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1. Introduction 

As often reminded to the readers in articles or reviews which deal with plant adaptation to 
their environment, higher plants are sessile organisms, a life habit which does not allow 
them to escape danger or to move to avoid adverse conditions. This environmental pressure 
has led to a myriad of adaptations, which are reflected in the vast diversity of plant habitats, 
morphologies, life cycles and physiological adaptations among others. The surface of the 
aerial parts of plants is a major interaction domain between the plant and its environment 
and as such is the site of many adaptations, be they chemical or anatomical. Among those 
adaptations, the leaf hairs or trichomes, which cover the surface of a large number of plant 
species, play a prominent role. Plant trichomes constitute a world of their own, so great is 
their diversity. In a review published in 1978 and entitled “A glossary of plant hair 
terminology”, Payne compiles a comprehensive list of more than 490 terms used to describe 
trichome morphology (Payne, 1978). Despite this extensive diversity, two major classes of 
trichome may be distinguished on the basis of their capacity to produce and secrete or store 
significant quantities of secondary metabolites, namely glandular or non-glandular. Non-
glandular trichomes, or leaf hairs, are poorly metabolically active and provide protection 
mainly through physical means, for example by restricting access to insects, but also by 
preventing water losses, or protecting against UV radiation. Arabidopsis thaliana has been a 
model for the study of non-glandular trichome development and many genes involved in 
non-glandular trichome initiation and development could be identified and characterized 
(Uhrig and Hulskamp, 2010). The metabolic activity of these non-glandular trichomes is 
however fairly limited and offers little potential for metabolic engineering. A particular class 
of hairs is the fibers which are present in various species. Cotton seed trichomes are the 
most economically important since they are the basis of the cotton fiber, but other species 
such as cottonwood also have fiber hairs. Glandular trichomes are present in many different 
plant families and can also be divided in two main classes. The capitate trichomes typically 
have 1 to 10 glandular cells located at the tip of the trichome stalk, and the secretion is 
directly exuded from the top cells. The secreted material is in general fairly viscous, and in 
many cases it makes the leaves sticky. Those trichomes are encountered for example in the 
Solanaceae (tobacco, tomato, potato, etc.) and in some Lamiaceae species (e.g. Salvia). Peltate 
trichomes have the capacity to synthesize and store volatile compounds (mono- and 
sesquiterpenes, phenylpropenes) in a subcuticular cavity. Typical representative examples 
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are those from mint and other Lamiaceae, which are valued for the essential oil produced in 
their trichomes. In both cases, the massive metabolic fluxes that take place in the secretory 
cells may lead to the accumulation of metabolites which represent up to 10-15% of the leaf 
dry weight (Wagner et al., 2004). These cells can thus be considered like true cell factories 
and therefore constitute attractive targets for metabolic engineering (Schilmiller et al., 2008).  

1.1 Why trichome specific promoters? 

Whether they are cotton fibers or glandular trichomes producing essential oils or resins, the 
availability of genes and promoters which are specifically expressed in those structures 
provides material both for more in-depth studies of trichome specific processes and for high 
precision engineering of trichome traits. A number of genes which are highly expressed in 
trichomes may also be expressed in other organs because they are involved in similar 
processes there. The promoters from these genes are not ideal for the study of trichome 
specific processes for obvious reasons. Using these promoters will lead to expression outside 
of the trichomes and may lead to undesirable effects because of the toxicity of the 
compounds produced. A trichome specific promoter may be used in several ways to further 
investigate trichome processes. One is to search for transcription factors by one-hybrid 
screening or other related methods. Unbiased search for upstream regulators may also be 
achieved in mutant screens in plants expressing promoter:reporter gene fusions. Although 
not necessarily practical in the species of interest (for example in mint which is a sterile 
polyploidy species), a convenient host with conserved features but which is more amenable 
to transformation and screening, may be chosen for this purpose.  

Another major motivation to isolate and characterize trichome specific promoters is genetic 

engineering, in particular for the expression of metabolic pathway genes. When expressed 

under a strong ubiquitous promoter, like the Cauliflower Mosaic Virus (CaMV) 35S, 

perturbation of metabolic pathways in the whole plant may have deleterious consequences 

on plant development and physiology. The trichomes, as a distinct entity with restricted 

communication to the rest of plant, represent therefore a particularly interesting target for 

metabolic engineering. 

Besides metabolic engineering, the availability of trichome specific regulators may help to 

modify trichome related traits. For example, modulating the expression of transcription factors 

specifically controlling trichome differentiation and/or development could lead to an increase 

in trichome density, an improvement of the productivity of trichome-based secretions (e.g. 

essential oils) or a boost in trichome-mediated resistance to insect pests or other pathogens.  

2. Cotton 

2.1 Genomics of cotton fibers 

Cotton fibers are specialized single-celled hairs which develop on ovules. The cotton hairs 

are among the longest plant cells reported and are coated with cellulose fibers which confer 

its value to the cotton crop. Because cotton hairs are single-celled, it has been proposed that 

their development is controlled by similar gene networks as those of Arabidopsis leaf 

trichomes, which are also single-celled but branched. It should be noted however, that 

Arabidopsis seeds do not have trichomes and thus cannot be considered as an ideal 

www.intechopen.com



 
Trichome Specific Expression: Promoters and Their Applications 

 

355 

surrogate model to evaluate the specificity of expression of cotton fiber genes. The 

development of seed trichomes is a synchronized process with several easily distinguishable 

phases. These have been well documented in previous reviews and will be briefly 

summarized here. The initiation of fiber cells takes place early on at the onset of anthesis, 

which is conveniently used as the reference time point expressed in days post anthesis 

(DPA) (Lee et al., 2007). Already after 2 DPA, the fibers start elongating, a process which 

lasts until 20 DPA. This is followed by secondary wall biosynthesis until 45-50 DPA and 

concluded by the maturation phase. The synchronized process has allowed the preparation 

of RNA from these different phases. Initially, fiber specific genes were isolated by 

differential screening of cDNA library. This led to the successful identification of several 

genes with strong and specific expression in fibers, including E6, genes encoding Lipid 

Transfer Proteins (LTPs), a Proline Rich Protein and other genes with no obvious sequence 

similarity (John and Crow, 1992; Ma et al., 1995; Orford and Timmis, 1995; Rinehart et al., 

1996; Orford and Timmis, 1997; Orford and Timmis, 1998; Orford et al., 1999). Already, 

Northern or RT-PCR analysis showed that genes can be expressed during distinct phases of 

development of the fiber cells or throughout the life of these cells. This is relevant since the 

promoters from these genes should allow to direct the expression of transgenes during 

given stages of development of the fibers, which may have important practical 

consequences depending on the engineering objective. These early studies were followed by 

genomics approaches, including Expressed Sequence Tag (EST) library sequencing and 

microarray hybridization. In particular, EST libraries corresponding to various stages of 

development were produced and these provide invaluable resources for the identification of 

fiber specific genes (Li et al., 2002a; Arpat et al., 2004; Udall et al., 2006; Yang et al., 2006). As 

genes from these EST collections start being characterized, more information has become 

available on the pattern of expression and the importance of some transcription factors in 

fiber development (Lee et al., 2007). For some of the genes, the promoters have been cloned 

and characterized by transgenesis or transient assays. Because cotton transformation is a 

lengthy process, alternative hosts have been used to characterize cotton promoter:GUS 

fusions. In most cases, these are either Arabidopsis thaliana or tobacco (Nicotiana tabacum). 

