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1. Introduction 

Leaf is in general the main site of photosynthesis and acts as a carbohydrate source for 
nutrients to support the growth in sink organs of plants. Therefore, its longevity and 
senescent level may affect the photosynthesis efficiency and thus crop yield. There are 
endogenous and exogenous factors affecting leaf senescence, including plant growth 
regulators, sucrose starvation, dark, cold, drought, salt, wound, pathogen infection and 
insect attack (Yoshida, 2003; Lim et al., 2007). Leaf senescence is the final developmental 
stage of leaves and has been considered as a type of programmed cell death. During leaf 
senescence, it is not only a degradative process but also a recycling one. Therefore, 
macromolecules and organelles can be degraded into small molecules, salvaged and 
mobilized from the senescent cells to other sinks, such as young leaves, developing seeds, or 
storage tissues (Buchanan-Wollaston, 1997; Quirino et al., 2000).  

In sweet potato, several morphological, biochemical and physiological changes have also be 
observed during leaf senescence, including leaf yellowing, decrease of chlorophyll contents, 
reduction of photochemical Fv/Fm, elevation of H2O2 amount, increase of plastoglobuli 
number in chloroplast, activation of senescence-associated gene expression, and finally cell 
death (Chen et al., 2000; Chen et al., 2003; Chen et al. 2010a). Several full-length cDNAs 
encoding putative isocitrate lyase, papain-like cysteine proteases and asparaginyl 
endopeptidase, have been cloned from senescent leaves (Chen et al., 2000, 2004, 2006, 2008, 
2009, 2010b), which likely play roles in association with lipid degradation and 
gluconeogenesis, and protein degradation and re-mobilization. These data support the 
occurrence of macromolecule and organelle degradation into small molecules for recycling 
and re-mobilization during sweet potato leaf senescence.  

During senescence, breakdown of leaf proteins by proteases provides a large pool of cellular 

nitrogen for recycling (Makino & Osmond, 1991). In plants, different degradation pathways 
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have been described and the vacuolar degradation pathway is assumed to be involved in 

bulk protein degradation by virtue of the resident proteases in the vacuole (Vierstra, 1996). 

There are two types of vacuoles described in plants: the storage vacuole and the lytic 

vacuole (Marty, 1999). Protein storage vacuoles are found in seed tissues and accumulate 

proteins that are re-mobilized and used as the main nutrient resource for germination 

(Senyuk et al., 1998; Schlereth et al., 2001). Most cells in vegetative tissues have lytic 

vacuoles, containing a wide range of proteases in an acidic environment. Substrate proteins 

must be transported and sequestered into these lytic vacuoles before degradation. Therefore, 

senescence-associated vacuoles are lytic vacuoles and involved in the degradation of 

imported chloroplast proteins in tobacco leaves (Martı´nez et al., 2008).  

 

Fig. 1. Phylogenetic tree analysis of plant asparaginyl endopeptidases (Adapted and 
Modified from Chen et al., 2004).  

The molecular mechanisms for vacuolar protein degradation and nutrient recycling 

pathway in senescent leaves are generally not clear. Phylogenetic tree analysis indicated that 

sweet potato asparaginyl endopeptidase (SPAE) exhibited high amino acid sequence 

identities and closely-related association with plant vacuolar processing enzymes (VPEs) or 

legumains, including legumain-like protease LLP of kidney bean (Phaseolus vulgaris), 

legumain-like protease VsPB2 of vetch (Vicia sativa), vacuolar processing enzymes of 

Arabidopsis thaliana, and asparaginyl endopeptidases VmPE-1 of Vigna mungo (Fig. 1). Sweet 

potato papain-like cysteine protease (SPCP2) also showed high amino acid sequence 
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identities and closely-related association with a subgroup of cysteine proteases, including 

Actinidia deliciosa CP3, Arabidopsis thaliana RD19, Brassica oleracea BoCP4, Phaseolus vulgaris 

CP2, Solanum melongena SmCP, Vicia sativa CPR2, and Vigna mungo SH-EP (Fig. 2). These 

data suggest the possible physiological roles and functions for SPAE and SPCP2 related to 

these mentioned vacuolar processing enzymes and papain-like cysteine proteases, 

respectively. 

