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1. Introduction

The paper is devoted to the polyoptimal control of a complex system with inventory
couplings, which transfer the by-products of some subsystems to other subsystems as their
input components or energy carriers. The cooperation of the subsystems on the recycling
may enhance desired ecological features of complex production processes reducing the waste
stream endangering the natural environment. The consideration of such systems is connected
with the tendency of the rearrangement of complex industrial production systems from an
open loop form with many waste products to a closed loop form guaranteeing their beneficial
utilization (Ignatenko et al., 2007; Salmiaton & Garforth, 2007; Tan et al., 2008; Tatara et al.,
2007; Yi & Luyben, 1996). The networks of interconnected chemical or biochemical reactors
can be mentioned as the examples of systems discussed (Diaconescu et al., 2002; Russo et al.,
2006; Smith & Waltman, 1995). The recycling problem is analyzed for various operation modes
of the networks. Because of the flexible couplings the subsystems have high autonomy degree
and can be operated in their own mode. In particular the following three nested operation
kinds of the flexibly coupled network can be distinguished (Skowron & Styczeń, 2009): the
steady state process (the low intensity production process), the periodic process (the increased
intensity production process with the same operation period for all subsystems), and the
multiperiodic process (the high intensity production process with different operation periods
for the subsystems adjusted to their particular dynamic properties).

Since each of the subsystems has its own objective function composed of the product value,
the recycled loop cost, and the waste neutralization cost, the polyoptimal (multiobjective)
formulation of the control problem for the complex dynamic network comes to mind. The
importance of the search of a compromise solution for a set of conflicting objectives has been
widely emphasized in the literature (Huang & Yang, 2001; Sanchis et al., 2008; Sawaragi
et al., 1985; Zitzler & Thiele, 1999). The extension of the admissible control processes may
yield an essential improvement of the optimal objective function. To this end the periodic
dynamic processes of the subsystems (the cycles) are represented by the finite-dimensional
vectors encompassing their periods, their initial states, their local controls, and their inventory
interactions. The three nested control problems are considered, namely the polyoptimal
steady-state control problem, the polyoptimal periodic control problem, and the polyoptimal
multiperiodic control problem. The evolutionary optimization algorithm is proposed, which
finds the approximations of the polyoptimal ideal point for steady-state, periodic, and
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multiperiodic processes. The proper dominance for such three polyoptimal points in the
objective function space is analyzed. The algorithm is generalized to the case of the improper
dominance of the approximated nested ideal points. It uses increased aspiration levels of the
objective functions for suitably chosen subsystems.

The application of the evolutionary algorithm to the nested polyoptimization has the
advantage of the searching for a globally optimal solutions on each nested stage of the
system operation. The easiness of the incorporation of various side constraints including the
stability conditions for the optimized control process should also be emphasized (Skowron
& Styczeń, 2006). On the other hand the algorithm proposed is time consuming. It deals
with dynamic interconnected processes, it evaluates the objective function of the complex
recycled systems implementing the globalized Gauss-Newton method for the finding of
periodic control processes of the subsystems, and it reconstructs both the averaged control
constraints as well as the interaction constraints. This complicates its application for advanced
polyoptimal approaches requiring a broad scanning of the Pareto set, the niching technique
or the nondominated sorting technique (Audet et al., 2008; Sarkar & Modak, 2005; Tarafder
et al., 2005; 2007; Zhang & Li, 2007). In this context the ideal point method shows the
advantage of the moderate extent of the computations necessary for the determination of a
nested polyoptimal solution.

The theoretical and algorithmic developments are illustrated by the illustrative example of
the nested polyoptimization of production processes performed in systems of cross-recycled
chemical reactors.