These hosts are far from ideal when it comes to characterize seed fiber specific expression 

because they are both devoid of seed trichomes. Arabidopsis is perhaps a little better 

because its trichomes are single-celled, like those of cotton, whereas those of tobacco are 

typically multicellular. There is, in addition, evidence that single celled trichomes from 

Arabidopsis, which, like cotton, belongs to the Rosids, and multicellular trichomes of the 

Solanaceae or other Asterids (Antirrhinum) are under the control of distinct regulatory 

network (Serna and Martin, 2006). A list of available cotton fiber promoters is provided in 

Table 1. This list is probably not exhaustive, but contains already 28 promoters, 

underscoring the high interest in characterizing such promoters. The expression range, 

expressed in DPA was compiled, and illustrates the diversity of promoters available, from 

the differentiation stage to the late secondary wall synthesis phase. Thus, targeting 

engineering to specific phases of fiber development is theoretically possible. It is difficult to 

compare the strength of these promoters between them, as they were often assessed in 

independent studies using different methods (Northern, semi-quantitative and quantitative 

RT-PCR,). Nonetheless, it can be assumed that genes with a function in cell wall 

biosynthesis, e.g. cellulose synthase, are probably among the most highly expressed.  
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Gene 
Protein 

description 

Expression 
measured by 
RT-PCR or 
Northern 

Expression 
window in 

cotton fibers  
(in days) 

Expression in 
other tissues 

References 

GhE6 hypothetical Y 15-24 N 
(John and Crow, 

1992) 

GhLTPx_GH3 
Lipid transfer 

protein 
Y 5-20 N (Ma et al., 1995) 

FbL2a Hypothetical Y 25-45 N 
(Rinehart et al., 

1996) 

pGhEX1 Expansin Y 6-20 N 

(Orford and 
Timmis, 1998; 
Harmer et al., 

2002) 

GhLTP6 
Lipid transfer 

protein 
N 10-20 N 

(Ma et al., 1995; 
Hsu et al., 1999) 

GhLTP3 
Lipid transfer 

protein 
N 5-20 N (Liu et al., 2000) 

GhTUB1 beta-tubulin Y 0-14 

early seedling 
development 
(cotyledons, 

root tips) 

(Li et al., 2002b) 

GhCTL1-2 Chitinase-like Y 8-31 

xylem, pollen, 
cells with 
secondary 

walls (weak) 

(Zhang et al., 
2004) 

GaRDL1 RD22_like Y 3-12 N 
(Wang et al., 

2004) 

GhACT1 Actin Y 4-21 Cotyledons (Li et al., 2005) 

GhDET2 Steroid reductase Y 3-14 Roots (Luo et al., 2007) 

GhGlcAT1 
glucuronosyltransf

erase 
N NA NA (Wu et al., 2007) 

Fsltp4 
Lipid transfer 

protein 
Y 6-14 N 

(Delaney et al., 
2007) 

GhTUA9 alpha-Tubulin Y 5-10 N (Li et al., 2007) 

GaHOX1/2 
Transcription 

factor 
Y 3-12 N 

(Guan et al., 
2008) 

GaMYB2 
Transcription 

factor 
Y 0-9 

trichomes in 
other organs 

(Wang et al., 
2004; 

Shangguan et 
al., 2008) 

GhMYB109 
Transcription 

factor 
Y 4-8 N 

(Suo et al., 2003; 
Pu et al., 2008) 

GhSCFP Protease N 2-25 N 
(Hou et al., 

2008) 

GhH6L Arabinogalactan Y 3-20 N (Wu Y, 2009) 

GhMYB25 
Transcription 

factor 
Y 0-5 

trichomes of 
other tissues, 

pollen, anthers, 
root epidermis, 

root initials 

(Machado et al., 
2009) 
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Gene 
Protein 

description 

Expression 
measured by 
RT-PCR or 
Northern 

Expression 
window in 

cotton fibers  
(in days) 

Expression in 
other tissues 

References 

GhSUS3 Sucrose synthase Y 0-5 NA 
(Ruan et al., 

2009) 

GhXTH1 
Xyloglucan 

endotransglycosyl
ase/hydrolase 

Y 10-25 N 
(Michailidis et 

al., 2009) 

GbML1 
Transcription 

factor 
Y -3-8 Petal 

(Zhang et al., 
2010) 

GhRING1 Ubiquitin Ligase Y 0-20 NA (Ho et al., 2010) 

GhXTH1 
Xyloglucan 

endotransglycosyl
ase/hydrolase 

Y 10-15 Petal (Lee et al., 2010) 

ADPGp_SSU2 
ADP-glucose 

pyrophosphorylas
e 

Y 10 
meristem, 

immature stem, 
roots 

(Taliercio, 2011) 

GhCesA4 Cellulose synthase Y 16-24 
root vascular 

tissue 
(Wu et al., 2009; 
Kim et al., 2011) 

Table 1. Promoters expressed in cotton fibers. DPA: days post-anthesis. Y: yes; N: no; NA: 

not available 

2.2 Examples of engineering of cotton trichomes 

The first attempts at genetic engineering of cotton fibers were performed in the late 1990s, soon 

after the first specific promoters were identified. The objective was to introduce poly-

hydroxybutyrate (PHB) into cotton fibers, via the expression of two genes phaB and phaC from 

the bacterium Alcaligenes eutrophus, which naturally produces PHB in inclusion bodies. phaB 

encodes the acetoacetyl-CoA reductase and phaC the PHB synthase. Expression of both genes 

in Arabidopsis thaliana was previously shown to support de novo biosynthesis of PHB in plants 

for the first time (Poirier et al., 1992). In cotton, this was achieved by expressing phaB under the 

control of the promoters from the fiber specific genes FbL2a or E6, and phaC with the FbL2a or 