 

Fig. 2. Phylogenetic tree analysis of plant papain-like cysteine proteases (Adapted from Lin, 
2010). 

2. Association of vacuolar processing enzyme and papain-like cysteine 
protease with seed storage globulin protein degradation  

Vacuolar processing enzyme is a novel group of cysteine endopeptidase and has recently 
been found in seeds. The enzyme exhibits strict cleavage specificity for the peptide bonds of 
seed globulin storage proteins with asparagines at the P1 position, and is called asparaginyl 
endopeptidase (Ishii, 1994). The substrate specificity was observed with purified asparaginyl 
endopeptidases from developing seeds of castor bean (Hara-Nishimura et al., 1991) and 
soybean (Scott et al., 1992; Hara-Nishimura et al., 1995), from mature seeds of jack bean (Abe 
et al., 1993), and from germinating seeds of vetch (Becker et al., 1995). Many seeds 
accumulate protein reserves in the storage vacuoles, and a number of these proteins 
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undergo proteolytic cleavage, including the 7S and 11S seed storage globulins (Müntz & 
Shutov, 2002). The 11S seed globulin storage proteins are synthesized as precursors and are 
cleaved post-translationally in storage vacuoles by an asparaginyl endopeptidase during 
seed development (Ishii, 1994). In castor bean and soybean seeds, vacuolar processing 
enzymes were found in the protein bodies and likely associated with the conversion of 
proproteins into their corresponding mature forms in vacuoles (Hara-Nishimura et al., 1991; 
Shimada et al., 1994).  

Asparaginyl endopeptidases also play a role with bulk degradation and mobilization of 
storage proteins during seed germination and seedling growth. For example, the 
asparaginyl endopeptidase, which was also called “legumain-like proteinase” (LLP), was 
isolated from cotyledons of kidney bean (Phaseolus vulgaris) seedlings. It was the first 
proteinase ever known which in vitro extensively degraded native phaseolin, the major 
storage globulin of this grain legume (Senyuk et al., 1998). In vetch (Vicia sativa) seeds, the 
legumain-like VsPB2 and proteinase B together with additional papain-like cysteine 
proteinases were responsible for the bulk breakdown and mobilization of storage globulins 
during seed germination (Schlereth et al., 2000). In Arabidopsis, the seed protein profiles were 

compared between the wild type and a seed-type vacuolar processing enzyme VPE 
mutant using a two dimensional gel/mass spectrometric analysis. A significant increase in 

accumulation of several legumin-type globulin propolypeptides was found in VPE mutant 
seeds (Gruis et al., 2002).  

For papain-like cysteine protease, the vacuolar SH-EP is synthesized in cotyledons of 
germinated Vigna mungo seeds and is responsible for the degradation of seed globulin 
storage proteins accumulated in protein bodies. In Vicia faba (vetch), globulins such as 
legumin and vicillin are major seed storage proteins present in the protein bodies of 
cotyledon, radicle, axis, and shoots. Papain-like cysteine protease such as CPR2 and CPR4 
are found in cotyledon and axis of dry and imbibed seeds. Gene expression studies 
concluded that storage globulin mobilization in germinating vetch seeds is started by the 
stored cysteine proteases (CPRs), however, the bulk globulin mobilization is mediated by de 
novo synthesized CPRs (Schlereth et al., 2000; Schlereth et al., 2001; Tiedemann et al., 2001). 
These data suggest that papain-like cysteine proteases may play physiological roles and 
functions in association with seed storage globulin protein degradation and mobilization 
during seed germination and seedling growth. In addition to the possible physiological 
function with seed storage globulin protein degradation, papain-like cysteine proteases have 
also been implied to play a role in cope with environmental cues. For example, a 
dehydration-responsive papain-like cysteine protease RD19 was cloned and results showed 
that its expression was strongly induced under high-salt and osmotic stress conditions, 
which suggests a possible physiological role of RD19 in association with the regulation of 
plant cell osmotic potential in Arabidopsis thaliana (Koizumi et al., 1993; Xiong et al., 2002). In 
broccoli, the florets showed water loss during post-harvest storage. Gene expression of 
papain-like cysteine proteases BoCP4, which exhibited high amino acid sequence identity 
with Arabidopsis RD19, was also found to be dehydration-responsive and was repressed by 
water and sucrose (Coupe et al., 2003).  

