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Stability of Transgenic Resistance 
 Against Plant Viruses 

Nikon Vassilakos 
Benaki Phytopathological Institute 

Greece 

1. Introduction 

Plant viruses constitute one of the main problems of the agricultural production worldwide 

(Kang et al., 2005). To date, there are not therapeutical measures available for the control of 

plant-virus diseases in the field and the main control strategy used in practice is based on 

prevention measures. Genetic resistance is by far the most effective way to control plant 

viruses. However, ‘traditional’ genetic sources of resistance to viruses are rare (Lecoq et al., 

2004) and due to the high rate of mutation of the viral genomes this resistance even when 

applicable, is frequently broken under field conditions. The era of Agrobacterium-mediated 

genetic transformation of plants which started at the 80s (Thomashow et al., 1980; 

Zambryskiet al., 1980) offered new promising prospects for engineered genetic resistance to 

viruses with numerous following studies reporting a successful use of the transgenic 

technology against almost all genera of plant viruses or even viroids (Lin et al., 2007; Prins et 

al., 2008; Ritzenthaler, 2005; Schwind et al., 2009). However, mainly due to public concerns 

for the safety of using transgenic plants in agriculture only in a relatively small number of 

virus diseases transgenic technology has been used in the field and in these cases it was 

proved an efficient and safe way of control (Fuchs et al., 2007). The mechanism of resistance 

in the vast majority of the applications of transgenic-plant strategy is based on RNA-

silencing. RNA-silencing is a sequence specific RNA degradation mechanism, highly 

conserved between kingdoms, which in plants, among other functions, operates as a natural 

antiviral defense system (Eamens et al., 2008). The role of RNA-silencing as an antiviral 

weapon has been further supported by the fact that almost every known plant virus species 

encodes for at least one protein with RNA-silencing suppression activity (Dıaz-Pendon & 

Ding, 2008). This knowledge raised the first concerns regarding the efficiency of RNA-

silencing based resistance against viruses under field conditions. As silencing is sequence 

specific, the resistance of transgenic plants engineered to be resistant to typically one virus 

could be broken by a different, heterologous virus that could infect the plants in the field. 

The hypothesis was that the heterologous virus through its silencing suppressor protein(s) 

could repress the RNA silencing machinery of the plant as a whole, resulting in the loss of 

the initially engineered resistance. In addition, the extensive research on RNA-silencing that 

is going on for over a decade has revealed a number of environmental and plant 

physiological factors that can influence the silencing mechanism and consequently the 

effectiveness of RNA-silencing based transgenic resistance to viruses under field conditions. 
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This review summarizes a fair amount of data that have been produced during the last 

decade in studies that have examined the role of heterologous viruses, the effect of 

temperature, the influence of the developmental stage of the plants in the stability of the 

transgenic resistance to viruses as well as recent findings for a direct effect of light intensity 

on the RNA silencing machinery. Moreover, new approaches for the implementation of 

RNA silencing in transgenic plant virus resistance are discussed as possible ways to 

overcome constrains of the current applications. 

2. Strategies for engineering resistance to plant viruses 

After the revolutionary work that was carried on Agrobacterium as a vector for plant 
transformation, the breakthrough for the creation of transgenic resistance to plant viruses 
came by Beachy’s group which showed that the expression of the coat protein gene of 
Tobacco mosaic virus (TMV) in transgenic plants is conferring resistance to TMV (Abel et al., 
1986). This discovery led the way for the production of an enormous number of transgenic 
plants resistant to viruses, using most types of viral genes. This genetically engineered 
resistance, referred to as pathogen-derived resistance (PDR) (Sanford & Johnston, 1985), 
mechanistically was divided into two categories; protein mediated and RNA-mediated. In 
protein mediated resistance the transformation cassette is designed in such a manner that 
the introduced viral gene, most commonly either of the coat protein, the replicase or a 
defective movement protein gene, would be able to be translated and expressed into the 
plant and somehow interfere with the disassembly, the replication or the movement 
respectively, of the intruding virus. However, this division is rather simplistic as in most 
cases of resistance which were designed to be protein mediated, it was proved that multiple 
mechanisms were involved, most frequently the RNA-mediated one (Lin et al., 2007; Prins et 
al., 2008; Ritzenthaler, 2005). RNA-mediated resistance is related to RNA-silencing which is 
probably the most important and common strategy for engineered resistance to plant 
viruses and will be discussed more extensively below.  