35S promoters. Since the substrate for the PHB synthase does not occur naturally in plants, the 

expression of phaC under 35S should not have deleterious effects on whole plants. The 

transgenic plants were reported briefly in a first paper (Rinehart et al., 1996) and analyzed in 

more detail in a second article (John and Keller, 1996). Production of PHB in the lumen of 

cotton fiber cells could be shown as evidenced by staining, electron microscopy, HPLC and 

GC-MS. PHB accumulated in the form electron-translucent granules. Quantification of crotonic 

acid released after hydrolysis indicated levels of up to 3440 µg/g dry fiber in the best lines. The 

majority of the PHB produced (68.3 %) had a MW above 0.6x106 Da, which is similar to PHB 

produced in bacteria. PHB synthesis peaked at 10 DPA and did not increase nor decrease 

afterwards, indicating the absence of major PHB degrading activity in cotton fibers. The 

thermal properties of the transgenic fibers were also assessed and indicated that they had 

higher heat retention capacity (John and Keller, 1996). However, although promising, those 

modified properties were apparently not significant enough to warrant commercialization. 

This was due to the relatively low level of PHB produced (0.34% of fiber weight), which would 

need to increase several fold to be considered for commercialization.  
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In a more recent attempt at metabolic engineering, melanin biosynthesis was introduced in 

cotton fibers (Xu et al., 2007). Dyeing cotton fibers has a heavy imprint on the environment 

and solutions to reduce its polluting impact are desirable. Naturally colored cotton fibers 

exist but the choice of colors is limited and the colored cotton varieties have low producing 

capacity. An alternative is to use biotechnology to engineer colors into cotton fibers. As a 

proof of concept, Xu and co-workers (2007) expressed two genes, TyrA and ORF438, from 

Streptomyces antibioticus, which are required and sufficient to synthesize melanin. Both genes 

were codon optimized for expression in cotton, fused to a vacuolar targeting peptide and 

cloned under the control of a fiber specific promoter from the Ltp3 gene (Liu et al., 2000). The 

same construct was used to transform tobacco and cotton. Both in tobacco and in cotton 

transgenic plants the change in color in the leaf trichomes (tobacco) or in the seed fibers 

(cotton) was distinctly visible although no dosage of melanin was reported (Xu et al., 2007). 

In addition to its color, melanin also absorbs UV light and could therefore provide UV-

protection properties to cotton fabrics.  

3. Tobacco 

Tobacco (Nicotiana tabacum) is an allotetraploid species which is grown worldwide for its 

leaf which is processed and used for various products, from which the most widely sold 

and consumed are cigarettes. It is well established that regular tobacco smoking is a 

health-damaging habit with associated increased risks of cancer and cardio-vascular 

diseases. Health-promoting uses of tobacco could provide alternative revenue sources for 

tobacco farmers, for example by producing pharmaceutical ingredients in tobacco through 

genetic engineering. Plant Made Pharmaceuticals (PMPs) have mostly concerned 

therapeutic proteins, such as antibodies or hormones like insulin. Plants are also known to 

provide many natural small molecules to the pharmacopeia or as drug leads. These 

belong to the secondary, or specialized, as they are now sometimes called, classes of 

metabolites. The huge diversity of these compounds provides a phenomenal reservoir of 

chemical structures whose biosynthesis pathways are now beginning to be elucidated 

thanks to the contribution of genomics approaches in plant biochemistry studies. One 

issue which is frequently raised about plant natural products is the availability of the raw 

material and the cost associated to extraction and purification of the compound. 

Pharmaceutical companies will shy away from substances whose supply cannot be safely 

guaranteed, which is likely to be the case if the chemical is produced in one rare plant of 

the Amazon forest for example. But the plant does not need to come from tropical forest 

to be endangered. The story of Taxol is a good example in this respect. Taxol is a 

diterpenoid extracted from yew tree with potent anticancer activity. Initially, Taxol was 

extracted from the barks of pacific yew trees (Taxus brevifolia), where it was present in less 

than 0.01% of the dry matter, with many related taxoids to separate it from, making it an 

extremely expensive chemical to produce. Chemical synthesis was too complex to be 

exploited commercially. Since the extraction was destructive, natural populations of 

Taxus were threatened through commercial exploitation of the trees. Fortunately, a semi-

synthetic method starting from a precursor abundant in the twigs, 10-deacetyl-baccatin 

III, was developed. This allowed a durable and renewable procedure since twigs can be 

harvested without felling trees. 
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The presumed progenitors of N. tabacum are N. sylvestris and N. tomentosiformis. All three 
species have glandular capitate trichomes on their leaf and stem surfaces, with distinct 
exudate profiles. Cultivated tobacco (Nicotiana tabacum) and its wild relatives, Nicotiana 
sylvestris and N. tomentosiformis produce diterpenes in large amounts in their glandular 
capitate trichomes. N. tomentosiformis secretes large quantities of labdanoid diterpenes. In N. 
tabacum, these may have two types, either macrocyclic cembranoid or bicyclic labdanoids. 
The cembranoids are also produced by N. sylvestris trichomes and include the cembratrien-
diols (ǂ- and ǃ-CBT-diols) and their precursors the cembratrien-ols (ǂ- and ǃ-CBT-ols). 
Labdanoids include Z-abienol and labdene-diol. Depending on the variety, these 
diterpenoids may be present in varying amounts and combinations. The terpenoid 
biosynthesis capacity of tobacco glandular trichomes is massive. In the appropriate 
conditions, the amount of CBT-diols produced by a N. sylvestris leaf may represent up to 
10% of the leaf dry weight. Early studies performed on tobacco glandular trichomes 
concluded that the biosynthesis of the diterpenes takes place in the trichome heads 
themselves (Keene and Wagner, 1985; Kandra and Wagner, 1988; Guo et al., 1994). This, 
together with the high productivity of tobacco trichomes makes them an ideal target for 
terpenoid metabolic engineering.  