Many vacuolar enzymes are synthesized as pro-proteins and become active after 
proteolytically processed. In seed storage tissues, specific endoplasmic reticulum (ER)-
derived compartments containing precursors of cysteine proteases have been described 
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(Chrispeels & Herman, 2000; Toyooka et al., 2000; Hayashi et al., 2001; Schmid et al., 2001). 
Germination of the seeds induces the expression and processing of those proteases into the 
mature active forms, which in turn participate in the degradation of cellular materials in 
storage tissues and provide nutrients to the growing embryo. The mechanism of asparaginyl 
endopeptidases (VmPE-1) and papain-like cysteine protease (SH-EP) associated with bulk 
seed storage globulin protein degradation has been studied in Vigna mungo. The vacuolar 
cysteine protease SH-EP is synthesized in cotyledons of germinated Vigna mungo seeds with 
an N-terminal and a C-terminal prosegments (Okamoto & Minamikawa, 1999; Okamoto et 
al., 1999). Okamoto & Minamikawa (1995) isolated a processing enzyme, designated VmPE-
1. VmPE-1 is a member of the asparaginyl endopeptidases and is involved in the post-
translational processing of SH-EP. In addition, the cleavage sites of the in vitro processed 
intermediates and the mature form of SH-EP were identical to those of SH-EP purified from 
germinated cotyledons of V. mungo. Therefore, it is proposed that the asparaginyl 
endopeptidase (VmPE-1)-mediated processing functions mainly in the activation of proSH-
EP during seed germination (Okamoto et al., 1999). The activated SH-EP plays a major role 
in the degradation of seed storage proteins accumulated in cotyledonary vacuoles of Vigna 
mungo seedlings (Mitsuhashi et al., 1986). These reports demonstrate a role of asparaginyl 
endopeptidase associated with papain-like cysteine protease in the bulk breakdown and 
mobilization of storage globulins during seed germination.  

3. Characterization of sweet potato asparaginyl endopeptidase SPAE and 
papain-like cysteine protease SPCP2 

Recently, similar compartments have also been described in vegetative tissues of Arabidopsis 
(Hayashi et al., 2001). These precursor protease vesicles derived from ER are plant specific 

compartments and contain vesicle-localized vacuolar processing enzyme (VPE) precursor, 
which is critical for maturation of the vacuolar protease AtCPY. The vacuolar protease 
AtCPY in turn participates in the degradation of cellular components including vacuolar 
invertase AtFruct4 and various proteins in organs undergoing senescence in Arabidopsis 
(Rojo et al., 2003). A mechanism of senescence-induced activation of vesicle-localized 
vacuolar processing enzyme precursor by releasing its inactive form from the precursor 
protease vesicle into the acidic lumen of the vacuole is suggested. This activation triggers 
the processing of downstream proteases for protein degradation and recycling in senescing 
tissues (Rojo et al., 2003). These data suggest sweet potato asparaginyl endopeptidase SPAE 
and papain-like cysteine protease SPCP2 may also play roles with functions related to 
protein degradation for nutrient remobilization during leaf senescence.  