2. Polyoptimal multiperiodic control problem for recycled systems

Consider the following polyoptimal multiperiodic control (POMC) problem for systems
composed of N subsystems with the inventory couplings (IC): minimize the vector objective
function

G(z)
.
= (G1(z), G2(z), ..., GN(z)) (1)

composed of the τi-averaged objective functions of the particular subsystems

Gi(zi) =
1

τi

∫ τi

0
gi(xi(t), ui(t), vi(t))dt (i = 1, 2, ..., N), (2)

and subject for i = 1, 2, ..., N to the τi-periodic state equations of the subsystems

ẋi(t) = fi(xi(t), ui(t), vi(t)), t ∈ [0, τi], xi(τi) = xi(0), (3)

to the resource constraints
1

τi

∫ τi

0
ui(t)dt = bi, (4)

to the stability constraints
|si(Φi(zi))|∞ ≤ αi, (5)

to the box constraints

τi ∈ Ti, xi(t) ∈ Xi, ui(t) ∈ Ui, vi(t) ∈ Vi, t ∈ [0, τi], (6)
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Polyoptimal Multiperiodic Control of Complex Systems with Inventory Couplings Via the Ideal Point Evolutionary Algorithm 3

and to the averaged inventory interaction constraints

1

τi

∫ τi

0
vi(t)dt ≤

N

∑
j=1

1

τj

∫ τj

0
hij(xj(t), uj(t), vj(t))dt, (7)

where τi ∈ R+ is the operation period of the i-th subsystem, xi ∈ W1,ni
∞ (0, τi) is its state

trajectory, ui(t) ∈ Lmi
∞ (0, τi) is its control, vi(t) ∈ Lri

∞(0, τi) is its inventory interaction, zi
.
=

(τi, xi, ui, vi) is its control process, bi ∈ Rmi is its averaged level of the resource availability,
and Ti

.
= [τ−

i , τ+
i ], Xi

.
= [x−i , x+i ], Ui

.
= [u−

i , u+
i ] and Vi

.
= [v−i , v+i ] are the box sets with

the bounds τ±
i ∈ R+, x±i ∈ Rni , u±

i ∈ Rmi and v±i ∈ Rri , and si
.
= (sij)

ni

j=1 is the vector

of the Floquet’s multipliers of the state equation (3) i.e. the vector of the eigenvalues of its
monodromy matrix Φi(zi) endowed with the norm |si|∞

.
= maxj=1,2,...,ni

|sij|, and αi ∈ R+ is
the local stability F-level of the i-th subsystem, and

gi : Rni × Rmi × Rri → R, fi : Rni × Rmi × Rri → Rni ,

hij : Rnj × Rmj × Rrj → Rri

are continuous functions on the sets Xi × Ui × Vi and Xj × Uj × Vj, respectively, while z
.
=

(zi)
N
i=1 is the control process of the IC system.

The objective functions Gi(zi) for the particular systems are combined from such quantities
as, for example, the averaged yield of the major products and the by-products, the averaged
selectivity of the production process, and the averaged energy consumption or its dissipation.

The dynamics of the subsystems is governed by the τi-periodic state equations (3), the periods
of which can be chosen independently for each of the subsystems according to their dynamic
properties. This is guaranteed by the flexible inventory couplings between the subsystems,
which enable to stock up on some output products of the subsystems to recycle them in
a complex production system. The inequalities (7) restrict the averaged outflows of the
inventory couplings by their averaged inflows.

The constraints (4) mirror the averaged availability of the resources used in the process
operation. The relationships (5) are responsible for the local asymptotic stability of periodic
control processes for particular subsystems. The constraints for the local stability F-levels are
important to ensure practical applicability of optimized processes.

To depict the ideal point evolutionary algorithm implementable for the POMC problem we
apply the time scaling t := τit independently to each subsystem. We reduce this way
the IC system to the computationally convenient unit time interval [0, 1]. We convert the
continuous-time control of the i-th subsystem ui(t) and its inventory interaction vi(t) to the
discrete-time form ũk

i and ṽk
i for t ∈ [k/K, (k + 1)/K), where uk

i ∈ Rmi and vk
i ∈ Rri (k =

0, 1, ..., K − 1). We set uK
i

.
= (u0

i , u1
i , ..., uK−1

i ) and vK
i

.
= (v0

i , v1
i , ..., vK−1

i ).