Besides the PDR strategy, alternative biotechnological approaches for the manufacturing of 

plants resistant to viruses include the expression of plant virus-resistance genes in other 

plants than those from which they were isolated (Farnham, 2006; Seo et al., 2006; Spassova et 

al., 2001) and the expression of peptides (Lopez-Ochoa et al., 2006; Rudolph et al., 2003; 

Uhrig, 2003) or antibodies. After the first successful application of the later strategy in 1993 

by Tavladoraki and co-workers, with antibodies that reduced the susceptibility to Artichoke 

mottle crinkle virus using a single-chain variable fragment (scFv) directed against the CP of 

the virus, technical difficulties hampered a wider application of this methodology. 

Nevertheless, several studies have reported the creation of plants resistant to viruses by 

expressing scFvs targeting structural as well as non-structural viral proteins (Binz & 

Plückthun, 2005; Prins et al., 1995; Prins et al., 2005; Ziegler & Torrance, 2002). The 

mechanisms of protein mediated resistance and of alternative methodologies are out of the 

scope of this review and will not be discussed further.  

3. RNA-silencing based transgenic resistance against plant viruses 

RNA silencing constitutes a vital element of the innate antiviral ‘immune’ response in 
plants. It uses cytoplasm-associated small interfering RNAs (siRNAs) to specifically target 
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and inactivate invading nucleic acids. Besides siRNAs, a vast population of small RNAs 
(sRNAs) accumulates in plant tissues, which includes microRNAs (miRNAs), trans-acting 
siRNAs (ta-siRNAs), heterochromatin-associated siRNAs (also referred to as cis-acting 
siRNAs that are linked to transcriptional gene silencing) and natural antisense transcript 
siRNAs. These sRNAs through RNA silencing mediate repressive gene regulation and play 
important role in developmental control, preservation of genome integrity and plant 
responses to adverse environmental conditions, including biotic stress (Brodersen & 
Voinnet, 2006; Chapman & Carrington, 2007; Pasquinelli et al., 2005; Ruiz-Ferrer & Voinnet, 
2009; Vaucheret, 2006). To date, it has primarily been the cytoplasmic siRNA silencing 
pathway (also referred to as post transcriptional gene silencing, PTGS) that has been 
exploited by genetic engineering to confer resistance to plant viruses (Mlotshwa et al., 2008; 
Tenllado et al., 2004). 

RNA silencing, is activated as a response to double-stranded RNA (dsRNA). Viruses, as 

well as transgenes, arranged as inverted repeats (IR), can directly produce dsRNA (which at 

a subsequent stage will give rise to primary siRNAs), whereas highly transcribed, sense 

orientated, single copy transgenes produce aberrant transcripts that serve as a substrate for 

producing dsRNA (subsequently processed to secondary siRNAs). In the latter case dsRNA 

is synthesized by one member of a family of cellular RNA-depended RNA polymerases 

(RdRPs) which counts six members in Arabidopsis (RDR1-6). Subsequently, the dsRNA can 

be targeted by a member of a group of Dicer-like ribonucleases (DCL1-4 in Arabidopsis) with 

each of them being involved in specific sRNA pathway(s) and generating specific size of 

sRNA duplexes (18-25nt in length). All four Arabidopsis DCL enzymes appear to be involved 

– directly or indirectly – in the production of siRNAs from DNA plant viruses, whereas the 

activities of DCL-4 and DCL-2 are mainly related to the production of siRNAs from single 

stranded RNA (ssRNA) viruses (Blevins et al., 2006; Ruiz-Ferrer & Voinnet, 2009; Vaucheret, 

2006, and references therein). dsRNA cleavage is facilitated by another group of dsRNA-

binding proteins (HYPONASTIC 1or HYL 1 and DRB2-5 in Arabidopsis). Then, siRNAs are 

stabilized by 2΄O-methylation in their overhanging 3΄ends and exported to cytoplasm for 

PTGS. One selected sRNA strand together with one member of the ARGONAUTE (AGO) 

family of proteins form the core of a nuclease complex (RNA induced silencing complex, 

RISC) that targets and cleaves sequence-specifically homologous ssRNA (Ronemus et al., 

2006; Ruiz-Ferrer & Voinnet, 2009). The AGO family in Arabidopsis is predicted to contain 

ten members and for some of them a RNA slicer activity has been verified (Brodersen & 

Voinnet, 2006; Chapman & Carrington, 2007, and references therein). Many excellent 

reviews cover the functions of sRNAs and their role in RNA-silencing pathways in plants in 

great detail (Brodersen & Voinnet, 2006; Chapman & Carrington, 2007; Pasquinelli et al., 

2005; Ruiz-Ferrer & Voinnet, 2009; Vaucheret, 2006; Mlotshwa et al., 2008). 

