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1. Introduction 

Recombinant proteins can be expressed in transformed cell cultures of bacteria, yeasts, 

molds, mammals, plants, insects, or via transgenic plants and animals. Numerous factors 

influence quality, functionality, yield and protein production rate, so the choice of 

appropriate expression system is of primary importance. During last few years, plants have 

become an increasingly promising and attractive platform for recombinant protein 

production (Basaran & Rodriguez–Cerezo, 2008). Progress in recombinant DNA technology, 

plant transformation and in vitro regeneration techniques are major reasons why plants have 

emerged as efficient expression systems. Plant expression systems offer significant 

advantages over the other expression systems (Table 1). First of all, plants have a higher 

eukaryote protein synthesis pathway very similar to animal cells with only minor 

differences in protein glycosylation. Therefore, plant biosynthesis pathway ensures correct 

structure even in the case of highly complex proteins. In contrast to plants, bacteria are not 

able to carry out most of posttranslational modifications essential for eukaryotic proteins 

activity. There is no risk of contamination of recombinant proteins with human or animal 

pathogens (HIV, hepatitis viruses, prions), bacteria endotoxins or oncogenic DNA sequences 

(Sharma & Sharma, 2009). 

Other advantages of the plant–based expression systems include: high scalability (in the 

case of field cultivation), low production cost of biomass (agriculture), in some cases low 

upstream costs (edible vaccines, purification process can be omitted), and what is most 

important - the ability to produce target proteins with desired structures and biological 

functions (Boehm, 2007). Recombinant proteins expressed in plants can be accumulated to  

a high level in seed endosperm, fruit or storage organs (e.g. tubers, roots) or secreted 

directly to the culture media. Because plant culture media contain no exogenous proteins, 

the recovery of recombinant proteins from a medium is expected to be much simpler and 

less expensive than the recovery from homogenized biomass (Cox et al., 2009).  
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Features 
Transgenic 
plants 

Plants 
viruses 

Yeast Bacteria 
Mammalian 
cell culture 

Transgenic 
animals 

Cost/storage Cheap Cheap Cheap Cheap Expensive Expensive 

Distribution Easy Easy Feasible Feasible Difficult Difficult 

Gene size Not limited Limited Unknown Unknown Limited Limited 

Glycosylation Correct Correct Incorrect Absent Correct Correct 

Production costs Low Low Medium Medium High High 

Production scale Worldwide Worldwide Limited Limited Limited Limited 

Propagation Easy Feasible Easy Easy Hard Feasible 

Protein folding 
accuracy 

High High Medium Low High High 

Protein 
homogeneity 

High Medium Medium Low Medium Low 

Protein yield High Very high High Medium Medium-high High 

Safety High High Unknown Low Medium High 

Scale up costs Low Low High High High High 

Therapeutic risk Unknown Unknown Unknown Yes Yes Yes 

Time required Medium Low Medium Low High High 

Table 1. Comparison of features of recombinant protein production in existing systems 

(according to Fischer and Emans 2004; worked out /modified on the basis of Demain and 

Vaishnav 2009). 

The usage of aquatic plants e.g. Lemnaceae seems to be a good solution. For example Rival et al. 

(2008) made studies on obtaining aprotinin from Spirodela oligorrhiza (duckweed). Their 

experiments show that significant amounts of recombinant aprotinin can be produced using 

Spirodela as a plant host. Whereas Cox and co-workers (2009) expressed human monoclonal 

antibody (mAbs) in Lemna minor. The micro-alga Chlamydomonas reinhardtii has recently been 

shown as a promising platform for foreign protein production (Muto et al., 2009). This 

photosynthetic single-celled plant possesses several interesting features in comparison to the 

majority of plants as it has a rapid doubling time (ca. 10 h); its homogenous culture is easily 

scaled up; it has a rapid sexual cycle (ca. 2 weeks) with stable and viable haploids. All these 

attributes make the time of petting a final product on a large-scale much shorter in comparison 

to higher plants (months or years). Growth in containment bioreactors allows to control 

conditions of farming as well as reduces the risk of contamination and loss of algae due to 

pathogens. It is worth mentioning that all three genomes of C. reinhardtii have been fully 

sequenced affording strong foundation for targeted genetic manipulation (Specht et al., 2010). 
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Feasible storage of recombinant proteins in desiccated plant parts excludes the requirement 
for its immediate isolation and lowers the risk of the loss of biological function during 
prolonged freezing of preparations. For example, antibodies or vaccines expressed in cereal 
seeds remain stable at ambient temperatures for years (Stoger et al., 2002). Until recently, 
low accumulation levels have been the major bottleneck for plant-made recombinant protein 
production. However, several breakthroughs have been done during past few years 
allowing for high accumulation levels. Mainly through chloroplast, vacuole, ER lumen 
transient expression, coupled with subcellular targeting and protein fusions (Sharma and 
Sharma, 2009). Viral transfection and agroinfiltration are promising alternative strategies 
ensuring increase in yields and speeding up the development of an expression platform 
(Gleba et al., 2005). On the other hand, plant–based expression systems are different from 
the mammalian host pattern of glycosylation. The occurrence has raised concerns regarding 
the potential immunogenicity of plant-specific complex N-glycans ( ǂ 1,3-fucose and ǃ 1,2-
xylose residue), which are present in the heavy chains of plant-derived antibodies (Gomord 
and Faye 2004). The above mentioned residues have been confirmed not only to induce 
immune response but also to make foreign proteins undergo a conformational change 
making them different from the native ones which results in decrease in their biological 
activity. However, some achievements in humanized glycosylation or removal of enzymatic 
pathway generating immunogenic residues on glycoproteins have been reported. Recently it 
has been shown that glycoengineered moss (Physcomitrella patens) can synthesize proteins 
carrying a humanized glycosylation pattern (Decker and Reski, 2008). A few years ago 
Physcomitrella patens platform was developed and commercialized as a contained tissue 
culture system for recombinant protein production in photo-bioreactors [Biotech GmbH (© 
greenovation)]. P. patens has some characteristic features which make it a suitable system for 
foreign protein production. Firstly, it grows rapidly under photoautotrophic conditions and 
secondly the moss protonema can release the desired protein into the medium. The moss 
remains productive in the system for a period of six months, in contrast to animal cell 
cultures (20 days) (Decker and Reski, 2008). 