We assume that the normalized nonlinear state equation of each subsystem

ẋi(t) = τi fi(xi(t), ui(t), vi(t)), t ∈ [0, 1] (8)

has the uniquely determined solution xi(t, τi, xi(0), ui, vi) for every optimization argument
(τi, xi(0), ui, vi) satisfying the constraints (6). Thus we can treat the states of the subsystems as
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the resolvable variables xi(t, zi) found by high accuracy integration procedures for nonlinear
differential equations with the given initial state and the input functions.

We convert this way the POMC problem to the following normalized and disretized form:
minimize the vector objective function

G(z)
.
= (G1(z), G2(z), ..., GN(z)) (9)

composed of the normalized objective functions of the subsystems

Gi(zi)
.
=

∫ 1

0
gi(xi(t, zi), ũi(t), ṽi(t))dt (i = 1, 2, ..., N) (10)

and subject for i = 1, 2, ..., N to the normalized process periodicity constraints

xi(0)− xi(1, zi) = 0, (11)

to the normalized and discretized resource constraints

1

K

K−1

∑
k=0

uk
i = bi, (12)

to the normalized stability constraints

|si(Φi(1, zi))|∞ ≤ αi, (13)

to the normalized box constraints

τi ∈ Ti, xi(0) ∈ Xi, uk
i ∈ Ui, vk

i ∈ Vi (k = 0, 1, ..., K − 1),

xi(tl) ∈ Xi (tl
.
= l/L, l = 1, 2, ..., L), (14)

and to the normalized and discretized inventory interaction constraints

1

K

K−1

∑
k=0

vk
i ≤

N

∑
j=1

∫ 1

0
hij(xj(t, zj), ũj(t), ṽj(t))dt, (15)

where an additional dense time grid {tl}
L
l=1 is used in (14) to approximate sufficiently exactly

the state constraints within the normalized control horizon, and

zi
.
= (τi, xi(0), uK

i , vK
i ) ∈ RMi (Mi

.
= 1 + ni + (mi + ri)K)

is the discrete representation of a controlled cycle of the i-th subsystem encompassing its
period, its initial state, its discretized control, and its discretized inventory interaction, while

z
.
= (zi)

N
i=1 ∈

N

∏
i=1

RMi

is the normalized discretized control process of the IC system.

Let Z̃ be the set of all the admissible solutions of the POMC problem, i.e. the set of all the

multiperiodic cycles z̃ satisfying the constraints (11)-(15). We determine the ideal point G̃∗ .
=

(G̃∗
1 , G̃∗

2 , ..., G̃∗
N) in the objective space of the POMC problem by the computation of N optimal
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values of the objective functions of the particular subsystems for the multiperiodic operation
of the IC system:

G̃∗
i = min

z̃∈Z̃
Gi(z) (i = 1, 2, ..., N).

We define the compromise multiperiodic solution z̃∗ for the POMC problem as the solution
minimizing the distance to the ideal point

z̃∗ = arg min
z̃∈Z̃

|G(z)− G̃∗|∞,

where the distance is defined with the help of the uniform norm |G(z)− G̃∗|∞
.
= maxi=1,2,...,N

|Gi(z)− G̃∗
i |.

The multiperiodic control process of the IC system may ensure high productivity of particular
subsystems and it may be characterized as the high intensity production process with different
operation periods for the subsystems adjusted to their particular dynamic properties. On
the other hand its implementation is connected with increased requirements for inventory
capacities and their maintenance. It may also have low stability margins for the periodic state
trajectories, which involve the need of the design of high quality stabilizing loops for the
subsystems.

For such reasons we consider the nested control processes ”sitting inside” the multiperiodic
control process i.e. the periodic control process and the static control process.

The periodic control process may be interpreted as the synchronized operation mode of the IC
system. It requires moderate inventory capacities and facilitates the balancing of the inventory
interactions.

The POMC problem is converted to the polyoptimal periodic control (POPC) problem by the
setting τi = τ (i = 1, ..., N). Such a choice of the operation periods may be convenient for the
balancing of the inventory interactions. It reduces, however, the set of admissible solutions to
the set Z̃ of all the periodic cycles z̃ satisfying the constraints (11)-(15) with the equal periods
τi = τ. We determine the ideal point G̃∗ .