RNA silencing impedes viral multiplication in plants by two major ways. First it degrades 

the dsRNA intermediates of virus replication themselves as well as the cognate mRNAs 

(referred to as cell-autonomous silencing), a procedure that leads to the increase of 

accumulation of the respective siRNAs. Second, it generates a mobile signal that triggers the 

degradation of homologous mRNAs in distant cells (systemic silencing). This systemic 

branch of antiviral RNA silencing is related to siRNA population or their dsRNA precursors 

that move between neighboring cells through plasmodesmata and over long distances 

through the phloem (Kalantidis et al., 2008). 
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RNA-silencing based resistance against viruses was first reported by Lindbo et al. (1993) and 

was shown to be related to the previously observed co-suppression mechanism (Napoli et 

al., 1990; Van der Krol et al., 1990). The following years, engineering of transgenic plants to 

harbor single-stranded sense and to a less extend antisense viral sequences became a 

common strategy to pre-activate the silencing machinery and obtain resistance against the 

homologous virus from which the introduced sequence has derived (Ritzenthaler, 2005). 

Further exploiting this knowledge led to constructing IR transgenes from which long 

double-stranded (ds) RNA precursors of siRNAs were directly generated. The utilization of 

such IR transgene constructs has become the method of choice for providing genetically 

engineered resistance to viruses because a single copy is sufficient to provide immunity, 

there is no expression of viral proteins, short genome incomplete sequences can be used and 

efficiencies of up to 90% of all transgenic plants produced to be resistant to the homologous 

virus were achieved (Lin et al., 2007; Tenllado et al., 2004; Ritzenthaler, 2005). In contrast to 

the situation with RNA viruses, the use of RNA silencing against DNA viruses most often 

resulted in delays in symptom development and did not always prevent virus replication 

(Lin et al., 2007). However,  immune lines against Tomato yellow leaf curl virus  (TYLCV) have 

been reported by Yang and co-workers (2004), and Fuentes and associates (2006).  

In order to overcome the weakness of RNA-silencing based resistance [ineffective against 
viruses whose sequence differs from that of the transgene by more than 10% (Bau et al., 
2003; Jones et al., 1998)], Bucher et al. (2006) fused 150-nt fragments of viral sequences of 
four tospoviruses in a single small chimeric IR construct. This strategy resulted in a high 
frequency of produced resistant plants. A most recent approach used modified plant 
miRNA cistrons to produce a range of antiviral artificial miRNAs (amiRNAs) (Niu et al., 
2006; Qu et al., 2007; Schwab et al., 2006; Simon-Mateo & Antonio Garcıa, 2007; Zhang et al, 
2011).  

4. Factors that influence the RNA-silencing based transgenic resistance 

4.1 Heterologous viruses 

Since 1998 where the first viral suppressor of silencing was discovered it has been 

established that most known virus species carry at least one RNA silencing suppressor 

(Dıaz-Pendon & Ding, 2008; Ding & Voinnet, 2007). The awareness of this viral counter-

defensive strategy against the innate antiviral defense system of plants guided several 

groups to investigate the effect that could invoke on transgenic resistance of plants that were 

immune to a virus, the infection with a different virus carrying a strong silencing 

suppressor.  

The first studies were presented in 2001 by Savenkov and Valkonen, and Mitter and co-

workers. Savenkov and Valkonen produced transgenic tobacco plants resistant to Potato 

virus A (PVA, genus Potyvirus) and examined whether the resistance to PVA was affected by 

infection of the transgenic plants with Potato virus Y (PVY), another potyvirus that was 

known to suppress RNA silencing through its HC-Pro protein (Dıaz-Pendon & Ding, 2008; 

Ding & Voinnet, 2007). The PVY infection resulted in increased steady-state levels of the 

transgene mRNA in the transgenic plants. PVA challenge was followed 15 days after 

inoculation with PVY. In contrast to healthy (non-PVY inoculated) transgenic plants, in 
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which no detectable infection with PVA was observed following challenge with PVA, all the 

PVY-infected transgenic plants were readily systemically infected by PVA. Moreover, in all 

PVA-infected plants, new leaves continued to display the severe symptoms, indicating no 

recovery from disease up to 90 days post inoculation. It was concluded that RNA-silencing 

mediated resistance in transgenic plants against viruses may be suppressed by infection of 

the plants with heterologous viruses that encode suppressors of gene silencing (Savenkov & 

Valkonen, 2001). Not equally definite was the outcome from the studies of Mitter et al. 

