centre regions of as-
received strips 

Figure 5 shows optical microstructures of the as-received strips annealed at 1123 K for 1 hr. 
Recrystallization occurred in the centre region while no recrystallization took place in the 
surface region. The plate-like morphology of the recrystallized grains and the ragged shape 
of the grain boundaries are similar to other extruded or rolled dispersion-strengthened 
alloys after recrystallization (Klug et al., 1996; Chou, 1997). The TEM microstructures of a 
recrystallized grain (Figure 6) show dispersed particles aligned parallel to the rolling 
direction in the recrystallized regions. The micro-Vickers hardness values of the centre and 
the surface regions were 136 and 168, respectively. This result indirectly indicates that the 
centre region was recrystallized but the surface region was not. Figure 7 shows the TEM 
plane view observation of a recrystallized grain in the centre region. A large plate-like 
recrystallized grain was identified. The textures of the annealed strips are visible in Figure 8. 

The surface region retained the -fibre texture, which was similar to the texture in the rolled 
state. The centre region exhibited a strong texture component, which could be approximated 
by {112}<312>. The texture of the centre region originated from the recrystallized grains.  

   
Longitudinal section Rolling plane view 

Fig. 5. Optical micrographs of the as-received strips annealed at 1123 K for 1 hr 
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Surface region Centre region 

Fig. 6. Longitudinal section TEM micrographs of the as-received strips annealed at 1123 K 
for 1 hr 

 

Fig. 7. Rolling plane view TEM micrographs of the centre region of the as-received strips 
annealed at 1123 K for 1 hr 

     
 

Surface region 

■ {112}<312> 

Centre region 

Fig. 8. (111) pole figures of the as-received strips annealed at 1123 K for 1 hr (Kim & Lee, 2002) 
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3.2 Properties of the rolled strips 

Figures 9 and 10 show optical and TEM microstructures of the cold-rolled and hot-rolled 

strips. Band-like structures aligned parallel to the RD were observed that were similar to 

those of the as-received strips. No dynamically recrystallized grains were found in the hot-

rolled strips. Table 5 details the band structure characteristics of the cold-rolled and hot-

rolled strips measured in the centre regions of each strip. By comparing the band structure 

characteristic of the as-received strips given in Table 3, the thickness of the band was 

decreased by cold rolling and increased by hot rolling. Cold rolling also increased the high-

angle boundary fraction. 

Table 6 shows the mechanical properties of the rolled strips. The cold-rolled strip showed 

higher strengths and hardness than the hot-rolled strip. By comparing the properties to 

those of the as-received strips, it can be seen that both cold rolling and hot rolling increased 

the strengths and hardness of the strips while decreasing their elongation. 

    
Cold rolled Hot rolled 

Fig. 9. Longitudinal section optical micrographs of the rolled strips (Kim & Lee, 2002) 

    
Cold rolled Hot rolled 

Fig. 10. Longitudinal section TEM micrographs of the centre region of the rolled strips (Kim 
& Lee, 2002) 

 

Specimen 
Average band 

thickness 

(m) 

Average boundary 
misorientation 

(deg) 

High angle boundary 
fraction 

(misorientation  15 deg) 

Cold rolled 0.116 27.9 0.60 

Hot rolled 0.141 24.5 0.51 

Table 5. Band structure characteristics of the cold-rolled and hot-rolled strips 
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Specimen 
Tensile strength 

(MPa) 
Yield strength 

(MPa) 
Elongation 

(%) 
Hardness 

(Hv) 

Cold rolled 605 579 5 184 

Hot rolled 580 553 5.5 179 

Table 6. Mechanical properties and hardness of the cold-rolled and hot-rolled strips 

The textures of the rolled strips were similar to those of the as-received strips. Figure 11 

shows the orientation densities along the -fibre of the surface and the centre regions of the 

rolled strips. The textures of the rolled strips were characterized by the strong -fibre. 

  
Cold rolled Hot rolled 

Fig. 11. Orientation densities along the -fibre of the surface and centre regions of the rolled 
strips 

Figure 12 shows the optical microstructures of the rolled strips annealed at 1123 K for 1 hr. 