= (G̃∗
1 , G̃∗

2 , ..., G̃∗
N) in the objective space of the POPC

problem by the computation of N optimal values of the objectives functions connected with
the τ-periodic operation of particular subsystems:

G̃∗
i = min

z̃∈Z̃
Gi(z) (i = 1, 2, ..., N).

We define the compromise periodic solution z̃∗ for the POPC problem as the solution
minimizing the uniform distance to the ideal point

z̃∗ = arg min
z∈Z̃

|G(z)− G̃∗|∞.

Fixing in time all the process variables leads to the simplified system with direct
interconnections and without inventories. The steady-state control processes may be
implemented with the help of simple stabilization loops, for example, of relay type. However,
such processes ignore the optimization potential underlying in the process dynamics.

The POPC problem is converted to the polyoptimal steady-state control (POSS) problem by
the fixing in time all the process variables, which is equivalent to the minimization of the
vector steady-state objective function

G(z̄)
.
= (G1(z̄), G2(z̄), ..., GN(z̄)) (16)
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having the components
Gi(z̄)

.
= gi(x̄i, ūi, v̄i) (17)

and subject for i = 1, ..., N to the steady-state constraints

fi(x̄i, ūi, v̄i) = 0, (18)

Biūi = bi, (19)

|si(e
fi,xi

(x̄i ,ūi ,v̄i))|∞ ≤ αi, (20)

x̄i ∈ Xi, ūi ∈ Ui, v̄i ∈ Vi, (21)

v̄i ≤
N

∑
j=1

gj(x̄j, ūj, v̄j), (22)

where
z̄i

.
=

(
x̄i, ūi, v̄i)

N
i=1 ∈ Rni × Rmi × Rri

is the steady-state control process of the i-th subsystem, and

z̄
.
= (z̄i)

N
i=1 ∈

N

∏
i=1

Rni × Rmi × Rri

is the steady-state control process for the IC system.

Let Z̄ be the set of all the admissible solutions of the POSS problem, i.e. the set of all the
steady-state processes z̄ satisfying the constraints (18)-(22). We determine the ideal point
Ḡ∗ .

= (Ḡ∗
1 , Ḡ∗

2 , ..., Ḡ∗
N) in the objective space of the POSS problem by the computation of

N optimal values of the objectives functions connected with the steady-state operation of
particular subsystems:

Ḡ∗
i = min

z̄∈Z̄
Ḡi(z̄) (i = 1, 2, ..., N).

We define the compromise steady-state solution z̄∗ for the POSS problem as the solution
minimizing the distance to the ideal point

z̄∗ = arg min
z̄∈Z̄

|G(z̄)− Ḡ∗|∞.

Definition 1: The triple of compromise nested control processes z
∗ .
= (z̃∗, z̃∗, z̄∗) is said to be

• strongly proper if it satisfies the relationships

G(z̃∗) < G(z̃∗) < G(z̄∗),

• partially strongly proper if it satisfies the relationships

G(z̃∗) � G(z̃∗) < G(z̄∗) or G(z̃∗) < G(z̃∗) � G(z̄∗),

• proper if it satisfies the relationships

G(z̃∗) � G(z̃∗) � G(z̄∗),

• weakly proper if it satisfies the relationships

G(z̃∗) ≤ G(z̃∗) � G(z̄∗) or G(z̃∗) � G(z̃∗) ≤ G(z̄∗),
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• improper if it satisfies the relationship

G(z̄∗) ⋚ G(z̃∗),

where the vector inequality � means that the inequality ≤ holds for all the components with
the strict inequality for some of them, and ⋚ means that higher level compromise solutions
may improve objective functions for some subsystems at polyoptimal static solution, but
deteriorate for other subsystems at this solution.

We are aimed at the comparison of the ideal point compromise solutions of the POMC
problem for the steady-state processes, for the periodic processes, and for the multiperiodic
processes. The finding of the strongly proper nested triple z

∗ means the uniform improvement
of the ideal point compromise solutions between all the levels of nested optimization problem.
It may be the basis for the application of the compromise multiperiodic control process.
The other types of the nested triple z

∗ determine weaker possibilities of the polyoptimal
nested optimization of the IC system. The practitioner choosing a definitive process for the
implementation takes into account the degree of the improvement of the objective functions
for the subsystems between the nested compromise solutions.