Other approaches to overcome undesirable glycosylation accommodate export of foreign 
proteins into subcellular compartments: ER lumen, where glycosylation characteristic of 
plants does not take place; cytosol, where glycosylation process is not found; or recombinant 
protein expression export into plastids (proteins do not undergo glycosylation there). 
According to several studies ER targeting gives higher yield of biologically active protein 
than cytosol targeting (referred by Boehm, 2007).  

Potential disadvantages of transgenic plants include possible contamination with pesticides, 
herbicides, and toxic plant metabolites. Proteolytic degradation, post/transcriptional gene 
silencing, position effect and transgenic recombination are other obstacles affecting stability 
or expression level of transgenic plants (Basaran and Rodriguez–Cerezo, 2008).  

The public concern about health and environmental risk associated with transgenic plants is 

being considered at different levels: inherent risk of transgene leakage into non-transgene 

crops or naturally occurring wild type species (transgene escape through pollen); transgene 

spread by seed or fruit dispersal; horizontal gene transfer by asexual means; unintentional 

exposure of non-targeted organisms (e.g. birds, insects or soil microorganism); elicitation of 

allergic response/reaction in people (Basaran and Rodriguez–Cerezo, 2008). There are some 

strategies which allow to alleviate these problems including usage of closed culture 
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facilities, such as greenhouses, hydroponic or suspension bioreactors or plastid 

transformation (as plastids are inherited through maternal tissues in most species and the 

pollen does not contain chloroplasts, hence the transgene cannot be transferred) (Basaran 

and Rodriguez–Cerezo, 2008).  

From economical point of view, plants can be an alternative system for recombinant 

protein production (especially biopharmaceutical) in comparison to those exploiting 

mammalian or bacterial cell cultures. In this system a desired foreign protein can be 

produced at 2-10% of the cost of microbial fermentation system and at 0.1% of mammalian 

cell cultures, although it depends on the protein of interest, product field and a plant 

used. In general, the recombinant protein yields up to 1.5% of the total soluble protein 

(TSP). For example the content of antibodies does not exceed 0.35%-2% and vaccines- 0.01-

0.4% of TSP (Basaran and Rodriguez–Cerezo, 2008). On the other hand, phytase from  

A. niger was obtained at the level 14% of the total tobacco soluble protein, but hirudin 

from H. medicinalis at 1% of canola seed weight and GUS from E. coli was produced in 

corn at 0.7% of TSP (Demain and Vaishnav 2009). 

2. Expression strategies 

Gene expression and synthesis of proteins is a complex multi-step process. For efficient 

expression of recombinant proteins in plants, it is essential to optimize every step of the 

process for the plant machinery. This includes the methods of plant transformation, the 

choice of a transgene promoter, improvement of transcript stability and the efficiency of its 

translation. After translation, the protein needs to be accumulated in plant cells or 

effectively secreted.  

2.1 Stable nuclear transformation 

The first step in plant transformation consists in the entrance of a desired genomic sequence 

into a plant cell. Stable nuclear transformation is caused by integration of the recombinant 

DNA in the nuclear genome. DNA can be transferred into the nuclear genome by either 

direct (e.g. biolistics) or indirect (e.g. Agrobacterium) methods, it depends on the plant 

species and the type of tissue (Thanavala et al., 2006). 

In the stable nuclear transformation whole plants can be regenerated, eventually producing  

a seed stock or a plant tissue maintained in an aseptic culture. The advantage of this system 

is that the transgene is heritable, permitting the establishment of a seed stock for future use. 

Establishment and characterization of stable transgenic lines can be costly and time 

consuming. Large numbers of transgenic lines need to be screened and analyzed before  

a single optimal line can be selected for protein production (Ling et al., 2010). Other 

disadvantages are gene silencing and position effects.  

Nuclear transformation has been employed and extensively studied in many plant species, 

however, it generally results in low expression of soluble foreign proteins (Yap & Smith, 2010). 

Recombinant proteins can be targeted to different subcellular compartments in plant cells, 

such as cytostol, apoplast, endoplasmic reticulum, vacuole or chloroplast.  
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2.2 Transplastomics 

Using particle bombardment or polyethylene glycol (PEG) treatment, DNA can be targeted 

into the chloroplast genome (Yusibov & Rabindran, 2008). Each cell contains a large number of 

plastids, ~100 chloroplasts per cell, and each of them contains about 100 genomes. 

Transplastomic lines vs. nuclear ones have significantly greater yield of foreign proteins  

(1-20% TSP) due to the high number of copies of the chloroplast genome and they offer major 

advantage in terms of transgene containment, as chloroplast genomes are predominantly 

maternally inherited, limiting out-crossing of the transgenic pollen. No transcriptional or post-

transcriptional silencing effects have been observed in chloroplast transformation (Yap  

& Smith, 2010). Chloroplasts also support operon based on transgene allowing the expression 

of multiple proteins from a single transcript. There are two disadvantages of the chloroplast 

system – first: chloroplast transformation is not a standard procedure and is thus far limited to 

a relatively small number of crops, second: lack of some of the eukaryotic machinery for post-

translational modification (Yusibov & Rabindran, 2008).  

Gene integration in the plastid genome occurs by means of two homologous recombinant 

events mediated by a bacterial-like Rec A based system. Vectors include two ‘targeting’ 

regions flanking the selectable marker gene and a cloning site for insertion of the gene of 

interest. The targeting regions are between 1 and 2 kb in size and are plastid DNA 

sequences able to direct transgenic integration into plastome intergenic regions. Integration 

by homologues recombination in a preselected genome region enables insertion of only 

transgenic sequences and prevents uncontrollable variation in the expression of transgene. 

Strong promoters for plastid encoded polymerase (PEP) from the rrn operon and the psbA 

gene are used. Rregulatory sequences at the 5’-terminus must include a 5’ untranslated 

region (UTR). Plastid transgene expression can be also achieved with the use of the  

T7 phage promoter and nuclear-encoded, plastid imported T7 RNA polymerase. In some 

cases protein accumulation was enhanced by translational fusion of a plastid gene N-

terminal sequence with the protein of interest by including sequences downstream of the 

ATG start codon (downstream box) in the transgene 5’cassette that resulted in improved 

translation and/or protein stability. The 3’cassettes derived from 3’UTR of plastid genes 

generally function as inefficient terminators of transcription, but are important for plastid 

transcripts stability (Cardi et al., 2010).  