TEM micrographs of the centre region are given in Figure 13. Similar to the as-received 

strips, the cold-rolled strips exhibited recrystallization in the centre region while the hot-

rolled strips did not show recrystallization since no recrystallized grains were observed 

throughout the examined area. However, substantial band growth appeared on the hot-

rolled strip. Table 7 gives the band structure characteristics of the hot-rolled and annealed 

strips. By comparing the results in Tables 5 and 7, it appears that annealing increased the 

band thickness and high-angle boundary fraction of the hot-rolled strip. 

    
Cold rolled and annealed Hot rolled and annealed 

Fig. 12. Longitudinal section optical micrographs of the rolled strips annealed at  
1123 K for 1 hr (Kim & Lee, 2002) 
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Cold rolled and annealed Hot rolled and annealed 

Fig. 13. Longitudinal section TEM micrographs of the centre region of the rolled strips 
annealed at 1123 K for 1 hr (Kim & Lee, 2002) 

 

Specimen 
Average band 

thickness 

(m) 

Average boundary 
misorientation 

(deg) 

High angle boundary 
fraction 

(misorientation  15 deg) 

Hot rolled and 
annealed 

0.270 36.0 0.81 

Table 7. Band structure characteristics of the hot-rolled strip annealed at 1123 K for 1 hr 

Figure 14 shows (111) pole figures of the cold-rolled strip annealed at 1123 K for 1 hr. The 

texture of the surface region was characterized by the -fibre, and the recrystallization 
texture in the centre region was indexed by {112}<312>. The texture of the hot-rolled strip 
after annealing is shown in Figure 15. Both the surface and the centre regions retained most 

of the -fibre rolling texture. 

 
 

    
Surface  Centre region 

 
 

Fig. 14. (111) pole figures of the cold-rolled strip annealed at 1123 K for 1 hr (Kim & Lee, 2002) 
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Surface region  Centre region 

Fig. 15. (111) pole figures of the hot-rolled strip annealed at 1123 K for 1 hr (Kim & Lee, 2002) 

4. Discussion 

Earlier studies (Preston & Grant, 1961; Nadkarni, 1984) have shown that alumina DS copper 
alloys resist recrystallization up to their melting points due to the presence of thermally 
stable alumina particles. The present study showed that alumina DS copper alloys 
recrystallized after moderate-temperature annealing when boron was added. This is 
attributed to a reduction in the particle-pinning effect caused by the transformation of 
particles from fine alumina to coarse aluminium boron oxide. Additionally, large particles 
already present in the deformed state can introduce deformation zones that act as nucleation 
sites for recrystallization. Alumina DS copper alloys are fabricated by internal oxidation of 
Cu–Al alloy powders, consolidations of the powders into fully dense shapes, and further 
cold rolling to final shapes. The internal oxidation involves the mixing and heating of the 
alloy powders with oxidants like Cu2O. Frequently, residual oxygen, or unconverted Cu2O, 
may react with hydrogen introduced during alloy processing. This produces a large internal 
pressure of water vapour and results in blister formations. The material used in this study, 
Glidcop, is made oxygen-free by intentionally adding boron as an oxygen scavenger. Figure 
16 shows a coarse particle observed in the as-received strips, which was identified as 
9Al2O3–2B2O3 by indexing its diffraction patterns. Phase transformation of the particles is 
expected during the fabrication of a strip since it is subjected to a heating process. 

 
 Bright field Selected area diffraction pattern Pattern indices 

Fig. 16. Identification of an existing large particle observed in the as-received strip (Kim & 
Lee, 2002) 
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The remainder of the discussion explores several anomalous phenomena observed during 
the annealing of the alumina DS copper alloy.  