3. Ideal point evolutionary polyoptimal multiperiodic optimization

The general scheme of the ideal point evolutionary algorithm for the nested polyopimal
multiperiodic optimization can be stated as follows :

Algorithm 1: Finding of the ideal point compromise solution for the POMC problem.

Step 1: Choose randomly an initial steady-state control process population z̄0 .
= (x̄0

i , ū0
i , v̄0

i )
N
i=1

and apply the evolutionary global optimization (EGO) algorithm of (Skowron & Styczeń,
2009) to solve N single objective static optimization problems

min
z̄∈Z̄

Ḡi(z̄) (i = 1, 2, ..., N)

to obtain the ideal point Ḡ∗ .
= (Ḡ∗

1 , Ḡ∗
2 , ..., Ḡ∗

N) in the objective functions space of the POSS
problem. Apply the EGO algorithm to find the ideal point compromise solution for the POSS
problem

z̄∗ = arg min
z̄∈Z̄

|G(z̄)− Ḡ∗|∞.

Step 2: Using the π-test ((Bernstein & Gilbert, 1980; Sterman & Ydstie, 1991)) evaluate the
intervals [τi−, τi+] of period values guaranteeing the local improvement of the subsystems
objective functions by the periodic operation, and choose τ0 ∈ [τi−, τi+] (i = 1, 2, ..., N).

Step 3: Choose randomly an initial periodic control process population z̃0 = (τ0, x̃0
i , ũ0

i , ṽ0
i )

N
i=1

and apply the evolutionary global optimization (EGO) algorithm of (Skowron & Styczeń,
2009) to solve N single objective periodic optimization problems

min
z̃∈Z̃

G̃i(z̃) (i = 1, 2, ..., N)

to obtain the ideal point G̃∗ .
= (G̃∗

1 , G̃∗
2 , ..., G̃∗

N) in the objective functions space of the
POPC problem. Apply the EGO algorithm to find the ideal point compromise solution
z̃∗ = (τ∗, x̃∗i , ũ∗

i , ṽ∗i )
N
i=1 for the POPC problem as

z̃∗ = arg min
z̃∈Z̃

|G(z̃)− G̃∗|∞.
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Step 4: Choose randomly an initial multiperiodic control process population
z̃0 = (τ0, x̃0

i , ũ0
i , ṽ0

i )
N
i=1 and apply the evolutionary global optimization (EGO) algorithm to

solve N single objective multiperiodic optimization problems

min
z̃∈Z̃

G̃i(z̃) (i = 1, 2, ..., N)

to obtain the ideal point G̃∗ .
= (G̃∗

1 , G̃∗
2 , ..., G̃∗

N) in the objective functions space of the POMC
problem. Apply the EGO algorithm to find the ideal point compromise solution for the POMC
problem

z̃∗ = arg min
z̃∈Z̃

|G(z̃)− G̃∗|∞.

Step 5: Determine the properness of the determined nested triple z
∗ on the basis of the

Definition 1.

If the nested triple z
∗ turns out to be improper the following regularization may improve its

properness.

Algorithm 2: Combined the ideal point compromise solution and aspiration levels approach
for the POMC problem.

Step 1: Modify the set of admissible solutions for the POPC problem as follows:

Z̃
.
= {z̃ ∈ Z̃ : Gi(z̃) ≤ Gi(z̄)− ∆̄ i (i ∈ N̄ ),

where N̄ ⊂ {1, 2, ..., N} is the set of indices of the subsystems, the objective functions of
which are deteriorated by the ideal point compromise solution of the POPC problem at the
point z̄∗, and the corrections ∆̄ i > 0 determine the aspiration levels for the subsystems with
deteriorated objective functions on the periodic optimization level.

Step 2: Apply the EGO algorithm to find the combined ideal point compromise and aspiration
levels solution z̃∗ = (τ∗, x̃∗i , ũ∗

i , ṽ∗i )
N
i=1 for the POPC problem as

z̃∗ = arg min
z̃∈Z̃

|G(z̃)− G̃∗|∞.