2.3 Optimization of expression level 

Increasing the transcription rate of stably transformed gene sequences is the most direct and 
efficient approach to increase protein expression. This is mainly achieved with the use of a 
strong constitutive or inducible promoter. Constitutive promoters directly drive the 
expression in all plant tissues and are independent of the production host developmental 
stage. The best known and most widely used constitutive promoter in plant biotechnology 
is derived from Cauliflower Mosaic Virus (CAMV35S). It is more effective in dicots than 
monocots. Alternative constitutive promoters frequently used in plant cell transformation 
are the ubiquitin promoter, histone H2B promoter and the (ocs)3mas promoter (Hellwig et al., 
2004). The ubiquitin promoter, isolated from a variety of plants including maize, Arabidopsis, 
potato, sunflower, tobacco and rice, has been frequently used to express biopharmaceuticals 
in plant cells. The (ocs)3mas promoter, constructed from octopine synthase (osc) and 
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mannopine synthetase (mas) agrobacterial promoter sequences , was used for the expression 
of Hepatitis B antigen in a soybean cell culture (Smith et al., 2002). Other constitutive 
promoters used for expression of foreign genes in transgenic plants include: tobacco cryptic 
constitutive promoter (Menassa et al., 2004), Mac promoter which is a hybrid mannopine 
synthetase promoter and cauliflower mosaic virus 35S promoter enhancer region (Dai et al., 
2000), rice actin promoter (Huang et al., 2006), banana actin promoter (Herman et al., 2001), 
C1 promoter of cotton leaf curl Multan virus (Xie et al., 2003), nopaline synthase promoter 
(Stefanov et al., 1991). 

Inducible promoters allow external regulation by chemical stimuli such as alcohol, steroids, 
salts, sucrose or environmental factors such as temperature, light, oxidative stress and 
wounding. Inducible expression is advantageous as this allows protein production to be 
separated from cell growth. The use of chemical inducible promoters in combination with 
the chemical responsive transcription factor can further restrict the target transgene 
expression to specific organs, tissues or even cell types (Zuo & Chua, 2000). The examples of 
inducible promoters and synthetic transcription activators are: the rice ǂ-amylase 3D 
(RAmy3D) promoter, which is induced by sucrose starvation; the oxidative stress-inducible a 
peroxidase (SWAPA2); an estradiol-inducible chimeric XVE transcription activator and 
dexamethasone-inducible pOp/4v transcription activator (Xu et al., 2011), hydroxyl-3-
methylglutaryl CoA reductase 2 promoter, which is inducible by mechanical stress (Cramer 
et al., 1996). 

Tissue-specific promoters control gene expression in a tissue or in a developmental stage 
specific way. The transgen driven by such a promoter is expressed in a specific tissue 
leaving all the other tissues unaffected. It helps to force transgene expression in storage 
organs like seeds, tubers or fruits. Several of such promoters were tested: tuber specific 
patatin promoter (Jefferson et al., 1990), fruit specific E8 promoter (Jiang et al., 2007), arcelin 
promoter (Osborn et al., 1988), maize globulin 1 promoter (Rusell & Fromm, 1997), 7s 
globulin promoter (Fogher, 2000), rice glutelin promoter (Wu et al., 1988) and soybean P-
conglycinin subunit promoter (Chen et al., 1986).  

The optimization of promoters activity can be further improved by means of engineered 
DNA elements - enhancers, activators or repressors located up or downstream of the core 
promoter. Enhancers are shown to increase gene expression when placed proximally to the 
promoter, they bind activator proteins and promote RNA polymerase II placement at the 
TATA box. Transcription is also enhanced with flanking the transgene by nuclear 
scaffold/matrix attachment regions (S/MARs) important for structural organization of 
eukaryotic chromatin (Halweg et al., 2005). 

The translational efficiency of a transgene is determined by proper processing (capping, 
splicing, polyadenylation, nuclear export) and mRNA stability. The 5’ and 3’ untranslated 
region (UTR) of the plant mRNA plays crucial roles in its processing (Cowen et al., 2007). 
The 5’-UTR is very important for 5’ capping and enables translation initiation, the 3’-UTR is 
indispensable in transcript polyadenylation which in turn influences the stability of mRNA 
(Chan and Yu, 1998). These untranslated sequences can be manipulated for the optimization 
of protein expression.  

As the protein is synthesized, it undergoes several modifications before final delivery to its 

cellular destination. These modifications include enzyme involving glycosylation, 
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phosphorylation, methylation, ADP-ribosylation, oxidation, acylation, proteolytic cleavage 

and non-enzymatic modifications like deamidation, glycation, racemization and 

spontaneous changes in protein conformation (Gomord & Faye, 2004). Post-translational 

proteolysis can be effectively minimized by targeting the foreign proteins to sub-cellular 

compartments such as the endoplasmic reticulum (ER). Proteolysis is more likely to occur in 

the apoplast and cytosol. ER retrieval signal (e.g. KDEL, HDEL) retains the expressed 

protein in the ER lumen and has been used to improve foreign protein stability. The ER 

contains many molecular chaperones facilitating nascent proteins folding or assembly and it 

is regarded as an ideal compartment for accumulating many classes of foreign proteins 

(Nuttal et al., 2002).  

Other strategies for proteolytic degradation reduction are: co-expression of recombinant 

protein and protease inhibitors, co-expression of protein co-factors or subunits, knockout 

mutations in the genes encoding specific proteolytic enzymes.  

The recent advent of highly efficient transient expression systems has completely changed 

the concept and revolutionized plant made pharmaceutical research. Transient 

transformation implies the expression of foreign DNA which cannot be inherited but is still 

transcribed within the host cell in a transient manner. Transient gene expression provides  

a rapid alternative to the time consuming stable transformation methods. This approach 

uses the plant hosts - Arabidopsis thaliana, Nicotiana tabacum, Nicotiana benthamina, Lactuca 

sativa. Transient expression of recombinant proteins in plants is performed by the use of 

engineered plant viruses and/or Agrobacterium mediated DNA transfer 

(agroinfection/agroinfiltration). Fast and high level expression is the major advantage of the 

transient expression systems. Full expression of a gene of interest in agroinjected leaves may 

be achieved in 3-4 days after infiltration with Agrobacteria. This system is simple and 

experimental procedures do not require expensive supplies and equipment. Leaves of 

greenhouse grown plants are infiltrated using a syringe without a needle, vacuum 

infiltration or the wound and agrospray inoculation method (Medrano et al., 2009). 