3.1 SPAE 

SPAE had been cloned from senescent leaves with PCR-selective subtractive hybridization 
and exhibited high amino acid sequence homologies to seed vacuolar 
legumains/asparaginyl endopeptidases of kidney bean (Phaseolus vulgaris), spring vetch 
(Vicia sativa) and jack bean (Canavalia ensiformis) (Chen et al., 2004). The conserved catalytic 

residues (His and Cys) and central -strands that supported the catalytic residues of human 
and mouse legumains (Chen et al., 1998) were also found in SPAE, plant 
legumain/asparaginyl endopeptidase, vacuolar processing enzymes, and the other cysteine 
proteases (Chen et al., 2004). 
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Asparaginyl endopeptidase SPAE encoded a pre-proprotein precursor, which contained a 
putative mature protein (325 amino acid residues) and an N-glycosylation site at its C-
terminus. The deduced molecular mass of mature SPAE protein was, thus, likely between 33 
and 36 kDa that detected by protein gel blot with polyclonal antibody against putative SPAE 
protein (Chen et al., 2004). Asparaginyl endopeptidase is an atypical cysteine endopeptidase 
with a reported insensitivity to the inhibitor L-3-carboxy-2,3-trans-epoxypropionyl-leucyl-
amino(4-guanidino)butane (E-64) (Okamoto & Minamikawa, 1999). A cysteine protease 
activity band with a molecular mass near 36 kDa similar to the protein gel blot results was 
also detected and exhibited insensitivity to E-64 inhibitor (Chen et al., 2004). These data 
provide indirect evidence to support the existence of asparaginyl endopeptidase in 
senescent leaves.  

In sweet potato, SPAE gene expression level is higher in dark- or ethephon-treated leaves 
similar to that in natural senescent leaves. Hormones such as jasmonic acid (JA) and abscisic 
acid (ABA) also caused the decrease of chlorophyll contents in treated leaves; whereas, did 
not significantly alter SPAE gene expression level compared to that of untreated dark 
control in mature green leaves within a 3-day period (Chen et al., 2004). These data suggest 
that SPAE is a senescence-associated gene and its expression in natural or induced senescent 
leaves is likely controlled by ethylene, but not by JA and ABA. 

3.2 SPCP2 

SPCP2 had been cloned from senescent leaves with PCR-selective subtractive hybridization. 

The open reading frame of SPCP2 contained 1101 nucleotides (366 amino acids) and 

exhibited high amino acid sequence identities with a subgroup of vacuolar cysteine 

proteases including Actinidia deliciosa CP3, Arabidopsis thaliana RD19, Brassica oleracea BoCP4, 

Phaseolus vulgaris CP2, Vicia sativa CPR2, and Vigna mungo SH-EP (Chen et al., 2010). These 

data suggest an intracellular localization of SPCP2 in the vacuole. For SH-EP, a C-terminal 

KDEL sequence (endoplasmatic retention signal) was proved to be associated with its 

vacuole-targeting (Okamoto et al., 2003). However, no significant C-terminal KDEL 

sequence was found for SPCP2. For RD-19, a vacuolar localization was also suggested. 

However, it can be re-localized to nucleus in the presence of PopP2, an avirulent gene 

product of R. solanacearum (Bernoux et al., 2008; Poueymiro & Genin, 2009). Therefore, it is 

possible to assume that different vacuolar targeting mechanisms and signal peptides are 

involved and associated with different related cysteine protease genes. 