(2001; 2003) which showed that in transgenic tobacco plants, infection with Cucumber mosaic 

virus (CMV, genus Cucumovirus) expressing the silencing suppressor 2b protein could 

transiently suppress the silencing mediated immunity to PVY but solely in new leaves that 

emerged after CMV inoculation and for a limited period of time. The experiments were 

carried out for six months and different time intervals were examined between the two virus 

inoculations. It was shown that longer periods of time between CMV inoculation and 

challenge of transgenic plants with PVY led to a larger proportion of PVY-susceptible 

plants. Nevertheless, in these plants the relative PVY titers tended to be lower as compared 

with untransformed control plants and the movement of PVY in the transgenic plants was 

restricted relatively to the controls. Most importantly, CMV infection supported only a 

transient PVY infection and did not prevent recovery of the transgenic plants. Moreover, re-

inoculation with PVY of the recovered plants or of plants that had been infected with CMV 

nine weeks earlier, failed to establish a PVY infection. Finally, although CMV infection 

resulted in increased transgene-derived mRNA levels in the leaves where breakdown of 

immunity had been recorded, the transgene-specific siRNAs levels were left unaffected.  

Simon-Meteo et al. (2003) performed similar experiments on Nicotiana benthamiana plants 
that displayed RNA-silencing based resistance and were regenerated from recovered tissue 
of plants which showed a delayed resistance to Plum pox virus (PPV, genus Potyvirus). They 
used two heterologous viruses with distinct silencing suppressors, CMV and Tobacco vein 
mottling virus (TVMV, genus Potyvirus carrying an HC-Pro silencing suppressor). Each 
heterologous virus and PPV were inoculated either simultaneously or sequentially with an 
interval of two to four weeks onto transgenic plants. Both viruses, when applied 
sequentially, were able to reactivate transgene expression, but surprisingly, only the 
silencing suppression caused by CMV and not that originating from TVMV, was able to 
revert the transgenic resistant plants to a PPV-susceptible phenotype.  

Taking into consideration these first studies several of the numerous succeeding reports 

(Fuentes et al, 2006; Germundsson & Valkonen, 2006; Praveen et al, 2010; Kawazu et al, 2009; 

Yang et al, 2004) of engineered transgenic resistance to plant viruses have examined the 

possible effect of heterologous virus infection in the resistance. However, not always an 

influence on resistance was observed. Missiou et al. (2004) in transgenic potato plants 

resistant to PVY examined the effect on the resistance of Potato virus X (PVX, genus 

Potexvirus, carrying the P25 silencing suppressor) infection simultaneously with PVY or one 

week prior to the challenge with PVY. In either of the two variations, infections with PVX 

occurred without a PVY infection to be detected. Similarly, resistance of transgenic 

cucumbers incorporating the 54K polymerase domain of Cucumber fruit mottle mosaic virus 

(CFMMV) was not influenced by infection with the potyviruses Zucchini green mottle mosaic 

virus (ZYMV), Zucchini fleck mosaic virus (ZFMV), the ipomovirus Cucumber vein yellowing 
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virus (CVYV) or CMV (Gal-On et al., 2005). In a different work, Lennefors et al. (2007) tested 

whether the high levels of RNA silencing-based resistance to Beet necrotic yellow vein virus 

(BNYVV) in transgenic sugar beet roots could be reduced by co-infection with common soil-

borne and aphid-borne beet viruses. The plants were first inoculated with the aphid 

transmitted Beet mild yellowing virus (BMYV), Beet yellows virus (BYV), or both viruses. Four 

weeks later, the plants were transplanted to soil infested with BNYVV, Beet soil borne virus 

(BSBV) and Beet virus Q (BVQ) and their fungal vector, Polymyxa betae. The effectiveness of 

the resistance was not detectably compromised even following co-infection with all five 

viruses. Most recently, transgenic tobacco plants were produced, transformed with an IR 

construct corresponding to sequences of the TMV movement protein gene and the exhibited 

resistance to TMV was not affected by infection with CMV regardless of the order that the 

latter was inoculated (prior to or simultaneously with TMV) (Hu et al., 2011). In a different 

approach, amiRNAs expressed in tomato plants against CMV coding sequences resulted in 

resistance against the virus which was not noticeably affected by infection with TMV or 

TYLCV (Zhang et al., 2011). Moreover, the stability of transgenic resistance of tobacco plants 

against Tobacco rattle virus (TRV) (Vassilakos et al., 2008) remained largely unaffected by 

infection with CMV, PVY or Tomato spotted wilt virus (TSWV) (Vassilakos, unpublished 

results).  