Supplementation of the infiltration media with Silwet L-77, Tween-20, or Triton X-100 

improves the efficiency of transformation. In the transient expression system one can use 

different virus types: Tobamoviruses, Potexviruses, Potyviruses, Bromoviruses, 

Comoviruses and Gemniviruses. Prolific production of any given protein using the plant virus 

approach results from the fact that a virus can infect a plant systemically by moving in its 

symplast. The Agrobacterium based method involves the injection or vacuum infiltration of 

whole plants or their parts with a suspension of bacteria harboring the construct of interest 

(Gómez et al., 2009). Agrobacterium delivered plant viral vectors use the RNA polymerase II 

mediated nuclear export route including 5’ end capping, splicing and 3’ end formation. Plant 

RNA viruses replicate in the cytoplasm and are not adapted to nuclear splicing machinery 

which recognizes and removes cryptic introns from viral RNA leading to its degradation. The 

Agrobacterium delivered so called ‘first generation’ TMV and PVX vectors have low production 

capacity and require coinjection of a plasmid encoding gene silencing suppressor such as 

tombusvirus p19 or potyvirus P1/HC-Pro (Komarova et al., 2010). 

A major breakthrough in viral expression strategies was facilitated by the recent advent of 

deconstructed virus vectors. Originally reported for the TMV-based magnICON system 

developed by ICON Genetics GmbH merges advantages of Agrobacterium-mediated DNA 
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delivery and upgraded TMV based vectors where putative cryptic splice sites were removed 

and multiple plant introns inserted. Thus the basic idea is to amplify the foreign gene 

delivered by Agrobacterium tumefaciens to multiple areas of the plant allowing the virus to 

replicate and spread. In this process, bacteria start initial infection delivering the T-DNA 

encoded viral replicon to the nuclei of a large number of cells. Then, the transcripts are 

transported to the cytoplasm where the viral RNA amplification renders high yields of the 

desired protein (Gleba et al., 2005). 

In conclusion, the two major strategies for expressing proteins in whole plants are transient 

expression with viral vectors and stable transformation where transgenes are targeted to 

either the nuclear or chloroplast genome. Stable transformation offers the advantage that 

protein production is scalable to large field production methods. However, this can be offset 

by low expression levels and the long time required for creating expressor lines stable across 

multiple generations. Today’s most promising direction in the referred field is emerging 

from synthesis of genetically engineered agrobacteria, viruses and plants in one precisely 

tailored system where synthetic and system biology meet each other. 

3. Overview of plant-derived medical recombinant proteins 

3.1 Plant derived antibodies 

Over the last few decades, medical biotechnology has led to major advances in diagnosis 

and therapy. At present most diseases can be detected at an early stage, and their treatment 

is more specific and potent. Biotechnological methods allow to identify the molecular 

mechanisms of a disease facilitating development of new diagnostic techniques and 

speeding up development of novel molecularly targeted drugs. One of the therapeutic 

strategies in the treatment of many diseases is the use of antibodies. Antibodies are a class of 

topographically homologous multidomain glycoproteins produced by the immune system 

and they display a remarkably diverse range of binding specificities. Since the first 

production of monoclonal antibodies by Kohler and Milstein in 1975 they have become an 

extremely important and valuable tool in medicine (Yarmush et al., 2003).  

Constantly increasing demand for new and safe monoclonal antibodies forces development 

of high-performance production systems. Since the first report on antibody production in  

N. tabacum plants (Hiatt et al., 1989), plantibodies have been produced in various plant 

systems (Table 2). 

Product Disease/Pathogen Plant Promoter 
Expression
level

Organ Reference 

Human anti-
rabies 
monoclonal 
antibody 

Rabies Tobacco 

CaMV 35S 
promoter with 
duplicated 
upstream B 
domains 

0.07% TSP Leaves 
Ko et al., 
2003 

Human 
monoclonal 
antibody 

Hepatitis-B virus Tobacco 

CaMV 35S 
promoter with 
the omega 
sequence 

0.2-0.6% 
TSP 

Suspension 
cell cultures 

Yano et al., 
2004 
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Product Disease/Pathogen Plant Promoter 
Expression
level

Organ Reference 

Full-length 
monoclonal 
mouse IgG1 
(MGR48) 

- Tobacco 
CaMV 35S, TR2' 
promotor 

30–60 mg of 
fresh weight

Leaves 
Stevens et 
al., 2000 

Human-
derived, 
monoclonal 
antibody 

Anthrax Tobacco CaMV35S - Leaves 
Hull et al., 
2005 

Anti-
Salmonella 
enterica 
single-chain 
variable 
fragment 
(scFv) 
antibody 

Salmonella enterica Tobacco 

EntCUP4, single 
and double-
enhancer 
versions CaMV 
35S 

41.7 ug of 
scFv/g leaf 
tissue 

Leaves 
Makvandi-
Nejad et al., 
2005 

Human anti-
rabies virus 
monoclonal 
antibody 

Rabies Tobacco 

CaMV 35S with
duplicated 
upstream B 
domains (Ca2p), 
(Pin2p) 

30 ug/g of 
cell dry 
weight 

Cell 
suspension 
culture 

Girard et 
al., 2006 

BoNT 
antidotes 

Botulinum
neurotoxins 
(BoNTs)

Tobacco CaMV35S 
20-40 
mg/kg 

Leaves 
Almquist et 
al., 2006 

TheraCIM 
recombinant 
humanized 
antibody 

Skin cancer Tobacco 
CaMV35S/ 
Agroinfiltration 

1.2 mg/kg 
of leaves 

Leaves 
Rodríguez 
et al., 2005 

Human 
monoclonal 
antibody 2F5 

Activity against 
HIV-1 

Tobacco 
duplicated 
CaMV35S 

2.9 ug/g 
fresh weight

Cell 
suspension 

Sack et al., 
2007 

mAb BR55-2 
(IgG2a) 

Carcinomas,
particularly breast 
and colorectal 
cancers

Tobacco CaMV 35S 
30 mg kg of 
fresh leaves 

Leaves 
Brodzik et 
al., 2006 

LO-BM2, a 
therapeutic 
IgG antibody 

Possible tool to 
prevent graft 
rejection 

Tobacco En2pPMA4 

99 ug in the
cell extract 
of a 100-ml 
culture, 
12.81 ug. 
medium-
associated 
antibody