SPCP2 gene expression was enhanced in natural senescent leaves and can be induced by 

dark, ethephon, ABA and JA (Chen et al., 2010). Buchanan-Wollaston et al. (2005) analyzed 

gene expression patterns and signal transduction pathways of senescence in Arabidopsis 

induced by different factors. Transcriptome analysis demonstrated that pathways such as 

dark, ethylene, and JA are all required for gene expression during developmental 

senescence. Genes associated with essential metabolic processes such as degradation of 

proteins and peptides and nitrogen mobilization can utilize alternative pathways for 

induction (Buchanan-Wallaston et al., 2005). Therefore, a possible explanation which is 

likely associated with multiple signal transduction pathways is suggested for the induction 

of sweet potato SPCP2 gene expression by different factors, including development, dark, 

ABA, ethephon and JA. 
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4. Ectopic expression of asparaginyl endopeptidase SPAE and papain-like 
cysteine protease SPCP2 in transgenic Arabidopsis  

Sweet potato full-length cDNAs of asparaginyl endopeptidase SPAE and papain-like 
cysteine protease SPCP2 were individually constructed in the T-DNA portion of 
recombinant pBI121 vector under the control of CaMV 35S promoter for transformation of 
Arabidopsis with Agrobacterium–mediated floral dip transformation method (Clough & Bent, 
1998). Transgenic Arabidopsis plants ectopically expressing sweet potato asparaginyl 
endopeptidase SPAE (Chen et al., 2008) or papain-like cysteine protease SPCP2 (Chen et al., 
2010) were produced, identified and characterized. 

4.1 Expression of sweet potato asparaginyl endopeptidase SPAE altered seed and 
silique development in transgenic Arabidopsis  

Three transgenic Arabidopsis plants were isolated and identified with floral dip 
transformation method (Clough & Bent, 1998). Genomic PCR and protein gel blot analysis 
confirmed that these Arabidopsis plants (YP1, YP2 and YP3) were transgenic and sweet 
potato SPAE gene was expressed and properly processed into mature form with a predicted 
molecular mass near 36 kDa (Chen et al., 2008). Similar results have also been observed and 
reported for various plant vacuolar processing enzymes, including Vigna mungo VmPE-1 

(Okamoto et al., 1999), Arabidopsis VPE (Gruis et al., 2002), Arabidopsis VPE (Kuroyanagi et 
al., 2002; Rojo et al., 2003). These data suggest that transgenic Arabidopsis plants may use 
similar mechanisms for sweet potato SPAE processing, and thus can produce mature sweet 
potato SPAE protein products.  

Transgenic Arabidopsis plants exhibited earlier floral transition from vegetative growth and 
leaf senescence (Chen et al., 2008). Early transition of vegetative phase to reproductive phase 
has been considered as a type of senescence. The reasons and mechanisms that sweet potato 
SPAE gene expression can promote earlier floral transition and enhance senescence in 
transgenic Arabidopsis plants are not clear. However, Raper et al. (1988) and Rideout et al. 
(1992) hypothesized that floral transition is stimulated by an imbalance in the relative 
availability of carbohydrate and nitrogen in the shoot apical meristem. Barth et al. (2006) 
suggest that the flowering phenotype is likely linked to the endogenous ascorbic acid 
content. Degradation and removal of flowering repressor(s) by ectopic SPAE expression in 
transgenic Arabidopsis plants provides another possibility.  

Expression of sweet potato SPAE in transgenic Arabidopsis plants caused altered 
development of seed and silique, elevated percentage of incompletely-developed siliques, 
and fewer silique numbers per plant than that of control (Figs. 3 and 4). The reasons for 
altered phenotypic characteristics in transgenic Arabidopsis by sweet potato SPAE expression 
are not clear. However, sweet potato SPAE is in close association with plant vacuolar 
processing enzymes of seeds from phylogenetic analysis (Chen et al., 2004). Vacuolar 
processing enzymes have been reported to be in association with the degradation and 
mobilization of globulin storage proteins during seed germination and seedling growth in 
Phaseolus vulgaris (Senyuk et al., 1998), Vigna mungo (Okamoto et al., 1999), Vicia sativa 
(Schlereth et al., 2000; Schlereth et al., 2001), and Arabidopsis thaliana (Gruis et al., 2002). In 
Vigna mungo, VmPE-1 has been demonstrated to increase in the cotyledons of germinating 
seeds and was involved in the post-translational processing of a vacuolar cysteine 
endopeptidase, designated SH-EP, which degraded seed storage proteins (Okamoto & 
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Minamikawa, 1999). A possible explanation that inappropriate pre-degradation of globulin-
type storage protein during seed development and maturation by constitutively expressed 
sweet potato SPAE in transgenic Arabidopsis is suggested. The inappropriate pre-
degradation of globulin-type storage protein may result in partial repression of seed and 
silique development which in turn leads to higher incompletely-developed silique 
percentage and lower silique numbers per plant. These data also suggest that sweet potato 
asparaginyl endopeptidase SPAE may have enzymatic function similar to seed vacuolar 
processing enzymes for protein degradation and nutrient recycling during leaf senescence. 