In contrast, in N. benthamiana plants expressing a Grapevine virus A (GVA) minireplicon and 

displaying high resistance to GVA, infection with Grapevine virus B (GVB, genus Vitivirus, 

carrying a P10 silencing suppressor) or PVY resulted in suppression of the GVA-specific 

defense (Brumin et al., 2009). Interestingly, in these tests GVA and GVB or PVY inocula 

were applied simultaneously as a mixture of saps derived from plants infected with the 

respective viruses, unlike previous studies, in which only sequential inoculations with the 

heterologous viruses resulted in reduced resistance. Finally, sweetpotato transgenic plants 

transformed with an IR construct targeting the replicase encoding sequences of Sweetpotato 

chlorotic stunt virus (SPCSV, genus Crinivirus) and Sweetpotato feathery mottle virus (SPFMV, 

genus Potyvirus) exhibited mild or no symptoms and virus accumulation was significantly 

reduced following SPCSV infection. However, development of severe sweetpotato virus 

disease symptoms (attributed to infection by both viruses) occurred in transgenic plants 

infected with a SPFMV isolate with a limited sequence similarity to the sequence used in the 

transgene (Kreuze et al., 2008).  

The results from the studies that examined the effect of heterologous virus infection on the 

silencing-based transgenic resistance indicated that this kind of resistance, despite the 

immunity that can confer to the plants against a specific virus, could be compromised to 

some degree if applied in the field where mixed virus infections occur frequently. However, 

it became evident that the outcome of the interference between the heterologous viruses and 

the silencing machinery of the plant is not so easily predictable (Table 1).  

The reasons for the discrepancies are unclear, but could be related to the mode of action of 

the viral suppression proteins of the different virus tested. Viral silencing suppressors are 

highly diverse in sequence, structure and activity, and could target multiple points in RNA 

silencing pathways whereas viruses with large genomes may encode several functionally 

distinct proteins to achieve silencing suppression (Dıaz-Pendon & Ding, 2008; Ding & 
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Voinnet, 2007). It is considered that suppressor proteins interfere either with siRNAs 

biogenesis or siRNA function without a multifunctional nature to be excluded. For instance, 

most studies agree that the potyviral HC-Pro probably specifically blocks accumulation of 

secondary siRNAs and leaves primary siRNA accumulation unimpaired, whereas P25 

blocks accumulation of primary siRNAs (Dıaz-Pendon & Ding, 2008). In contrast, the 2b 

protein of cucumoviruses directly sequestrate siRNAs duplexes using a pair of hook-like 

structures that interact more promiscuously with long and short dsRNA (Dıaz-Pendon & 

Ding, 2008; Ding & Voinnet, 2007; Ruiz-Ferrer & Voinnet, 2009). Additionally, it binds 

AGO1 and blocks slicing without interfering with sRNA loading in vitro. Although 

apparently contradictory, these two anti-silencing 2b activities are reconcilable, because 2b’s 

affinity for dsRNA is weak and its interaction with AGO1 could increase 2b local 

concentrations and enhance specific binding to siRNAs (Ruiz-Ferrer & Voinnet, 2009). 

Besides, Buchmann et al. (2009) reported that geminivirus AL2 and L2 proteins act as 

inhibitors of transcriptional gene silencing, which is the branch of silencing that targets 

DNA viruses.  

Additional antiviral plant defense pathways could also be involved in the interference 
between the heterologous virus infection and the transgenic resistance or as yet unknown 
factors involved in specific virus species interactions. Thus, the CMV 2b protein has been 
shown also to block silencing indirectly by interfering with the salicylic acid mediated 
defense pathway (Li & Ding, 2001). Moreover, N. benthamiana plants transformed with an IR 
construct containing partial N gene sequences from five tospoviruses [TSWV, Groundnut 
ring spot virus (GRSV), Tomato chlorotic spot virus (TCSV), Watermelon silver mottle virus 
(WSMoV) Tomato yellow ring virus (TYRV-t)] displayed resistance against all five viruses. 
However, co-infection of one of the tospoviruses with a genetically distant strain of the same 
species (TYRV-s), resulted in specific intraspecies breakdown of resistance through a 
procedure that involved complementation of the silencing suppressors of the two viruses 
(Hassani-Mehraban et al., 2009) (Table 1). 

4.2 Temperature 

It has been well known to plant virologists that temperature strongly influences plant-virus 
interactions. In high temperature, symptoms are frequently attenuated and virus titers in 
infected plants are decreased. In contrast, outbreaks of virus diseases are frequently 
associated with low temperatures (Hull, 2002).  

Kalantidis and co-workers (2002) examined the influence of elevated temperature on 

siRNAs in CMV-resistant transgenic tobacco plants. Two transgenic lines, one expressing 

very high and the other very low levels of siRNAs, were tested for siRNAs concentration at 

25°C and 32°C and at two time points, 20 and 30 days post-germination. At the early time 

point, transgene derived siRNAs could be detected only in the first line at 25°C and in both 

lines at 32°C. However, in the first line transgene specific siRNAs were at 32°C in a 

significantly higher concentration compared to that of 25°C. The analysis of samples taken at 

the second time point revealed the presence of transgene derived siRNAs in both lines at 

25°C. However, at 32°C, siRNAs were detected in both plant lines at a higher concentration. 