Leaf and cell 
suspension 
culture 

De Muynck 
et al., 2009 

Monoclonal 
antibody H10 
(mAb H10) 

Tumour-associated 
antigen tenascin-C 
(TNC) 

Tobacco 

CaMV 35S with
omega 
translational 
enhancer 
sequence from 
(TMV)

50–100 
mg/kg fresh
plant tissue 

Leaves 
Villani et 
al., 2009 

 

Table 2. Plant derived antibodies. 
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3.2 Plant derived vaccines 

Plants can be used to produce inexpensive and highly immunogenic vaccines. It is connected 

with heterologous expression of antigens. These are further purified to formulate injectable 

vaccine or are applied as edible vaccines. The latter idea is a very attractive alternative to 

injection, mostly because of low costs (no need for protein purification) and comfort of 

administration. However, there are some essential conditions which have to be satisfied. First 

of all, plants used for oral vaccine production should produce edible parts that can be 

consumed uncooked (antigens are often heat sensitive). Besides, these parts should be rich in 

protein because the antigen protein will constitute only a minor portion (0.01-0.4%) of TSP. 

Seeds seems to be a good choice because of antigen extended stability, even at ambient storage 

temperatures. As many studies revealed, vaccine antigens present in plant tissues were 

resistant to digestion in the gastrointestinal tract, on the other hand during this process they 

were release to elicite both mucosal and systemic immune responses (Sharma and Sood, 2011). 

Current progress in the matter is summarized in Table 3. 

Vaccines Disease Plant Promoter 
Expression 
level 

Organ References 

Subunit 
HAC1 and 
HAI-05 

H1N1, H5N1 
influenza 

Tobacco Not reported

HAC1 90 
mg/ 
 and HAI-05 
50 mg/kg of 
plant 
biomass 

Leaves 
Shoji et al., 
2011 

VP1-capsid 
protein 

FMDV ( Foot 
and Mouth 
Disease 
Virus) 

Tobacco psbA 51% TSP 
Leaves 
(Chloroplasts) 

Lentz et al., 
2010 

TonB protein 

Immunizatio
n against 
Helicobacter 
infections

A. thaliana CaMV 35S 0.05% TSP Entirely plant
Kalbina et al., 
2010 

Mycobacteria
l antigens 
Ag85B 

Vaccine 
against 
tuberculosis 

Tobacco CaMV 35S 4 % TSP Leaves 
Floss et al., 
2010 

Surface 
protein 4 ⁄ 5 
(PyMSP4 ⁄ 5) 

Plasmodium Tobacco 
MagnICON® 
viral vector 
system 

10% TSP or 
1–2 mg⁄g of 
fresh weight 

Leaves 
Webster et al. 
2009 

TetC and 
PTX S1 
antigens 

DTP 
(diphtheria–
tetanus–
pertussis) 

Tobacco 
Daucus 
carrota 

CaMV 35S Not reported
Leaves; 
Hypocotyls 

Brodzik et al., 
2009 

HN 
glycoprotein 

Newcastle 
Disease Virus 
(NDV) 

Tobacco P-RbcS 

3µg of 
HN protein 
per mg of 
total leaf 
protein 

Leaves 
Gómeza et 
al., 2009 

HBsAg 
HBV 
(hepatitis B 
virus) 

Lactuca sativa CaMV 35S Not reported Shoots 
Marcondes & 
Hansen, 2008 
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Vaccines Disease Plant Promoter 
Expression 
level 

Organ References 

HPV-16 L1 
protein 

HPV (Human 
Papilloma 
Virus) 

Tobacco 
psbA 
promoter 

24 % TSP Leaves 
Fernández-
San Millán et 
al. 2008 

16 E7 
oncoprotein 

HPV 
Tomato; 
Potato 

CaMV 35S 

0.5 % of the 
cell 
protein- 
potato 

Potato 
protoplast; 
leaves 

Briza et al., 
2007 

G protein Rabies virus Daucus carotta CaMV 35S 
0.2–1.4% 
(TSP) 

Carrot roots 
Royas-Anaya 
et al., 2009 

Capsid 
protein VP6 

Rotavirus Potato P2 0.01% 
Leaves, 
tubers 

Yu & 
Landgridge, 
2003 

Table 3. Plant derived vaccines. 

3.3 Plant derived biopharmaceuticals  

Plants can be used to produce inexpensive biopharmaceuticals (Table 4).  

Biopharmaceutical 
Potential 
application

Plant Promoter Expression level References 

IL-10 
Inflammatory 
and autoimmune 
diseases

Rice seeds 
Glutelin B-1 
promoter 

2 mg pure IL-10  
Fujiwara et al., 
2010 

Human transfferin 

Receptor-
mediated 
endocytosis 
pathway

Rice seeds 
Glutelin 1 G-1 
promoter 

1% seed dry weight
Zhang et al., 
2010 

Glutamic acid 
decarboxylase 
(GAD65) 

Autoimmune 
T1DM 

Tobacco 
leaves 

CaMV 35S 
2.2% total soluble 
protein 

Avesani et al., 
2010 

hGH, somatotropin 

Growth 
hormone-
treatment of 
dwarfism

N. 
benthamiana

CaMV 35S 
60 mg per kilogram 
offresh tissue; 7%  

Rabindran et. 
al., 2009; 

Human 
erythropoietin (EPO)

Anemia, Renal 
failure

N. tabacum CaMV 35S 
0.05% of total 
soluble protein

Conley et al., 
2009 

Human serum 
albumin (HSA) 

Deficiences 
Tobacco, 
potato 

Prrn; B33 

11.1%TSP% (tobacco 
chloroplasts); 
0.2%TSP (potato 
tuber)

Faran et al., 
2002 

Human lactoferrin 
(hLF) 

Anti-
inflammatory 
and immuno-
modulation 
effects

Potato 

Tandem 
promoter: 
P2& CaMV 
35S 

0.10% TSP 
Chong et al., 
2000 

Enkephalins Painkiller 
Cress, A. 
thaliana 

-------------- 0.10% seed protein 
Daniell et al., 
2001 

Staphylokinase 
Thrombolytic 
factor 

A. thaliana CaMV 35S not reported 
Wiktorek-
Smagur et al., 
2011 

Table 4. Plant derived biopharmaceuticals. 
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3.4 Nutraceutical and non-pharmaceutical plant derived proteins 

Antimicrobial nutraceutics, such as human lactoferrin and lysozymes, have now been 

successfully produced in several crops (Stefanova et al., 2008), and are commercially available 

(Table 5). Cobento Biotechnology (Denmark) has recently received approval for its Arabidopsis 

derived human intrinsic factor which is used against vitamin B12 deficiency and it is now 

commercially available as Coban. Other nutraceutical products are listed in Table 5. 