Terpenes are hydrocarbon molecules whose structure is based on repeated units of isoprene. 
They are derived from two C5 precursors, isopentenyl diphosphate (IPP) and dimethylallyl 
diphosphate (DMAPP). IPP units can be sequentially added to DMAPP by isoprenyl 
transferases, thus leading to the major short chain isoprenyl diphosphates, geranyl 
diphosphate (GPP- C10), farnesyl diphosphate (FPP – C15) and geranylgeranyl diphosphate 
(GGPP – C20). These isoprenyl diphosphates are the substrates of terpene synthases, which 
in many cases make cyclic products. These are the origin of the skeletal diversity of terpenes. 
In tobacco, the pathway to the cembratrien-diols was elucidated and shown to involve two 
steps. The first is encoded by a multigene family of diterpene synthases, the cembratrien-ol 
synthases (CBTS), which altogether account for the mix of the two stereoisomers of CBT-ol 
(ǂ and ǃ) (Wang and Wagner, 2003; Ennajdaoui et al., 2010). The second step is carried out 
by a cytochrome P450 mono-oxygenase which hydroxylates the CBT-ols at a specific 
position (Wang et al., 2001; Wang and Wagner, 2003). Since the biosynthesis of trichome 
diterpenoids specifically takes place in the glandular cells, one way to get trichome specific 
promoters is to clone the corresponding genes.  

3.1 Tobacco trichome specific promoters 

The first tobacco trichome specific promoter identified was that of the CYP71D16 gene, 
which encodes the CBT-ol hydroxylase (Wang et al., 2002). The gene was itself identified 
through subtractive cDNA library construction which was followed by the cloning of the 
promoter. 1.8 kb of the promoter was sufficient to confer a highly specific expression of the 
GUS reporter gene to the trichomes. Remarkably, only the glandular cells were stained, 
highlighting the distinct differentiation status between the glandular cells of the head and 
the non-glandular cells of trichome stalk.  

The CBTS genes provided another set of trichome specific promoters. It was found that the 
CBT-ol synthase activity is encoded by a family of 3 closely related genes, which arose via 
recent duplication event. These genes share over 90 % identity at the nucleotide level, 
including in the promoter regions. One of those promoters (pCBTS2a) was further studied 
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with sequential and internal deletions. This allowed the identification of a positive 
regulatory region and a negative regulatory region. When the inhibitory region is deleted, 
expression can be detected in the whole leaf epidermis as well as in patches in roots. On the 
contrary, when the activating region is deleted, no expression at all can be detected 
(Ennajdaoui et al., 2010). This indicates that the cell specific expression is the result of the 
unique combination of a broad activating region with an inhibitory region which restricts 
expression to the desired cells. 

Genes involved in the other tobacco labdanoid pathway have been recently identified and 

one promoter was also identified and characterized as trichome specific (Tissier, 

unpublished results). 

The availability of several distinct promoters with identical specificity and different 

strengths should broaden the possibilities for metabolic engineering. 

3.2 Strategies and example for tobacco trichome engineering using specific 
promoters 

Since tobacco produces diterpenoids, one logical possibility for metabolic engineering is to 
use tobacco trichomes for the production of heterologous diterpenoid. The substrate, namely 
GGPP, should be available in non-limiting quantities and in addition, the glandular cells 
have a machinery which allows them to excrete hydrophobic compounds like diterpenes. To 
facilitate the detection of heterologous terpenoids, it may be useful to eliminate or reduce 
the endogenous diterpenoids. This can be achieved by inactivating the CBTS genes. Because 
they are members of a multigene family which are most likely located at the same 
chromosomal locus, the most efficient way to achieve this is to use gene silencing 
technologies. This was done with an antisense construct under the control of a 35S promoter 
(Wang and Wagner, 2003). However, more efficient silencing was obtained with intron-
hairpin constructs targeting the exon 2 of the CBTS genes, under the control of the CBTS2a 
gene itself. In this case, the best transgenic lines had almost no CBT-diols detectable 
(Ennajdaoui et al., 2010). There is also the possibility to exploit natural variation in N. 
tabacum. During a survey of the metabolic profiles of tobacco leaf exudates we have noticed 
that some cultivars produce labdanoids and no cembranoids, while others produce 
cembranoids and no labdanoids. Thus, by crossing these cultivars it is theoretically possible 
to breed new varieties which produce no diterpenoids at all, but which still have the 
capacity to produce new ones. Once a diterpene-free background has been established by 
either of these approaches, heterologous diterpene synthases may be cloned behind 
trichome specific promoters for targeted expression to the glandular cells. This was 
successfully done for taxadiene synthase (Rontein et al., 2008) with yields of up to 10 µg/g 
fresh weight.  

3.3 Glandular trichome expression as a gene function discovery tool 

Several steps of Taxol biosynthesis have been investigated, including the early oxidations of 
taxadiene which lead to the synthesis of the important semi-synthesis precursor, 10-DABIII 
(Croteau et al., 2006). The first of these oxidations was shown to be at the C5 position of the 
taxadiene core, which is necessary to form the so-called oxetane ring (Hefner et al., 1996). 
Subsequently, a gene encoding taxadiene 5-ǂ-hydroxylase (T-5-OH) was identified and 
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characterized (Jennewein et al., 2004). In order to reconstitute these early steps of the taxol 
biosynthesis pathway, both genes were expressed in tobacco under the control of trichome 
specific promoters. Taxadiene synthase (TS) was cloned downstream of the CBTS2a 
promoter as described above while the T-5-OH was cloned 3’ of the CYP71D16 promoter. 
Surprisingly, no taxadien-5-ǂ-ol could be identified in the transgenic plants expressing both 
genes. Instead, a new product, which was later found to be 5(12)-oxa-3(11)-cyclotaxane, 
derived from a complex rearrangement of the taxadiene core upon oxidation, could be 
identified (Rontein et al., 2008). The activity of the enzyme was then further proved from a 
protein expressed in yeast. This shows that the tobacco trichome platform was useful to 
produce sufficient quantities of the product to be structurally characterized. The initial 
functional assignment was likely misguided by the presence of small amounts of T-5-OH as 
a by-product in the enzyme assays. Since T-5-OH was the compound that was looked for, 
the major product may have been ignored. The novel assignment derived from the initial 
tobacco expression, was later confirmed by expression in E. coli, although in this case 
significant amounts of T-5-OH could be detected (Ajikumar et al., 2010). 

In another example, the function of the genes required for the biosynthesis of Z-abienol in 

tobacco could be confirmed by expression in N. sylvestris trichomes. Z-abienol is a labdane 

diterpenoid whose biosynthesis was predicted to require two successive enzymatic steps (Guo 

et al., 1994), first a copalyl-diphosphate synthase like then a kaurene synthase like enzyme 

(Peters, 2010). Two candidate genes were thus identified and expressed in N. sylvestris, which 

does not produce Z-abienol. The exudate of these transgenic plants contained significant 

amounts of Z-abienol of up to 100 µg/g FW (Sallaud and Tissier, unpublished results). 