 

Fig. 3. Morphological classification of Arabidopsis siliques. A. Different silique types (types 
1, 2, 3 and 4) classified. B. Dissection of type 1 silique; C. Dissection of type 2 silique; D. 
Dissection of type 3 silique; E. Dissection of type 4 silique (Adapted from Chen et al., 2008).  
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Control and T1 transgenic plants
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Fig. 4. Comparison of silique number per plant and incompletely-developed silique 
percentage among control and transgenic T1 plants ectopically expressing sweet potato 
SPAE. A. Comparison of silique number per plant. B. Comparison of incompletely-
developed silique percentages. C and YP1/YP2/YP3 denote non-transformant control and 
transgenic Arabidopsis plants, respectively. The data are from the average of 5 plants per 

treatment and shown as mean  S.E. (Adapted from Chen et al., 2008). 
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Fig. 5. Comparison of growth patterns among control and transgenic T1 Arabidopsis plants 
ectopically expressing sweet potato SPCP2. A. Transition from vegetative growth to 
flowering was observed and compared 30 days after seed germination. B. The appearance 
and size of inflorescences and siliques were observed and compared 35 days after seed 
germination. C. RT-PCR analysis of SPCP2. C and AT denote control and transgenic T1 
Arabidopsis plants, respectively. 
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4.2 Expression of sweet potato papain-like cysteine protease SPCP2 altered seed and 
silique development and enhanced stress tolerance in transgenic Arabidopsis  

Transgenic Arabidopsis plants were isolated and identified with floral dip transformation 

method (Clough & Bent, 1998). Genomic PCR and RT-PCR analysis confirmed that the 

presence and expression of sweet potato papain-like cysteine protease SPCP2 in transgenic 

Arabidopsis plants (Chen et al., 2010). Transgenic Arabidopsis plants also exhibited slightly 

earlier transition from vegetative to reproductive growth (Fig. 5). The reasons and 

mechanisms are not clear. However, an imbalance in the relative availability of 

carbohydrate and nitrogen in the shoot apical meristem (Raper et al., 1988; Rideout et al., 

1992), the change of endogenous ascorbic acid content (Barth et al., 2006), and possible non-

specific degradation and removal of flowering repressor(s) by ectopic SPCP2 expression are 

suggested.  

Expression of sweet potato SPCP2 in transgenic Arabidopsis plants also caused elevated 

number of incompletely-developed silique (Fig. 6), and reduced average fresh weight per 

seed and lower germination percentage (Chen et al., 2010). The reasons for the altered 

phenotypic characteristics in transgenic Arabidopsis by ectopic SPCP2 gene expression are 

not clear. However, SPCP2 exhibited high amino acid sequence identities with plant papain-

like cysteine proteases, such as Phaseolus vulgaris CP2, Vicia sativa CPR2, and Vigna mungo 

SH-EP. These papain-like cysteine proteases together with vacuolar processing enzymes 

have been implicated in association with the degradation and mobilization of globulin 

storage proteins during seed germination and seedling growth in Phaseolus vulgaris (Senyuk 

et al., 1998), Vigna mungo (Okamoto et al., 1999), and Vicia sativa (Schlereth et al., 2000; 

Schlereth et al., 2001). These reports provide a possible explanation for the altered 

phenotypic characteristics observed in transgenic Arabidopsis plants, and suggest that sweet 

potato SPCP2 may have an enzymatic function similar to papain-like cysteine proteases, 

including Vigna mungo SH-EP and Vicia sativa CPR2 for protein degradation and nutrient 

recycling during leaf senescence. 