Trypsin is a proteolytic enzyme that is used in a variety of commercial applications, 

including processing of some biopharmaceuticals (Sharma & Sharma, 2009). In 2004, the first 

plant derived recombinant protein product (bovine sequence trypsin; trade name – 

trypZean) developed in corn plant (Prodi Gene, USA) was commercialized. Avidin,  

a glycoprotein found in avian, reptilian and amphibian egg white, is primarily used as  

a diagnostic reagent. The plant optimized avidin coding sequence was expressed in corn 

and now it is available on the market. ǃ-glucuronidase, peroxidase, laccase, cellulase, 

aprotinin were also developed and marketed (Basaran & Rodrigez-Cerezo, 2008).  

Spider silk proteins, elastin and collagen, have been expressed in transgenic plants (Scheller 

et al., 2004). These are promising biomaterials for regenerative medicine. 

 

Product name Company name Plant 
Commercial 
name 

Source 

Avidin Prodigene Corn Avidin Obembe at al., 2011 

ǃ-glucuoronidase Prodigene Corn GUS Obembe at al., 2011 

Trypsin Prodigene Corn TrypZean Obembe at al., 2011 

Recombinant human 
lactoferrin 

Meristem 
Therapeutic, 

Ventria 
Bioscience 

Corn, Rice Lacromin 
http://www.meristemthera-
peutics.com 

Recombinant human 
lysozyme 

Ventria 
Bioscience 

Rice Lysobac http://www.ventria.com 

Aprotinin Prodigene 
Corn, 
Tobacco 

AproliZean Obembe at al., 2011 

Recombinant lipase 
Meristem 
Therapeutic 

Corn Merispase 
http://www.meristemthera
peutics.com 

Recombinant human intrinsic 
factor 

Cobento Biotech 
AS 

Arabidopsis Coban http://www.cobento.dk 

Human growth factors ORF Genetics Barley ISOkineTM http://www.orfgenetics.com 

Food additive for shrimps SemBioSys Safflower 
Immuno-
spherte 

http://www.sembiosys.com 

Table 5. Transgenic plants based on products commercially available in the market. 
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4. Recombinant protein purification 

4.1 Affinity chromatography 

Isolation and purification of a biologically active protein from a crude lysate is often difficult 

and costly. Simple, cheap and more efficient strategies of its purification on the laboratory 

and industrial scale are thus on great demand. One of the numerous approaches in this field 

is an affinity tags system easily applicable for recombinant protein purification by affinity 

chromatography. The term 'affinity chromatography’ was introduced in 1968 by Pedro 

Cuatrecasas, Meir Wilchek, and Christian B. Anfinsen (1968). Now it is the method of choice 

(Kabir et al., 2010). Affinity chromatography is based on specific interaction between two 

molecules in order to isolate the protein of interest from a pool of unwanted proteins and 

other contaminants. For this purpose a fusion protein is created. A short fragment of DNA 

can be ligated to the 5 ' or 3' - terminus of the target gene. This peptide or protein coding 

sequence (so called tag), which is translated in frame with protein of interest exhibits  

a characteristic property, strong and selective binding to the molecules immobilized on the 

solid matrices (Fong et al., 2010). Purification process is effective and simple. During 

passage of the cell extract containing the fusion protein and contaminants through an 

appropriate column the tagged protein is retained, while all the others migrate freely 

through the column (Fig. 1).  

In the next step, the bound protein is eluted by a change in buffer composition 

/parameters (i.e. competitors, chelators, pH, ionic strength or temperature). Affinity tags 

are divided into three main classes according to their properties and the properties of 

molecules that interact with them: 1) tags, binding to small molecule ligands linked to  

a solid support (i.e. HIS-tag), 2) protein tags binding to a macromolecular partner 

immobilized on chromatography support (i.e. CBP-tag), 3) the protein-binding partner 

attached to the resin in an antibody which recognizes a specific peptide epitope in a 

recombinant protein (i.e. FLAG-tag) (Lichty et al., 2005, Arnau et al., 2006, Waugh et al., 

2005). To date large number of gene fusion tags has been described, the most commonly 

used ones are presented in Table 6.  

Tag Comments References 

His-tag 
Purification by interaction between 
immobilized metal ions and chelating amino 
acids 

Valdez-Ortiz et al., 2005,  

Vaquero et al., 2002 

FLAG 
Purification based on binding the FLAG 
peptide to antibodies 

Brodzik et al., 2009,  

Zhou and Li., 2005 

Strep-tag II 
Strong specific interaction between Streptag 
and strep-Tactin (streptavidin derivate) 
immobilised on resin 

Witte et al., 2004 

Table 6. Some examples of affinity tags commonly used for protein purification. 
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Fig. 1. Schematic representation of the recombinant protein purification process by affinity 
chromatography (Hearn & Acosta, 2001, modified). 

4.2 Elastin-like polypeptides in recombinant protein purification 

While affinity chromatography is used for purification of a broad spectrum of recombinant 

proteins it is not free from drawbacks. The main limitations associated with the use of this 

method are: 1) high cost of chromatography packing materials, 2) volume-limited sample 

throughput, 3) dilution of the protein product in elution buffer, 4) additional concentration 

step may cause loss in protein yield (Chow et al., 2008). Taking into account the above, there 

is a need to introduce new alternative methods for purification of recombinant proteins.  

One of the possible solutions is application of non-chromatographic purification tags. 

Elimination of resins allows us to reduce some of the aforementioned problems.  

Elastin-like polypeptides (ELP), artificial polymers containing Val-Pro-Gly-Xaa-Gly 
pentapeptide repeats, are an example of such tags. Such repeats occur naturally in the 
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hydrophobic domain of human tropoelastin (soluble precursor of elastin) and they play an 
important role in the process of elastin formation (Mithieux & Weiss 2005, Valiaev et al., 
2008). Xaa (so called guest residue) in the ELP sequence can contain any amino acid except 
for proline (Meyer & Chilkoti, 1999). Occurrence of proline at these positions eliminates 
distinctive and very useful properties of these polymers (Trabbic-Carlson et al., 2004). 
Literature classification of ELP is based on the type and number of amino acids present in 
the guest residue positions (Meyer & Chilkoti 2004).  