The supply of isoprenyl diphosphates IPP and DMAPP in tobacco trichomes should allow 

also engineering of other terpenoid classes, like mono- or sesquiterpenes. In those cases, the 

appropriate isoprenyl transferases (i.e. geranyl diphosphate or farnesyl diphosphate 

synthases) should be expressed in addition to the terpene synthases. This was done for a 

sesquiterpene synthase from tomato, the santalene and bergamotene synthase, which uses 

an unusual isoprenyl diphosphate precursor, Z,Z-FPP (Sallaud et al., 2009). Both enzymes 

are naturally targeted to the plastids, which is where IPP and DMAPP from the methyl-

erythritol pathway (MEP) are synthesized. In this case, the sesquiterpenes could not be 

identified in the leaf exudate, rather in the headspace collected from transgenic plants 

(Sallaud et al., 2009). This indicates that tobacco trichomes are suitable for the biosynthesis of 

sesquiterpenes, but not for their storage. For these, and other volatile compounds, such as 

monoterpenes or phenylpropenes, glandular trichomes with a storage compartment for 

volatile compounds, such as the peltate trichomes of mint, should be used (see below). 

3.4 Other examples of tobacco trichome engineering 

As in cotton, the genes for the biosynthesis of the pigment melanin were expressed in 

tobacco under the control of the cotton trichome promoter LTP3 (Xu et al., 2007). This 

promoter was previously shown to be active in tobacco trichomes (Liu et al., 2000). Based on 

the color of trichomes, the presence of melanin could be detected, however no quantification 

was performed. This, however, shows that glandular trichomes which are normally 

producing terpenoids may also be used as an engineering platform for other classes of 

compounds.  

www.intechopen.com



 
Transgenic Plants – Advances and Limitations 

 

362 

4. Mint and other lamiaceae 

4.1 Mint 

Peppermint (Mentha x piperita) is an aromatic plant which is grown worldwide for its 
essential oil whose distinctive character is imparted by its most well known compound, (-)-
menthol. The essential oil of mint, and of many other aromatic plants form the Lamiaceae, is 
stored in glandular trichomes of the peltate type (Gershenzon et al., 1987; Gershenzon et al., 
1989). Peltate trichomes are composed of 8 glandular cells topped by a subcuticular space 
where the secretion products are stored. When the cuticule is ruptured, by pressing the leaf 
between the fingers, or by an insect, the volatile compounds are released and may reach 
their target. It was shown that the peltate trichomes are not just a site of storage, but also 
that the terpenoids are produced in the peltate glandular cells (Gershenzon et al., 1989). A 
technique for the purification of intact peltate glands was developed to allow the production 
of a trichome specific EST library (Gershenzon et al., 1992). This EST library provided 
sequence information for the characterisation of the (-)-menthol biosynthetic pathway, 
which was completely elucidated over the years by the research group from Prof. Croteau 
(Alonso et al., 1992; Gershenzon et al., 1992; Rajaonarivony et al., 1992; Lupien et al., 1999; 
Turner et al., 1999; Gershenzon et al., 2000; McConkey et al., 2000; Bertea et al., 2001; Wust et 
al., 2001; Croteau et al., 2005). Thus, peltate trichomes are extremely well adapted for the 
production and storage of volatile compounds, in particular mono- and sesquiterpenoids. 
Metabolic engineering of mint trichomes should therefore yield particularly interesting 
results for these volatile compounds. Mint transformation by Agrobacterium tumefaciens was 
independently reported by several groups (Diemer et al., 1998; Weller et al., 1998). However, 
although the use of trichome specific promoters was proposed as early as 1999 as a pre-
requisite for metabolic engineering in mint (Lange and Croteau, 1999), to our knowledge no 
characterization of trichome promoters from mint has been published to date. The promoter 
of the Arabidopsis GL1 transcription factor was shown to be functional in tobacco and 
peppermint (Gutierrez-Alcala et al., 2005). However, whether the strength of this promoter 
will be sufficient for metabolic engineering remains to be seen. Nonetheless, the whole 
menthol pathway from spearmint provides a set of genes with trichome specific expression 
and the identification of their promoters should not raise major difficulties.  

4.2 Basil 

Like mint, Basil (Ocimum basilicum) is grown for its aromatic properties which are due to 
volatile compounds produced in similar peltate trichomes. Following the successful 
approach developed in mint, trichome specific EST libraries from different cultivars of basil, 
corresponding to distinct chemotypes, were produced. These were used to elucidate the 
pathways to volatile phenylpropenes and monoterpenes (Gang et al., 2001; Gang et al., 
2002a; Gang et al., 2002b; Iijima et al., 2004a; Iijima et al., 2004b). As in mint, the enzymes of 
the pathway are likely to be highly specific to the peltate glandular cells, and therefore the 
promoters of the corresponding genes should drive specific expression to these cells. Like 
mint, basil could prove an interesting host for the metabolic engineering of volatile 
compounds, with the additional option of the capacity to engineer phenylpropanoid 
metabolism in accessions which produce phenylpropenes. However, to date no promoters 
of basil trichome genes have been characterized. One could also assume that promoters 
from mint should operate in basil, and reciprocally, because of the similarity of their 
trichomes and the fact that mint and basil both belong to the Lamiaceae.  
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4.3 Sage 

Sage (Salvia sp.) is a large genus with a number of species which are grown commercially for 
the extraction of fragrant or aromatic oils. One of the most important is Salvia sclarea (clary 
sage), a biennial plant which produces both an essential oil rich in linalyl acetate and 
linalool, and a concrete with high amounts of the labdanoid diterpene sclareol. Sclareol is 
currently used in the fragrance industry as a synthesis precursor for Ambrox®, a highly 
valued compound with amber-like fragrance und excellent fixative properties (Decorzant et 
al., 1987; Martres et al., 1993; Koga et al., 1998; Moulines et al., 2001; Barrero et al., 2004; 
Moulines et al., 2004). Salvia sclarea possesses two types of glandular trichomes, capitate and 
peltate. The capitate trichomes are likely to produce sclareol, which is secreted onto the 
surface of the inflorescences while the volatile compounds like linalyl acetate are more likely 
to be produced in peltate trichomes (Lattoo et al., 2006; Schmiderer et al., 2008). The 
productivity of sclareol by Salvia sclarea is very high, making it an attractive target for 
metabolic engineering of terpenoids. Recently, massive sequencing of calyx RNA, where 
peltate and capitate glands are highly abundant, was carried out (Legrand et al., 2010). A 
number of genes encoding proteins with clear similarities to terpene synthases and enzymes 
isoprenoid metabolism could be identified, thus providing genes with potentially highly 
specific pattern of expression, notably restricted to trichome glandular cells. Although 
transformation and regeneration of transgenic Salvia sclarea plants has not been achieved to 
date, hairy root cultures were established (Kuzma et al., 2006; Kuzma et al., 2008), and 
transformation of a related species (Salvia miltiorrhiza) by Agrobacterium tumefaciens could be 
successfully demonstrated (Yan and Wang, 2007; Lee et al., 2008). These results suggest that 
trichome specific metabolic engineering of clary sage is technically feasible. 