4.1 Unique recrystallized microstructure 

The recrystallized microstructure of the boron-added alumina DS copper alloy strip was 
characterized by the following features: 

- Recrystallization only in the centre region 
- Plate-like morphology of recrystallized grains 
- Very large recrystallized grains 

Figures 5 and 12 show that recrystallization occurred only in the centre region of the 
strips. In order to observe how the microstructure evolved, both the as-received strips and 
the cold-rolled strips were quickly annealed. Figure 17 shows optical micrographs of the 
as-received strip annealed at 923 K for 10 s and 15 min. Recrystallized grains emerged 
along lines originating exclusively from the centre region. Detailed TEM observations 
revealed that large bands were present in the deformed state in the centre region and 
appeared to promote recrystallization. Figure 18 shows a large band found in the centre 
region of the as-received strip, along with its orientation. Figure 19 reveals that similar 
bands were present in the cold-rolled strips. The orientations of the large bands in the as-
received and cold-rolled strips included cube, RD-rotated cube, copper, and ND-rotated 
copper. Among them, the ND-rotated copper orientation was similar to the 
recrystallization texture {112}<312> observed in the annealed strips. These pre-existing 
large bands survived the early stages of annealing as shown in Figures 20 and 21. 

 
 
 
 
 

    
Annealed for 10 s Annealed for 15 min 

 
 
 
 
 

Fig. 17. Longitudinal section optical micrographs of the strips annealed at 923 K 

www.intechopen.com



 
Recrystallization of Dispersion-Strengthened Copper Alloys 

 

35 

 

Fig. 18. Longitudinal section TEM micrograph showing a large band and its orientation in 
the centre region of the as-received strip (Kim & Lee, 2002) 

 

Fig. 19. Longitudinal section TEM micrograph showing a large band and its orientation in 
the centre region of the cold-rolled strip (Kim & Lee, 2002) 

 

Fig. 20. Longitudinal section TEM micrograph showing a large band and its orientation in 
the centre region of the as-received strip annealed at 1123 K for 1 s 
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Fig. 21. Longitudinal section TEM micrograph showing a large band and its orientation in 
the centre region of the cold-rolled strip annealed at 1123 K for 1 s 

Recrystallization can be divided into two consecutive processes: nucleation and growth. A 
nucleus must be some minimum size in order for further growth to occur, or else it will 
shrink and vanish. Subgrain coalescence is a requisite process to form these critical-sized 
nuclei. Band coalescence in the present material is unlikely when the band boundaries 
exhibit high-angle characteristics and their movement is hindered by the presence of 
dispersed particles. A more likely explanation is that the pre-existing large bands provide 
favourable nucleation sites for recrystallization. It appears that the large bands present in 
the centre region are the preferred recrystallization nucleation sites. It is possible that the 
large bands originated from large grains formed during the manufacturing process as 
similar grains have been observed in extruded alumina DS copper alloys in previous studies 
(Afshar & A. Simchi, 2008; H. Simchi & A. Simchi, 2009). 

The plate-like morphology of the recrystallized grains in the alumina DS copper alloys can 
be related to the distribution of the dispersed particles. When recrystallized grains grow, the 
moving boundaries are pinned by the particles. The pinning pressure of the particles on the 
boundary movement is given by Equation 1 (Humphreys & Hatherly, 1995): 

 PZ = 3FV b / d (1) 

where:  

FV is the volume fraction of the particles 
d is the particle size 

b is the boundary energy 

If particles are randomly distributed, the pinning pressure will be directionally isotropic. On 
the other hand, if the distribution of the particles is anisotropic, there will be an anisotropic 

pinning pressure on the boundaries. Figure 5 shows that the particles in the as-received 
strips were aligned along the rolling direction. The pinning pressure parallel to the rolling 

plane should be lower than that along the thickness direction. Therefore, the plate-like 
recrystallized grain shape can be mainly attributed to the planar distribution of the particles. 