Elastin-like polypeptides belong to one of the three classes of thermosensitive biopolymers 
(Mackay and Chilkoti, 2008) whose properties are changed under the influence of moderate 
temperature differences. Aqueous solutions of ELP exhibit lower critical solution 
temperature (LCST) which causes that the above phase transition temperature (Tt) ELP pass 
from soluble to an insoluble form (Ge et al., 2006) in a narrow temperature range (~ 2 ° C) 
(Ge and Filipe, 2006). This is a reversible process called coacervation. In solutions with 
temperature below Tt , free polymer chains remain in a disordered soluble form. The 
opposite occurs in solutions with temperatures above Tt, when the polymer chains have 
more ordered structure (called ǃ-helix), stabilized by hydrophobic interactions (Rodriguez-
Cabello et al., 2007) that increase association of polymer chains (Serrano et al., 2007). This 
process is reversible. The fact that ELP –protein fusions are prone to reversible transition is 
of great importance (Kim et al., 2004). The process of ELP-tagged protein purification 
involves increasing ionic strength and/or temperature of the cell lysate to induce ELP-
fusion protein aggregation (Fig. 2). Next sample centrifugation/filtration separates the ELP 
fusion protein from contaminants. After resolubilization of an ELP fusion, another 
centrifugation/filtration removes denatured and aggregated biomolecules. This process 
called Inverse Transition Cycling (ITC) can be repeated to achieve the required purity of the 
product (Floss, Schallau et al., 2010). 

 

Fig. 2. Purification of ELPylated target proteins from plants using ITC (Floss et al., 2010 
modified. 
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Purification of proteins using elastin-like polypeptides has several advantages over the 
traditional chromatographic methods: 1) purification of proteins with ELP tags by ITC 
appears to be universal for soluble recombinant proteins, 2) chromatography beads are not 
required, which significantly reduces the costs, 3) final concentration step is not required 
(Chow et al., 2008).  

4.3 Application of ELP to the process of production and purification of recombinant 
proteins in transgenic plants 

Scheller and co-workers (2004) achieved efficient and stable expression of spider’s silk-ELP 
fusion protein in the ER of transgenic tobacco and potato. Application of ITC allowed them 
to obtain 80mg pure recombinant protein from 1kg tobacco leaf material. Purified 
biopolymer was tested as a potential component used for the cultivation of anchorage-
dependent CHO-K1 cells and human chondrocytes. The most common coating substances 
such as collagen, fibronectin and laminin are derived from animal sources, so there is a risk 
of contamination of cell cultures by viruses or prions which is essentially undesirable in the 
case of medical applications. What is more, production of this fusion protein in plants is less 
costly. Lin and associates (2006) obtained active soluble glycoprotein 130 which seems to be 
potent drug in Crohn’s disease, rheumatoid arthritis and colon cancer therapy. This work a 
presents creation and expression of mini-gp130-ELP. A fusion protein containing Ig-like 
domain and cytokine binding module of gp 130 fused to 100 repeats of ELP was expressed 
in tobacco leaves (ER retention). Inverse transition cycling (ITC) purification resulted in 141 
μg of active mini-gp130-ELP per 1g of leaf fresh weight. Floss and co-workers (2010) 
demonstrated the ability of genetically engineered tobacco to produce mycobacterial 
antigens Ag85B and ESAT-6 as the vaccine against tuberculosis. In this work Ag85B-ELP 
and ESAT-6-ELP (TBAg) fusions were created, purified by inverse transition cycling and 
tested on animals. Production of this TBAg-ELP fusion proteins reached 4% of the tobacco 
leaf total soluble proteins (TSP) for the best producer plants. Further testing of the vaccine 
showed mycobacterium-specific immune response with no side effects in an animal model. 
What is more, this study also confirmed that ELP had no immunomodulating activity. 
Joensuu and co-workers (2009) demonstrated ELP application in production of antibodies 
for Foot-and-mouth disease virus (FMDV) therapy. Single chain variable antibody fragment 
(scFv) recognizing FMDV coat protein VP1 was expressed in transgenic tobacco plants. To 
recover the fusion protein in the active form the plants, ITC was performed. Finally, the 
authors demonstrated that scFv expressed in plants were able to bind FMDV. 

It has been shown for spider silk proteins (Scheller et al., 2004), murine interleukin-4, human 
interleukin-10 (Patel et al., 2007) and anti-HIV type 1 antibodies (Floss et al., 2008, Floss et 
al., 2009) that the ELP fusion significantly enhances accumulation of recombinant proteins 
produced in plants. So far the mechanism of that phenomenon is not known. 

5. Status of plant-derived biopharmaceuticals in clinical development  

At present some non-pharmaceutical products from plants are on the market (Basaran and 
Rodriguez-Cerezo, 2008). Although no plant made pharmaceutical (PMP) has been 
commercialized as a human drug, several PMPs are at the late stage of development and 
some have already received regulatory approval, including a vaccine and several 
nutraceuticals (Table,7, 8, 9). 
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Antibodies Target Plant 
Clinical 
trial status

Company Source 

DoxoRx 
Side-effects 
of cancer 
therapy 

Tobacco Phase I 
Planet 
Biotechnology 

http://www.planet 

biotechnology.com 

RhinoRX 
Common 
cold 

Tobacco Phase I 
Planet 
Biotechnology 

http://www.planet 

biotechnology.com 

IgG (ICAM1) 
Common 
cold 

Tobacco Phase I 
Planet 
Biotechnology 

http://www.planet 

biotechnology.com 

CaroRX 
Dental 
caries 

Tobacco 

EU 
approved 
as medical 
advice 

Planet 
Biotechnology, 

http://www.planet 

biotechnology.com 

Table 7. Plant derived antibodies in clinical phages of development. 