4.4 Lavender 

Lavender (Lavandula angustifolia, L. x intermedia and other species) is a perennial plant grown 
in the Mediterranean area for its highly fragrant and characteristic essential oil, which is a 
complex mixture of mono- and sesquiterpenoids. As for other Lamiaceae species discussed 
above, the essential oil is produced in peltate glandular trichomes located mostly on the 
inflorescences (Guitton et al., 2010). Here also, genomics approaches have been initiated to 
better understand the molecular basis of essential oil production. In one study, EST libraries 
from flowers and leaves were sequenced by the Sanger method to yield a total of 14,000 
sequences (Lane et al., 2010), thus providing the foundation to identify trichome specific 
genes. A recent study also showed that the oil profile changes over the course of flower 
development correlated with changes in expression of certain terpene synthases, providing 
important information regarding harvest time (Guitton et al., 2010). In addition, a trichome 
specific promoter from the linalool synthase of L. angustifolia (LaLIS) was recently isolated 
and characterized (Biswas et al., 2009). Lavender transformation is also well established, 
having been reported by two independent groups (Mishiba et al., 2000; Nebauer et al., 2000). 
Attempts were also made at metabolic engineering of essential content by overexpressing 3-
hydroxy-3-methylglutaryl CoA reductase (HMGR) and a limonene synthase with a 
constitutive 35S promoter (Munoz-Bertomeu et al., 2007; Munoz-Bertomeu et al., 2008). 
Overexpression of HMGR lead to an increase of both monoterpenes and sesquiterpenes, 
indicating that the cytosolic mevalonate pathway may contribute to both types of terpenes, 
although monoterpenes are synthesized in the plastids (Munoz-Bertomeu et al., 2007). 
Overexpression of the spearmint limonene synthase on the other hand led to a strong 
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increase in limonene while not affecting the other constituents of the oil, indicating that the 
supply of isoprenyl diphosphate precursors is likely not to be limiting in glandular 
trichomes (Munoz-Bertomeu et al., 2008). These results bode well for the metabolic 
engineering of lavender trichomes, and no doubt that the availability of specific promoters 
should allow more precise manipulation of essential production in these species.  

5. Tomato 

Like tobacco, tomato (Solanum lycopersicum) belongs to the family Solanaceae, which is rich 
in species with trichomes. Wild species of tomatoes, such as Solanum pennellii, S. habrochaites, 
and S. peruvianum among others, have different trichome types including non-glandular and 
glandular types. Altogether up to 7 different types could be described, of which 3 main 
glandular types could be described (Luckwill, 1943)(See Figure 1).  

 

Fig. 1. Trichome types from various tomato species. a. type II non-glandular trichomes from 
S. lycopersicum. b. Type III long hairs (non-glandular). c. Type I long glandular trichomes 
with single secretory cell at the tip. d. Type VI glandular trichomes. On the left, trichomes 
from the cultivated tomato, S. lycopersicum. On the right, trichomes from the wild species S. 
habrochaites. The type VI trichomes from S. lycopersicum have four secretory cells on one 
plane, which can be easily distinguished from each other. The type VI trichomes from S. 
habrochaites also have four secretory cells, but they are wrapped in a common cuticular 
envelope, making it look like a single cell from the outside. In addition there is an 
intercellular space in the middle of these type VI trichomes, where the metabolites are 
stored. e. type IV trichomes. In some species, like S. habrochaites, these trichomes have a 
single glandular head, while in others like S. pennellii they look more like tobacco glandular 
trichomes with several glandular cells. F. type VII short glandular trichomes. 

The type VII are short glandular trichomes with a single stalk cell and a berry-shaped 
glandular head composed of 7-10 cells. Tobacco also has similar trichomes, and it was 
shown in tobacco that these trichomes secrete short proline rich proteins, called 
phylloplanins which have antifungal activities (Shepherd et al., 2005). These trichomes do 
not appear to secrete small metabolites, and thus seem to be specialized for peptide 
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synthesis. Type I and type IV are capitate trichomes with few or a single glandular cell at the 
tip. The Type I are extremely long trichomes which can be easily seen with a naked eye, 
while the type IV trichomes are shorter. Type I trichomes are rare in cultivated tomatoes, 
while fairly abundant in some wild species, like S. habrochaites. Type IV trichomes are absent 
from cultivated tomatoes, and very abundant in S. habrochaites. These trichomes seem to be 
involved in the synthesis and secretion of secondary metabolites, mostly terpenoids 
(McDowell et al., 2011). Type VI trichomes are present in both S. lycopersicum and S. 
habrochaites but they present distinct morphologies in each species. In S. lycopersicum, the 
four secretory cells are distinctly visible, forming a four-leaf clover shape when viewed from 
above with a total width of ≈ 60 µM. In S. habrochaites, the four secretory cells are encased in 
an envelope made of cuticule and cell wall materials, so that they appear as a single unit 
from the outside. The diameter of this ball-shape structure is also about 60 µM, and in 
contrast to the type VI trichomes from the cultivated tomato, it contains a cavity, most likely 
of intracellular space resulting from cell wall degradation, between the 4 cells. This storage 
cavity is reminiscent of the subcuticular space of the peltate trichomes of mint and is likely 
to contain the secretion products of the glandular cells.  

Tomato trichomes have attracted major interest because of their roles in biotic interactions, 

in particular with arthropods. There are many reports of the roles of trichome secretions in 

the resistance to insect or arthropod pests (Kennedy, 2003). Most of the resistances to insects 

are found in wild species, like S. pennellii and S. habrochaites. For example the white fly 

Bemisia tabacci, which can transfer viruses, can be overcome thanks to glandular trichome 

secretions (Heinz and Zalom, 1995; Rubinstein and Czosnek, 1997; Snyder et al., 1998; 

Vendramim et al., 2009). Tuta absoluta is another important pest which is recently causing 

increasing damages to tomato crops. Again sources of resistance have been identified in 

wild accessions of S. habrochaites (Gilardon et al., 2001; Maluf et al., 2010).  