Expression of sweet potato SPCP2 in transgenic Arabidopsis plants exhibited higher salt and 

drought stress tolerance (Fig. 7), and contained higher relative water content than control 

(Fig. 8). The reasons for the altered stress responses in transgenic Arabidopsis by ectopic 

SPCP2 gene expression are not clear. However, SPCP2 exhibited high amino acid sequence 

identities with plant cysteine proteases, such as Arabidopsis RD19 and broccoli Bocp4. 

Arabidopsis RD19 was a drought-inducible cysteine protease (Koizumi et al., 1993), and 

belonged to osmotic stress-responsive genes (Xiong et al., 2002). Under osmotic stress such 

as drought, high salinity (NaCl or PEG) and ABA treatments, RD19 mRNA transcript was 

significantly enhanced compared to untreated control (Xiong et al., 2002). Broccoli Bocp4 

exhibited high sequence identity to dehydration-responsive Arabidopsis RD19, and was also 

significantly induced in broccoli florets, which were kept in air (dry situation) but not in 

water or 2% sucrose solution 12 h post harvest (Coupe et al., 2003). Sweet potato cysteine 

protease SPCP2 was also inducible by salt and drought stresses in detached leaves (Fig. 9), 

and its ectopic expression in transgenic Arabidopsis caused higher salt and drought 

resistances (Figs. 7 and 8). Our results agree with these reports and suggest a possible role of 

sweet potato cysteine protease SPCP2 in osmotic stress regulation and salt/drought stress 

tolerance.  
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Fig. 6. Comparison of incompletely-developed silique percentages among control and 
transgenic T1 plants ectopically expressing sweet potato SPCP2. A. The appearance and size 
of different silique types (types 1, 2, 3 and 4) were observed and compared 35 days after 
seed germination. B. The average seed number of different silique type. C. Comparison of 
incompletely-developed silique percentage among control and transgenic T1 plants. C and 
AT denote control and transgenic T1 Arabidopsis plants,respectively (Adapted from Chen et 
al., 2010).  
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Fig. 7. Comparison of salt and drought stress tolerance among control and transgenic T1 
Arabidopsis plants ectopically expressing sweet potato SPCP2. A. Salt. For salt treatment, 
seeds were germinated on half strength MS medium plus 3% sucrose and different 
concentrations of NaCl for ca. 2 weeks, and the relative germination percentages were 
recorded and compared. B. Drought. For drought treatment, upper panel of B is the 
photochemical Fv/Fm comparison among control and transgenic T1 Arabidopsis plants 
during dehydration and rehydration treatment. Lower panel of B is the morphological 
comparison among control and transgenic T1 Arabidopsis plant at day 14 after drought 
treatment. The data were the average of total 5 petri dishes for A or 5 seedlings per 

transgenic line for B, and shown as mean  S.E. Control and AT-11/AT-18/AT-19/AT-21 
denote wild type and transgenic T1 Arabidopsis plants, respectively. ▲ indicates the time 
points of dehydration and rehydration (Adapted from Chen et al., 2010). 
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5. Correlation of cysteine protease expression with storage protein 
degradation in sweet potato storage root during sprouting  

In sweet potato storage root, trypsin protease inhibitors (TIs) are the main storage proteins 

and composed of a multiple gene family. It has been implicated that cysteine proteases are 

likely associated with the degradation of storage root trypsin inhibitors during sprouting 