Step 3: Modify the set of admissible solutions for the POMC problem as follows:

Z̃
.
= {z̃ ∈ Z̃ : Gi(z̃) ≤ Gi(z̃)− ∆̃ i (i ∈ Ñ ),

where Ñ ⊂ {1, 2, ..., N} is the set of indices of the subsystems, the objective functions of
which are deteriorated by the ideal point compromise solution of the POMC problem at the
point z̃∗, and the corrections ∆̃ i > 0 determine the aspiration levels for the subsystems with
deteriorated objective functions on the multiperiodic optimization level.

Step 4: Apply the EGO algorithm to find the combined ideal point compromise and aspiration
levels solution z̃∗ = (τ ∗

i , x̃∗
i , ũ∗

i , ṽ∗
i )

N
i=1 for the POMC problem as

z̃∗ = arg min
z̃∈Z̃

|G(z̃)− G̃∗|∞.

Of course it may suffice to solve one of the corrected problems POPC or POMC.
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From the evolutionary algorithm perspective, the most important thing is the way of coding
an individual. We propose to represent an individual of the problem (9)-(15) by the vector

(Skowron & Styczeń, 2009) z̆
.
= (z̆µ)N̆

µ=1, where N̆ = ∑
N
i=1 Mi, z̆i

.
= τi (i = 1, 2, ..., N) are

operation periods of all subsystems, z̆j+N+∑
i−1
l=1 nl

.
= xij(0) (j = 1, 2, ..., ni; i = 1, 2, ..., N)

are coordinates of initial states of all subsystems, z̆k+1+(j−1)K+K ∑
i−1
l=1 ml+N+∑

N
l=1 nl

.
= uk

ij (k =

0, 1, ..., K − 1; j = 1, 2, ..., mi; i = 1, 2, ..., N) are discrete-time control coordinates of all
subsystems, z̆k+1+(j−1)K+K ∑

i−1
l=1 rl+K ∑

N
l=1 ml+N+∑

N
l=1 nl

.
= vk

ij (k = 0, 1, ..., K − 1; j = 1, 2, ..., ri;

i = 1, 2, ..., N) are discrete-time inventory interactions of all subsystems. Values of the

individual’s genes are bounded by the set Z
.
= [z̆−, z̆+] (z̆± ∈ RN̆), which results from a

set of inclusion constraints T × X × U × V.

The form of the individual z̆ allows to use known crossing and mutation operators
(Michalewicz, 1996). However, basing on several experiments we performed, we propose
to use a uniform crossing operator and a non-uniform mutation operator. Unfortunately
the available operators deliver an individual which violate the constraints (11)-(15). In case
of the periodic constraint (11) we propose to use the Newton method as the reconstruction
algorithm. The averaged constraints (12) and (15) can be preserved with the help of the
reconstruction algorithm described by Skowron and Styczeń (Skowron & Styczeń, 2009).This
reconstruction algorithm is not sufficient for the inventory interaction (15) constraint and
that’s why it shall be used together with the penalty term. The penalty term shall be also
applied for stability (13) and box state (14) constraints (Skowron & Styczeń, 2006).

4. Illustrative example

Let two continuous stirred tank reactors cooperate with the help of the inventory interactions
of the mixed catalytic-resource type. The series reaction A1 ⇆ B1 → C1 takes place in the
first reactor, and the parallel reactions A2 ⇆ B2 and A2 → C2 take place in the second reactor,
where the main reactions are reversible, and Ai is the raw material of the ith reactor, Bi is
its desired product, and Ci is its by-product. Assume that the i-th reactor is τi-periodically
operated, and denote by xi1(t), xi2(t), xi3(t) its concentrations of Ai, Bi, Ci, respectively, by
ui1(t) its input concentration of Ai, by ui2(t) its flow rate, by vi(t) its inventory interaction.
The interaction of the first reactor uses the by-product of the second reactor as the catalyst of
the own reactions, while the interaction of the second reactor uses the by-product of the first
reactor as the supplement of the own raw material. Consider the following POMC problem
for the discussed system: minimize the vector objective function