 

Antigen or vaccine Disease Plant 
Clinical 
trial status

Company Source 

Hepatitis B antigen Hepatitis B Lettuce Phase I 
Thomas 
Jefferson 
University 

Streatfield, 2006 

Hepatitis B antigen Hepatitis B Potato Phase II 
Arizona 
State 
University 

Streatfield, 2006 

Fusion proteins Rabies Spinach Phase I 
Thomas 
Jefferson 
University 

http://www.labome.org 

Heat labile toxin B 
subunit of E.coli 

Diarrhea Potato Phase I ProdiGene Tacket, 2005 

Capsid protein 
Norwalk virus 

Diarrhea Potato Phase I 
Arizona 
State 
University 

Khalsa et al., 2004 

Vibrio cholerae Cholera Potato Phase I 
Arizona 
State 
University 

Tacket, 2005 

HN protein of 
Newcastle disease 
virus 

Newcastle 
disease 
(Poultry) 

Tobacco 
USDA 
Approved 

Dow Agro 
Sciences 

http://www.dowagro.com 

Viral vaccine 
mixture 

Diseases of  
horses, dogs 

Tobacco Phase I 
Dow Agro 
Sciences 

http://www.dowagro.com 

Poultry vaccine 
Coccidiosis 
infection 

Canola Phase II 
Guardian 
Bioscence 

Basaran & Rodrigez-Cerezo, 
2008 

Gastroenteritis virus 
(TGFV) capsid 
protein 

Piglet 
gastroenteritis 

Maize Phase I ProdiGene 
Basaran & Rodrigez-Cerezo, 
2008 

H5N1 vaccine 
candidate 

H5N1 
pandemic 
influenza 

Tobacco Phase I Medicago http://www.medicago.com 

Table 8. Plant derived vaccines in clinical phages of development.  
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Therapeutic 
humans protein 

Disease Plant 
Clinical 
trial 
status 

Company Source 

ǂ-Galactosidase Fabry disease Tobacco Phase I 
Planet 
Biotechnology

http://www.planet 
biotechnology.com 

Lactoferon Hepatitis C Duckweed Phase II Biolex http://www.biolex.com 

Fibrinolytic drug Blood clot Duckweed Phase I Biolex http://www.biolex.com 

Human 
glucocerebrosidase

Gaucher’s 
disease 

Carrot 
Waiting 
USDA’s 
approval

Prostalix 
Biotherapeutic

http.//www.prostalix.com 

Insulin Diabetes Safflower Phase III SemBioSys http.//www.sembiosysys.com 

Apolipoprotein 
Cardio 
vascular 

Safflower Phase I SemBioSys http.//www.sembiosysys.com 

Table 9. Plant derived pharmaceuticals in clinical phages of development.  

In 2006 the world’s first plant made vaccine candidate for Newcastle disease in chickens, 

produced in a suspension cultured tobacco cell line by Dow Agro Science, was registered 

and approved by the US Department of Agriculture (USDA) – the final authority for 

veterinary vaccines. In addition, two plant made pharmaceuticals are moving through Phase 

II and Phase III human clinical trials. Biolex’s product candidate, Locteron®, is in Phase IIb 

clinical testing for the treatment of chronic hepatitis CA. This company uses two genera, 

Lemna and Spirodela, as a platform for production of their biopharmaceuticals. The positive 

outcome of Phase III trials of Protalix’s glucocerebrosidase (UPLYSO®) for the treatment of 

Gaucher’s disease which is now waiting for USDA’s approval is another positive example. 

The successful completion of Phase III trial that concerned SemBioSys insulin bioequivalent 

of the commercial standard represents an important landmark in the plant made 

pharmaceuticals scenario and, most likely, in the next few years recombinant human insulin 

produced in safflower will become commercially available for diabetic people.  

Medicago Inc. of Canada was invited to the sixth WHO meeting about evaluation of 

pandemic influenza prototype vaccines in clinical trials. One of the purposes of this meeting 

was to make recommendations on research activities that will contribute to the development 

of effective pandemic vaccines. Medicago has recently reported positive results from  

a Phase I human clinical trial with its H5N1 avian influenza vaccine candidate (a VLP based 

vaccine produced with a transient expression system). The vaccine was found to be safe, 

well tolerated and it also induced a solid immune response. Based on these results, 

Medicago will process with Phase II clinical trial with the first plant made influenza vaccine 

(Franconi et al., 2010). These examples will pave the way to easy public acceptance of 

transgenic plants as new production platforms for human therapeuticals. 

6. Concluding remarks 

Biopharming is still a relatively new field in plant science but in the coming years it may 

become the premier expression system for a wide variety of new biopharmaceuticals. The 

use of plants as factories for the synthesis of therapeutic protein molecules will undoubtedly 

develop. Since the first development of a genetically modified plant in 1984, numerous 

comprehensive review articles have been published demonstrating the tremendous 

potential of plants for pharmaceutical production. As it has been clearly shown plants are no 

www.intechopen.com



 
Green Way of Biomedicine – How to Force Plants to Produce New Important Proteins 

 

81 

longer considered only in terms of diet or beauty. The proteins targeted for 

biopharmaceutical technology form three broad categories: antibodies, vaccines, and other 

therapeutics. Plant bioreactors represent an attractive alternative for their synthesis 

requiring the lowest capital investment of all tested production systems. The events of 

heterologous proteins in planta production were rapidly followed with 

development/improvement of significant technologies (e.g. DNA delivery systems, 

selection methods). At present a number of promoters with tissue-specific activity or sub-

cellular targeting sites that offer protein stability are known and many are still under intense 

study. Obviously, the construction of a transgenic plant synthesizing a functional 

therapeutic is a multidisciplinary process and the society of biotechnologists takes a keen 

interest in its success. However, over the past years various plant expression platforms have 

been tested and it is evident that further development and improvement are needed for 

more effective molecular farming. Apart from continuously increasing transgene yields 

efforts will need to ensure that plant-derived biopharmaceuticals would meet the same 

safety and efficacy standards as products of non-plant origin. There is no doubt that sooner 

or later the scientific limitations of molecular farming will be overcome, especially when 

numerous therapeutics and plant platforms are developed by many laboratories and 

companies. Thus, this is the regulatory requirements and public acceptance which are the 

greatest challenge of modern plant biotechnology. Of course, molecular farming raises less 

objection than technologies using genetically modified animals, but still the existing or 

proposed regulations remain based on public fears rather than on scientific facts.  

In conclusion, “the molecular farming industry” means a natural advance in drug 
production technology. The dynamics of optimization and improvement of plant expression 
platforms illustrates its potential and tremendous scientific background. The possible 
success in this field will have to face the question of public acceptance. Thus, the scientists 
should send the clear massage to the public opinion that molecular farming is a strictly 
controlled technology that has strong benefits. And that probably will be more difficult than 
the construction of functional bioreactor itself. 
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