(Huang et al., 2005). Therefore, expression and correlation of sweet potato asparaginyl 

endopeptidase SPAE and papain-like cysteine protease SPCP2 with the degradation and 

mobilization of the two major storage root trypsin inhibitor bands during sprouting were 

studied. The sprouts appeared and were visible within the first week of incubation of 

storage root at room temperature, whereas, degradation of trypsin inhibitors became 

significant in the later incubation. RT-PCR analysis of SPAE and SPCP2 also demonstrated 

that their gene expression was significantly higher in the sprout and flesh of sprouting 

storage root than that of non-sprouting storage root (Fig. 10), and correlated well with the 

time course of degradation of the two major trypsin inhibitor bands (unpublished data). 

These data suggest that the asparaginyl endopeptidase SPAE and papain-like cysteine 

protease SPCP2 may play roles in association with storage root major trypsin inhibitor 

degradation during sprouting. 
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Fig. 8. Comparison of the relative water content (H2O%) between control and transgenic T1 
Arabidopsis plants ectopically expressing sweet potato SPCP2 at day 14 after drought 
treatment. The data were the average of total 5 seedlings per transgenic plants, and shown 

as mean  S.E. Control and AT-11/AT-18/AT-19/AT-21 denote wild type and transgenic T1 
Arabidopsis plants, respectively.  
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Fig. 9. Induction of sweet potato papain-like cysteine protease SPCP2 gene expression by 
salt and drought treatments. A. Salt treatment. Sweet potato detached leaves were treated 
with different salt concentrations (0, 70, 140 and 210 mM, respectively,) for 9 days and 
collected individually for RT-PCR analysis. B. Drought treatment. Detached sweet potato 
leaves were placed on dry paper tower in the dark for 0, 1, 4 and 7 days, and then collected 
individually for RT-PCR analysis. Sweet potato G14 encoded a constitutively expressed 
metallothionein-like protein and was used as a control. 

 

 

Fig. 10. Expression patterns of sweet potato asparaginyl endopeptidase SPAE and papain-
like cysteine protease SPCP2 in non-sprouting and sprouting st The orage roots. A. Storage 
root morphology. B. RT-PCR analysis of SPAE and SPCP2. Sweet potato G14 encoded a 
constitutively expressed metallothionein-like protein and used as a control. 
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Sweet potato asparaginyl endopeptidase SPAE and papain-like cysteine protease SPCP2 

cDNAs have been constructed and expressed in recombinant PET vector for fusion protein 

production and purification. Application of the purified fusion protein to sweet potato 

storage root or detached leaves will be performed in the future in order to study further 

whether they can promote (1) the degradation of storage root major trypsin inhibitors 

during sprouting, (2) protein degradation and recycling during leaf senescence, or (3) stress 

tolerance. 

6. Conclusion 

Sweet potato asparaginyl endopeptidase SPAE and papain-like cysteine protease SPCP2 

are senescence-associated genes and significantly enhanced their expression in senescent 

leaves. Phylogenetic tree analysis shows that SPAE and SPCP2 exhibit close association 

with vacuolar processing enzyme and papain-like cysteine protease, respectively, which 

are involved in seed globulin storage protein degradation. Ectopic expression of sweet 

potato SPAE and SPCP2 in transgenic Arabidopsis plants also caused altered phenotypic 

characteristics, including abnormal seed and silique development, elevated incompletely-

developed silique percentage, fewer silique numbers per plant, reduced seed germination 

percentage, and enhanced tolerance to drought and salt stresses. Based on these data, it 

can be concluded that sweet potato asparaginyl endopeptidase SPAE and papain-like 

cysteine protease SPCP2 may play physiological roles in association with protein 

degradation and nutrient recycling during leaf senescence with enzymatic functions 

similar to seed globulin storage protein degradation and re-mobilization during 

germination and seedling growth.  
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