The directional distribution of the particles might be driven by the rolling of the strip. A 
plate-like morphology of the recrystallized grains is often reported in the recrystallization 

behaviour of other dispersion-strengthened alloys (Klug et al., 1996; Chou, 1997), although 
other dispersion-strengthened alloys show equiaxed recrystallized grain structures 

(Miodownik et al., 1994; Miodownik et al., 1995). 
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Another unique recrystallization characteristic of the alumina DS copper alloy is that the 
recrystallized grains are very large. Early researchers (Singer & Gessinger, 1982; Mino et al., 
1987; Kusunoki et al., 1990) reported that the very large recrystallized grains found in 
dispersion-strengthened alloys are formed through secondary recrystallization. They 
concluded that primary recrystallization occurred immediately before secondary 
recrystallization, or during plastic deformation – dynamic recrystallization. Later studies 
(Klug et al., 1996) suggested that primary recrystallization was responsible for the formation 
of large grains because microstructural changes are driven by stored energy acquired from 
plastic deformation. While plastically deformed alumina DS copper alloy possesses a 
sufficient driving force for recrystallization, a barrier to recrystallization exists due to the 
particle pinning effect. Microstructural inhomogeneity, such as large bands, provides 
preferential nucleation sites, and a large nucleus at a large band can grow with a size 
advantage over the surrounding matrix. Therefore, the emergence of very large 
recrystallized grains is a result of preferential nucleation at pre-existing large bands. The 
annealing behaviour of alumina DS copper alloy might be regarded as secondary 
recrystallization since very large recrystallized grains are formed when they overcome the 
particle-pinning pressure. However, the microstructure of the alumina DS copper alloy 
suggests that the driving force for recrystallization is stored energy by plastic deformation. 
Thus, while the evolution of the annealed alumina DS copper alloy microstructure appears 
to be due to secondary recrystallization, the mechanism that forms the very large 
recrystallized grains is due to primary recrystallization. 

4.2 Unique recrystallization texture 

The recrystallization texture of the annealed alumina DS copper alloy can be 

approximated by {112}<312>. To our knowledge, this texture has not been reported for 

other copper alloys. The recrystallization texture is determined by the orientations of the 

new grains and their growth rates. The present study discussed the role of these two 

factors and how they determine the unique recrystallization texture of the alumina DS 

copper alloy. 

4.2.1 Selective nucleation 

As discussed previously, pre-existing large bands provided favourable nucleation sites for 

recrystallization. Pre-existing large particles could introduce particle deformation zones 

that act as nucleation sites. Figure 22 shows the recrystallizing grains formed around the 

particles and their orientations observed in the as-received strips after rapid annealing. 

The orientation of grain A was similar to that of the deformed matrix, and multiple 

twinning could cause grains B and C to generate different orientations. It is known that 

PSN usually gives rise to weak recrystallization textures (Humphreys & Hatherly, 1995). 

Band coalescence is unlikely but possible when the pinning of the boundary movement is 

relaxed. Figure 23 shows that the band growth took place by coalescence of similarly 

oriented bands. Various orientations could be generated from new grains resembling the 

matrix orientations through PSN and band coalescence, as well as by subsequent 

twinning. Since no specific grain orientations dominated as the new grains evolved, the 

well-developed strong recrystallization texture {112}<312> could not be caused by new 

grain evolution. 
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4.2.2 Selective growth 

According to the theory of selective growth, the recrystallization texture is determined by 
the relative growth rates of the boundaries. The velocity of the moving boundary (V) is a 
function of the boundary mobility (M) and the driving pressure (P), given by: 

 V=MP (2) 

P can be expressed as follows: 

 

Fig. 22. Longitudinal section TEM micrograph showing individual grains around a particle 
and their orientations in the as-received strips annealed at 923 K for 10 s 

 

Fig. 23. Longitudinal section TEM micrograph showing individual grains and their 
orientations in the cold-rolled strips annealed at 1123 K for 3 s (Kim & Lee, 2002) 
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  P=PD - PC = PD - 2b /R  (3) 

where:  

PD is the stored energy,  
PC is the opposing pressure from the boundary curvature 

b is the boundary energy  
R is the radius of the grain.  

In particle-strengthened alloys, the Zener pinning pressure (PZ) arises from the particles, 
and P can be expressed as follows (Humphreys & Hatherly, 1995): 

 P=PD - PC – PZ = PD - 2b /R – 3FV b /d (4) 

where: 

FV is the volume fraction of the particles  
d is the particle size.  