Apparently, in these experiments, except for temperature the developmental stage of the 

plants also influenced the siRNA concentration (discussed further below).  
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Factor 
Transgenic 

Plant 

Engineered 
resistance 

against 

Effect on the 
resistance 

Reference 

H
et

er
o

lo
g

o
u

s 
v

ir
u

se
s 

PVY N. tabacum PVA Suppressed Savenkov & Valkonen, 2001 

CMV N. tabacum PVY Reduced Mitter et al., 2001; 2003 

CMV 
TVMV 

N. 
benthamiana

PPV 
Suppressed 
Unaltered 

Simón-Mateo et al., 2003 

PVX Potato PVY Unaltered Missiou et al., 2004 

ZYMV 
ZFMV 
CVYV 
CMV 

Cucumber CFMMV Unaltered Gal-On et al., 2005 

BMYV 
BYV 
BSBV 
BVQ 

Sugar beet BNYVV Unaltered Lennefors et al., 2007 

SPFMV-C Sweetpotato
SPCSV 

SPFMV-Uganda
Suppressed Kreuze et al., 2008 

GVB, PVY
N. 

benthamiana
GVA Suppressed Brumin et al., 2009 

TYRV-s 
N. 

benthamiana

TSWV 
GRSV 
TCSV 

WSMoV 
TYRV-t 

Suppressed Hassani-Mehraban et al., 2009 

CMV N. tabacum TMV Unaltered Hu et al, 2011 

TMV 
TYLCV 

Tomato CMV Unaltered Zhang et al, 2011 

CMV, PVY
TSWV 

N. tabacum TRV Unaltered Vassilakos (unpublished) 

Temperature 

320C N. tabacum CMV n/t Kalantidis et al., 2002 

150C 

N. 
benthamiana

CymRSV Suppressed Szittya et al., 2003 

N. tabacum 
TMV 
CMV 

Unaltered Hu et al, 2011 

N. tabacum TRV 
Suppressed 

locally 
Vassilakos (unpublished) 

Light 
High/Low 
Intensity 

N. 
benthamiana

PPV n/t Kotakis et al., 2010 

Early developmental 
stage 

N. 
benthamiana

PMMoV Reduced Tenllado & Dıaz-Ruız, 1999 

Squash SqMV Suppressed Jan at al., 2000 

Papaya PRSV Suppressed Tennant at al., 2001 

N. tabacum CMV n/t Kalantidis et al., 2002 

N. tabacum TRV Reduced Vassilakos et al., 2008 

Table 1. Synopsis of the studies described in the text that involved experiments with 
transgenic plants resistant to viruses and the influence to the resistance of the various factors 
examined; n/t, not tested. 
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Szittya and associates (2003) provided further insight into the mechanism that is involved in 
these observations. Through a set of delicate experiments they demonstrated that RNA 
silencing induced by viruses or transgenes is inhibited at low temperatures and enhanced 
with rising temperatures. They used wild type Cymbidium ringspot virus (CymRSV) encoding 
a p19 viral suppressor and a mutated one unable to express p19 (Cym19stop). In virus 
transfected N. benthamiana protoplasts, virus derived siRNA were undetectable at 15°C and 
gradually increased with temperature from 21 to 27°C indicating that virus-induced cell-
autonomous silencing is temperature dependent. The effect of temperature on virus-
induced systemic RNA silencing was also examined. N.benthamiana plants were inoculated 
with CymRSV and Cym19stop and grown at different temperatures. CymRSV infected 
plants died within 2 weeks at 15, 21 and 24°C whereas CymRSV symptoms were attenuated 
at 27°C and associated with reduced virus level. Confirming the role of p19 as a suppressor 
of systemic silencing, plants infected with the Cym19stop showed a recovery phenotype at 
21 and 24°C. At 27°C, the mutant virus was unable to infect the plants, while at 15°C, 
Cym19stop-infected plants displayed strong viral symptoms demonstrating that at low 
temperature, RNA silencing failed to protect the plants even when the virus lacked the 
silencing suppressor. In addition, using a strain of Agrobacterium tumefaciens carrying a 
green fluorescent protein (GFP) gene construct which was infiltrated sole or together with 
p19, to wt N.benthamiana or N.benthamiana plants expressing GFP, it was shown that 
transgene-induced silencing is also temperature dependent. The stability of RNA silencing 
mediated transgenic virus resistance at different temperatures was examined using 
transgenic N.benthamiana plants expressing a CymRSV-derived RNA. After inoculation with 
CymRSV the plants displayed strong resistance at 24°C whereas at 15°C, severe symptoms 
were developed and CymRSV RNA accumulated to a high level demonstrating that the 
transgene-mediated virus resistance was broken at low temperature. A temperature effect 
was also observed on the antisense-mediated endogen gene inactivation of Arabidopsis and 
potato plants, in which antisense inhibition of genes involved in carbohydrate metabolism is 
broadly used. Interestingly, in contrast to siRNA production, miR157, miR169 and miR171 
RNAs accumulated to equal levels at 15, 21 and 24°C in arabidopsis suggesting that 
accumulation of miRNAs is not affected by temperature.  