The origin of the resistance lies both in the nature and in the quantity of the chemicals 

secreted. These wild species can be crossed to S. lycopersicum, and they can be used to 

introgress agriculturally relevant traits (disease and abiotic stress resistance, flavor, yield, 

etc.) into the cultivated tomato genome. However, introgression of complex traits which 

involve not only biosynthetic pathways, but also regulatory factors controlling may prove 

difficult and could lead to the introduction of undesirable genes from the wild species which 

adversely affect yield traits for example, and which may be difficult to eliminate because of 

the lower level of recombination between wild and cultivated tomato genomes. An 

alternative is then to introduce the required genes by genetic engineering. To avoid the 

synthesis of these compounds in the whole plant, which may cause undesirable side effects, 

trichome specific promoters are required.  

In early studies, it was found that polyphenol oxidases are strongly expressed in tomato 

type VI glandular trichome (Kowalski et al., 1992; Yu et al., 1992; Thipyapong et al., 1997). 

However, the promoters of this complex multigene family are not specific to trichomes and 

are also expressed in many other tissues upon stress (Yu et al., 1992; Thipyapong et al., 1997).  

5.1 Omics of tomato glandular trichomes 

Subsequently, as interest in elucidating the biosynthesis pathways of tomato glandular 

trichomes increased, trichome specific EST libraries from tomato were produced, in 
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particular from the wild species with abundant trichome secretions. The first libraries were 

released in 2001 from S. habrochaites (accession LA1777) )(van Der Hoeven et al., 2000) and S. 

pennellii (accession LA716). They were produced by Sanger sequencing and contained 

around 2000 sequences each (see Table 2). 

 

Species accession Trichome type Sequencing type # of ESTs Reference 

S.habrochaites LA1777 mixed Sanger 2,656 
(van Der Hoeven et al., 

2000; Fei et al., 2004) 

S. habrochaites PI126449 mixed Sanger 5,494 (Fridman et al., 2005) 

S. lycopersicum NA mixed Sanger 7,254 (Besser et al., 2009) 

S. pennellii LA716 mixed Sanger 2,917 (Fei et al., 2004) 

S. lycopersicum LA3475 mixed stems NGS 278,000 (McDowell et al., 2011) 

S. lycopersicum LA3475 type VII Sanger 791 (McDowell et al., 2011) 

S. lycopersicum LA3475 type VI NGS 225,000 (McDowell et al., 2011) 

S. lycopersicum LA3475 type I Sanger 831 (McDowell et al., 2011) 

S. habrochaites LA1777 mixed leaves NGS 108,000 (McDowell et al., 2011) 

S. habrochaites LA1777 type I Sanger 978 (McDowell et al., 2011) 

S. habrochaites LA1777 type IV Sanger 1,425 (McDowell et al., 2011) 

S. habrochaites LA1777 type VI NGS 224,000 (McDowell et al., 2011) 

S. habrochaites PI126449 Type VI Sanger 15,000 (McDowell et al., 2011) 

S. 
pimpinellifolium 

LA1589 type VI NGS 227,000 (McDowell et al., 2011) 

S. pennellii LA0716 type IV Sanger 1,277 (McDowell et al., 2011) 

S. pennellii LA0716 type VI Sanger 1,137 (McDowell et al., 2011) 

S. pennellii LA0716 mixed leaves NGS 275,000 (McDowell et al., 2011) 

S- arcanum LA1708 mixed stems NGS 415,000 (McDowell et al., 2011) 

Total 1,791,760 

Table 2. A summary of currently available EST libraries from tomato trichomes. The accession 
numbers are those according to the Tomato Genetics Resource Center nomenclature (preceded 
with LA), or from the USDA germplasm collection (preced with PI). 

Other similar sequence libraries were produced (Fridman et al., 2005; Slocombe et al., 2008), 

followed by the recent release of trichome specific libraires from several Solanum species 

and from distinct trichome types (McDowell et al., 2011). Some of these were sequenced by 

next generation sequencing technologies, thus affording much larger numbers of EST 

sequences (up to 278 000 in some cases) (McDowell et al., 2011). These sequence databases 

have been extremely useful in identifying and characterizing genes for the trichome specific 

biosynthesis pathways, in particular for terpenes (van Der Hoeven et al., 2000; Sallaud et al., 

2009; Schilmiller et al., 2009) and methylketones (Fridman et al., 2005; Ben-Israel et al., 2009; 

Yu et al., 2010). A summary of the available EST sequences from various tomato species and 

trichome types is provided in Table 2. With a total of 1 791 760 ESTs, tomato trichomes are 

probably the trichomes with the best sequence resources currently available. 
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The availability of the tomato (S. lycopersicum) genome sequence makes it possible now to 

rapidly have access to promoter sequences, although the most interesting promoters will 

undoubtedly come from the wild species. However, the high sequence similarity between S. 

lycopersicum and S. pennellii or S. habrochaites should allow the facile identification of the 

promoters in those wild species.  

There is at this stage and to the best of our knowledge, no reported example of metabolic 

engineering in tomato trichomes. Since tomato is a food crop grown for its fruit, much more 

has focused on fruit metabolism. There was even a report of taxadiene synthase (TS) 

expression in tomato fruit under the control of a fruit specific promoter (Kovacs et al., 2007). 

From a purely metabolic point of view, this makes sense since tomato fruits are rich in 

carotenoids which derive from the same substrate as diterpenes, namely GGPP. However, 

the overexpression of TS caused sterility and growth defects which are undesirable side 

effects. In addition, the presence of potentially toxic secondary compounds in edible 

vegetables or fruits is a potential source of incidents by contamination of the food supply 

chain which must be avoided.  