Recrystallizing grains will grow only when P is positive. P increases with increasing grain 

size and decreasing boundary energy. The low-angle boundaries and twin boundaries have 

a lower boundary energy than the high-angle boundaries. Based on Equation 4, only large 

grains with low-angle boundaries or twin boundaries can overcome the pinning pressure. 

High-angle boundaries can be stagnant, even though they have higher mobility than low- 

angle boundaries. The recrystallization texture {112}<312> is defined as ND-rotated copper, 

which is occasionally found in large bands in the deformed state, as shown in Figures 19 

and 21. Recrystallizing grains with {112}<312> orientations have a chance to face the 

surrounding deformed matrix with low-angle boundaries because {112}<312> orientations 

deviate slightly from the deformation texture. Furthermore, {112}<312> orientations have a 

twinning relationship between the two equivalent orientations among them. Figure 24 

shows the orientations of two adjacent recrystallized grains observed in the cold-rolled and 

annealed strips. The boundary shape and orientation relationship indicated that the grain 

boundary of the two adjacent recrystallized grains was a twin boundary. Therefore, the 

unique recrystallization texture was determined by the preferential growth of large 

recrystallizing grains with low-angle boundaries or twin boundaries, even though those 

boundaries had low mobility. 

    

Fig. 24. Longitudinal section TEM micrograph and (111) pole figure showing two adjacent 
recrystallized grains of the cold-rolled strips annealed at 1123 K for 1 hr 
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4.3 Dependency of recrystallization on prior rolling conditions 

As described in Section 3.2, the response to annealing of the alumina DS copper alloy is 

influenced by prior rolling conditions. The annealing behaviour of the cold-rolled strip is 

characterized by recrystallization, whereas recovery by band growth occurs in the hot-rolled 

strip. Similar results have been reported for other dispersion-strengthened alloys (Petrovic 

& Ebert, 1972; Singer & Gessinger, 1982). As recovery and recrystallization are competitive 

processes, dynamic recovery during hot rolling could reduce the potential energy in the 

alloy. This argument would also apply when comparing results between the cold-rolled and 

hot-rolled strips; since the hardness of the hot-rolled strip is lower, the recovery process 

during hot-rolling is governed by normal band growth. In our tests, after annealing, a 

continuous band growth occurred in the hot-rolled strip, which became a coarse band 

structure with high-angle boundary characteristics (see Table 7).  

Subjecting the as-received strips to hot rolling gave rise to band growth and increased 

the hardness. Plastic deformation during hot rolling could increase the dislocation 

density, increasing the hardness. Therefore, a reduction in potential energy may not 

occur during hot rolling. It is not clear at this time why the hot-rolled strips became 

resistant to recrystallization. One explanation would be the homogeneity of the 

microstructural evolution. Microstructural inhomogeneity often occurs during plastic 

deformation, and these regions are frequently sites of initial recrystallization. The 

deformation becomes more homogeneous as the deformation temperature  

increases (Humphreys & Hatherly, 1995). A reduction in microstructural inhomogeneity 

during hot rolling could be responsible for the suppression of discontinuous 

recrystallization. 

An alternative explanation is based on the assumption that coarse particles are sheared into 

finer particles during hot rolling (Kim & Lee, 2002). The shear strength of the particle might 

decrease with increasing temperature. Particle shearing could result in a decrease in 

interparticle spacing, which in turn could give rise to the higher hardness and the 

corresponding difficulty in recrystallization. 

5. Conclusions 

The recrystallization behaviour of boron-added alumina DS copper alloy strips was studied. 

The results may be summarized as follows. 

Recrystallization occurred only in the centre region of the strips. Pre-existing large bands 

provided a favourable nucleation site for very large recrystallized grains.  

The morphology of the recrystallized grains was plate-like due to the planar alignment of 

the dispersed particles. 

The recrystallization texture was indexed to {112}<312>. Preferential growth of the large 

recrystallizing grains against the particle pinning appeared to determine this unique 

recrystallization texture. 

The hot-rolled strip underwent recovery accompanied by continuous band growth, but 

without recrystallization. 
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