Chellappan and co-workers (2005) expanding the above findings quantified gemini virus-
derived siRNAs at different temperatures and evaluated their distribution along the virus 
genome for isolates of five species of cassava geminiviruses, consisting of recovery and non-
recovery types. In cassava plants, geminivirus-induced RNA silencing increased by raising 
the temperature from 25°C to 30°C and the appearance of symptoms in newly developed 
leaves was reduced, irrespectively of the nature of the virus. Consequently, high 
temperature rendered non-recovery type geminiviruses to recovery-type viruses. The 
distribution of virus derived siRNAs on the respective virus genome at three temperatures 
(25°C, 25°C-30°C and 30°C) remained unaltered only for recovery-type viruses. siRNAs 
derived from recovery-type viruses accumulated at moderately higher levels during virus-
induced silencing at higher temperatures. However, siRNAs from non-recovery-type 
viruses accumulated six times higher than those observed for infections with recovery-type 
viruses at high temperature. Thus, the decreased symptom severity and virus concentration 
that were recorded at higher temperature indicate a similar effect of temperature on ssDNA 
and RNA viruses although there was a differential effect of temperature on the level of 
virus-derived siRNAs between recovery and non-recovery types of ssDNA viruses. 
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As with the effect of heterologous viruses, inhibition of RNA silencing or decreasing of 
siRNAs concentration in low temperature has not always been observed. Thus, transgene 
anti-sense induced RNA silencing was not inhibited in potato plants at low temperature 
(Sos-Hegedus et al., 2005). Moreover, tomato plants carrying an IR construct derived from 
Potato spindle tuber viroid (PSTVd) sequences and exhibiting resistance to PSTVd infection, 
did not show an elevated IR-siRNA accumulation at 31°C in comparison to 21°C (Schwind 
et al., 2009). In a more recent study, transgenic tobacco plants transformed separately with 
IR constructs corresponding to sequences of TMV movement protein gene or CMV 
replication protein gene, exhibited at both 15°C and 24°C similar high levels of resistance to 
TMV or CMV, respectively (Hu et al, 2011). In addition, the resistance against TRV of 
transgenic tobacco plants (Vassilakos et al., 2008) grown at 15°C was influenced only in the 
inoculated leaves but not systemically (Vassilakos, unpublished results).  

In summary (Table 1), the well-known temperature effect on the development of viral 
diseases is closely associated to the RNA silencing antiviral pathway and consequently 
influences the efficiency of silencing-based transgenic resistance. However, it appears that 
the low temperature effect on the transgenic resistance depends on additional factors that 
remain to be identified, fact supported by inconsistencies in the results of the diverse studies 
described here. Importantly, although at low temperature the siRNA-based silencing 
machinery is partially inactivated as an adaptive response of plants to adverse conditions, 
the miRNA-mediated, which is essential for regulatory functions, continues to operate 
ensuring plant growth (Szittya et al., 2003). 

4.3 Light 

Studies on the effect of light on transgenic resistance to viruses are not available, however light 
has been implicated as one of the factors that affect RNA silencing initiation and maintenance 
in several studies. Although in most of them light effect on silencing was not clearly isolated 
from that of temperature (Nethra et al., 2006; Vaucheret et al., 1997) recently, Kotakis et al. 
(2010) investigated solely the role of light intensity in physiological ranges on RNA silencing. 
They used as a system N. benthamiana transgenic lines engineered to express GFP, which 
exhibited spontaneously silencing at different frequencies and of different spreading 
intensities. The authors demonstrated that high light intensity increased the frequency of 
plants displaying both short range and systemic silencing. In contrast, plants grown under low 
light conditions, showed lower silencing frequencies. In addition, increased light intensity 
positively affected siRNA levels corresponding to the GFP transgene (sense) transcript. In a 
different set of experiments, N. benthamiana plants were used, incorporating an IR structure 
derived from the NIb gene of Plum pox virus (PPV) and it was shown that levels of all 
distinguishable siRNA classes corresponding to the IR transcript were also positively affected 
by high light intensity (Table 1). Although in the latter case, the effect of light intensity on virus 
resistance was not tested, the authors proposed that light conditions comprise an additional 
environmental factor that should be taken under consideration when transgenic technology 
against viral infections applies on the field.  