6. Artemisia 

Artemisia annua, or sweet wormwood, a biennial plant from the Asteraceae family, has 

attracted attention as the source of an alternative to quinoline drugs for the treatment of 

malaria. The emergence of foci of resistance to quinine and related drugs in strains of 

Plasmodium falciparum requires the use of durable alternative treatments. Sweet wormwood 

was long known in Chinese traditional medicine to treat fevers. It was rediscovered in the 

1970s for the treatment of malaria. The active ingredient is artemisinin, a sesquiterpene 

lactone, but semi-synthetic derivatives (Artemeter, Artesunate) have been developed as 

drugs by the pharmaceutical industry. Artemisia, like many other species from the 

Asteraceae, produces sesquiterpene lactones in glandular capitate trichomes localized on the 

leaves, stems and flowers. As with other trichome specific biosynthetic pathways, the 

elucidation of the first steps of the artemisinin biosynthesis pathways was made possible 

after sequencing trichome specific cDNA libraries, with the exception of the very first 

committed step, the sesquiterpene amorphadiene synthase (AaAS). AaAS was initially 

identified from a leaf cDNA library by similarity to known sesquiterpene synthases from 

plants (Mercke et al., 2000; Wallaart et al., 2001) and its specific pattern of expression in 

trichomes was later confirmed (Bertea et al., 2005; Olofsson et al., 2011). A succession of 

oxidation steps requiring a P450 mono-oxygenase (CYP71AV1) and an aldehyde 

dehydrogenase leads to artemisinic acid, while the synthesis of de-hydro-artemisinic acid 

requires the intervention of reductase (DBR2) (Zhang et al., 2008; Liu et al., 2009; Teoh et al., 

2009; Wang et al., 2009; Zhang et al., 2009; Weathers et al., 2011). Although much progress 

has been achieved in the elucidation of the artemisinin pathway, relatively little was done 

with regards to promoter identification. Although most genes of the pathway are likely to 

be trichome specific (Liu et al., 2009; Olsson et al., 2009; Wang et al., 2009), only one study 

reports on the cloning of the AaAS promoter and the identification of a WRKY transcription 

factor (AaWRKY1) which binds to the promoter of AaAS (Ma et al., 2009). So far, to the best 

of our knowledge, no attempt at engineering of A. annua trichome metabolism has been 

reported. Given the importance of this compound as a pharmaceutical ingredient, attempts 
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at metabolic engineering of the artemisinic acid pathway in other plants and in 

microorganisms will be here briefly reviewed. Artemisinic acid can be used as a precursor 

for the semi-synthesis of artemisinin and related compounds. In parallel to these pathway 

elucidation efforts, different approaches were proposed and undertaken to improve the 

supply of the ingredient. Increasing demand, as well as requirements of reliable quality and 

supply to maintain stable prices, have spurred the search for either improvement of the 

available crop plant or transferring the production in heterologous hosts by metabolic 

engineering. 

The first strategy is plant-based with the objective of improving artemisinin production by 

breeding using existing natural variation or induced mutagenesis. To reach this goal, a high 

density genetic map based on markers derived from transcriptome deep sequencing was 

created and used to map QTLs for artemisinin production (Graham et al., 2010). This work 

showed that next generation sequencing technologies allow the rapid production of dense 

genetic maps in species where there is little or no prior genetic knowledge.  

Another set of approaches is based on the expression of artemisinin biosynthesis genes in 

heterologous hosts. Reconstitution of the pathway to artemisinic acid was tested in tobacco 

but using ubiquitous promoters such as CaMV 35S (Zhang et al., 2011). Previous 

sesquiterpene engineering studies in tobacco had revealed that targeting a FPP synthase 

together with a sesquiterpene synthase to plastids gave the best results (Wu et al., 2006). 

With the same strategy and using different combinations of genes, it could be shown that 

amorphadiene, artemisinic and de-hydroartemisinic alcohol could be produced in the range 

of µg/g FW, but no artemisinic aldehyde or acid could be detected (Zhang et al., 2011). 

Further analysis indicated that an endogenous reductase in tobacco prevents accumulation 

of artemisinic aldehyde and acids (Zhang et al., 2011), thus questioning the relevance of 

tobacco for such metabolic engineering. The use of trichome specific promoters may solve 

this issue, or perhaps an even better solution would be to use other Asteraceae hosts which 

are able to accumulate sesquiterpene lactones in large quantities, such as chicory for 

example. Another explored strategy was the transient expression in N. benthamiana. This 

system was shown to be quite successful for the transient expression of proteins at very high 

levels (Marillonnet et al., 2005), however the requirements for successful metabolic 

engineering are likely to be different. Nonetheless, transient expression of AaAS with 

CYP71AV1, together with HMGR to increase isoprenyl precursor supply, resulted in the 

production of artemisinic acid-12-ǃ-diglucoside at levels up to 39.5 mg/kg FW (equivalent 

16.6 mg/kg artemisinic acid). This indicated that artemisinic acid is indeed produced to 

significant levels, and highlights the importance of the host and the tissues targeted for 

expression. While altogether these results are promising and suggest that metabolic 

engineering of advanced terpenoid metabolites in plants is feasible, much progress is required 

to reach levels which will make commercial exploitation a reality. Many combinations of 

constructs with different promoters, sub-cellular targeting (plastids, cytosol, mitochondria), 

and hosts will have to be tested to identify the best solutions. However, in plants, even with 

transient expression systems, this is a highly time consuming tasks. 

In comparison, micro-organisms allow a much higher throughput to test a multiplicity of 

constructs in a short time frame. Highly successful engineering endeavors have been 

achieved in E. coli and yeast by Keasling and co-workers. Through introduction of 
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mevalonate pathway genes in E. coli, production levels of amorphadiene of up to 0.5 g/L 

could be reached (Martin et al., 2003; Newman et al., 2006). Even artemisinic acid could be 

produced in E. coli after extensive modification of the P450 CYP71AV1 (Chang et al., 2007). 

However the best results were obtained in yeast, where production levels of up to 100 mg/L 

could be reached (Ro et al., 2006).  

7. Conclusion 

Trichomes have been used as a model to study cell differentiation and organ development 
in Arabidopsis thaliana, where the power of molecular genetics and genomics has made 
possible numerous advances in this area. However, Arabidopsis trichomes offer little 
opportunities for the development of novel products or applications, essentially because 
Arabidopsis trichomes are devoid of metabolic or structural properties of interest. However, 
trichomes play important roles in several crop species, where they are at the origins of 
important agricultural derived products, like cotton fibers and essential oils and fragrance 
ingredients of the Lamiaceae. In addition, trichome-borne resistances to insects and 
microorganisms in plants like tomatoes have attracted interest to restrict the use of 
pesticides. In those species (cotton, tomatoes, Lamiaceae), extensive EST resources were 
created and have proved valuable tools to identify and characterize trichome specific genes 
involved in development or metabolic pathways. Nonetheless, examples of trichome 
engineering using trichome specific promoters are still scarce and are limited to a handful of 
cases in cotton and tobacco. It seems that one limitation is to reach levels of productions for 
the metabolite of interest which are in the same range as those of endogenous metabolites. 
To reach those levels, it is necessary to understand more about how gene expression in those 
specialized cells is regulated, so as to be able to design and construct appropriate expression 
vectors enabling to reach these targets. 
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