4.4 Plant developmental stage 

Quite a few studies with plants carrying sense transgenes and displaying RNA-silencing 

mediated resistance have suggested an influence of plant developmental stage on the degree 
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of the expressed resistance. Tenllado and Diaz-Ruiz (1999) reported that a higher percentage 

of transgenic N. benthamiana plants, transformed with the 54K read-through domain of the 

replicase gene of Pepper mild mottle virus (PMMoV), displayed complete virus resistance at 

maturity than at an earlier stage of development. Subsequently, Jan et al (2000) 

demonstrated that a recovery type of resistance, in squash genetically transformed with the 

coat protein genes of Squash mosaic virus (SqMV), was due to RNA silencing that was 

activated at a later developmental stage, independently of virus infection. However, a 

different phenotype of complete resistance was not altered after SqMV inoculation at early 

developmental stages. Moreover, analysis of crosses between lines exhibiting complete 

resistance, recovery and susceptible phenotypes revealed that the time of activation of 

silencing, besides the developmental stage, is affected by the interaction of transgene inserts. 

Similarly, transgenic papaya plants were susceptible to Papaya ringspot virus (PRSV) at a 

younger stage but resistant when inoculated at an older stage (Tennant et al., 2001). 

As mentioned already, Kalantidis and associates (2002) showed that siRNA accumulation in 

transgenic tobacco, incorporating an IR construct carrying CMV sequences, was higher at 

later developmental stages. No significant differences in the siRNA concentration were 

observed between leaves of different age from a single plant or from the seven-leaf stage on, 

while the siRNA concentration reached a plateau that remained stable in the course of 

further development.  

In a more recent work, N. tabacum plants were transformed with the 57-kDa read-through 

domain of the replicase gene of TRV and were highly resistant to homologous (to the 

transgene sequence) TRV isolates and moderately resistant to the genetically distinct TRV-

GR. Very young transgenic plants with detectable levels of transgene transcript were 

resistant only systemically to homologous isolates and were susceptible to TRV-GR. 

Conversely, older plants (at a five-leaf stage) containing a low steady state level of 

transcripts were immune to homologous isolates and displayed moderate resistance against 

TRV-GR (Vassilakos et al., 2008). 

In conclusion (Table 1), most studies agree that younger transgenic plants accumulate 
reduced amounts of transgene specific siRNAs compared to older ones, or correspondingly 
accumulate higher amount of transgene specific transcripts suggesting a reduced efficiency 
of transgenic resistance against plant viruses. However, the resistance phenotype was not 
always affected in younger plants, possibly due to reasons associated with the type of the 
transgene construct used, its integration into the plant genome or the viral sequences that 
are targeted.  

5. Conclusion 

A great deal of progress has been made towards comprehension of plant virus biology and 
the ways in which plants defend themselves against these pathogens. RNA silencing has 
provided a promising potential for generating virus-resistant transgenic plants and this 
potential is certainly not cancelled by the awareness of factors that may affect under specific 
conditions the acquired resistance. However, as with any other pathogen control strategy, 
RNA silencing does not constitute a panacea and a number of issues should be taken into 
consideration before being applied in the field. Noticeably, silencing based transgenic 
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resistance is not influenced solely by the factors that were presented in this review. 
However, planting into areas where endemic virus diseases occur and mixed virus 
infections are expected especially during early stages of the vegetation period, time intervals 
of low air temperature and greenhouse or open field cultivation practices could affect the 
stability of transgenic resistance against plant viruses.  

Further exploitation of our knowledge on RNA-silencing pathways is essential to improve 

the efficiency of the existing strategies or for the development of potential new strategies 

which will hopefully lead to a better reception by the public. Recent advances like the 

construction of chimeric IR constructs incorporating sequences derived from different virus 

species if combined with epidemiological data and pest risk analyses could reduce the effect 

of mixed virus infections on the resistance (Bucher et al., 2006; Dafny-Yelin & Tzfira, 2007; 

Kung et al., 2009). Recently, virus resistance was achieved through expression of amiRNAS 

against viral coding sequences (Ding & Voinnet, 2007; Duan et al., 2008; Niu et al., 2006; Qu 

et al., 2007; Simon-Mateo & Antonio Garcia, 2006; Zhang et al, 2011). Although there was 

evidence that amiRNA-mediated virus resistance may not be inhibited by low temperature 

(Niu et al., 2006) this possibly depends on the plant species examined (Qu et al., 2007). 

Moreover, the durability of this approach, which resulted in relatively few antiviral small 

RNAs compared with those of the long dsRNA approach, needs to be further demonstrated 

(Duan et al., 2008; Simon-Mateo & Antonio Garcia, 2006).  
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