G(z)
.
= (G1(z), G2(z))

having the components

Gi(z)
.
= −

1

τi

∫ τi

0
ui2(t)xi2(t)dt,

and subject to the τ1-periodic state equations of the first subsystem

ẋ11(t) = u12(t)(u11(t)− x11(t))− κ11v1(t)
2x

p11

11 (t) + κ12v1(t)x
p12

12 (t),

ẋ12(t) = −u12(t)x12(t) + κ11v1(t)
2x

p11

11 (t)− κ12v1(t)x
p12

12 (t)− κ13v1(t)x
p13

12 (t),

ẋ13(t) = −u12(t)x13(t) + κ12v1(t)x
p13

12 (t),
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to the τ2-periodic state equations of the second subsystem

ẋ21(t) = u22(t)(u21(t) + v2(t)− x21(t))− κ21x
p21

21 (t) + κ22x
p22

22 (t)− κ23x21/(1 + x21),

ẋ22(t) = −u22(t)x22(t) + κ21x
p21

21 (t)− κ22x
p22

22 (t),

ẋ23(t) = −u22(t)x23(t) + κ23x21/(1 + x21),

to the resource constraints
1

τi

∫ τj

0
uij(t)dt = 1 (i, j = 1, 2),

to the box constraints

τi ∈ [0.1, 20], 0 ≤ xik(t) (i = 1, 2; k = 1, 2, 3),

0 ≤ uij(t) ≤ 2, 0 ≤ vi(t) ≤ 2 (j = 1, 2), t ∈ [0, τi],

to the stability constraints

|si

(
Φi(τi, xi, ui, vi)

)
|∞ ≤ 0.8 (i = 1, 2),

and to the inventory interaction constraints

1

τ1

∫ τ1

0
v1(t)dt ≤

1

τ2

∫ τ2

0
x23(t)dt,

1

τ2

∫ τ2

0
v2(t)dt ≤

1

τ1

∫ τ1

0
x13(t)dt,

where the reactions obey the power law with the exponents pij. The optimization goal is
equivalent to the maximization of the averaged yield of the useful product for each of the
reactors. We compare the nested polyoptimal steady-state, periodic, and multiperiodic control
processes for such cross-recycled reactors.

The evaluation of the initial advantageous duration of the operation periods for the
subsystems can be found with the help of the π-test. Assuming the unit mean value of the
inventory interactions and the subsystem parameters ni = 3, mi = 2, pi1 = 2, pi2 = 1, p13 =
1.5, κ11 = 40, κ12 = 12, κ13 = 10, κ21 = 30, κ22 = 15, κ23 = 2 we obtain the π-curves for the
subsystems (Fig. 1) with the suboptimal operation periods τ1 = 2.5, τ2 = 3.1. The form of
the π-curves shows that optimal operation periods for the case considered should be searched
within the intermediate frequencies.

Ideal point Compromise solution

POSS POPC POMC POSS POPC POMC

G∗
1 -0.3399 -0.7352 -0.7442 -0.2846 -0.5143 -0.6461

G∗
2 -0.4693 -2.1912 -2.1914 -0.4109 -2.0758 -2.0854

Table 1. The values of the objective functions obtained with the help of evolutionary
algorithm

Table 1 shows the results which were achieved with the aid of the evolutionary algorithm
described Skowron and Styczeń (Skowron & Styczeń, 2009). It is easy to notice that applying
the periodic control for the considered system of two continuous stirred tank reactors
cooperated with the help of the inventory interactions significantly improves the productivity
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� �( )

�

(a) System 1

� �( )
�

(b) System 2

Fig. 1. The results of π–test

of the system in comparison to the steady-state approach. Comparing ideal points for POSS
and POPC problems we can see that productivity of the first system is improved about 116%.
Much greater improvement is observed for the second system. Applying the periodic control
improves that the productivity of the second about 366%.

The results confirm also that efficiency of the system can be increased by applying
multiperiodic control. The ideal point of the first system is improved about 1.2% and for
the second system we see improvement equal 0.009%. The improvement after applying the
multiperiodic control is not such spectacular like for the case when the steady-state control is
replaced by the periodic control. But for some systems improvement of the efficiency of the
process about 1-2% can give very huge economical profits.

Encouraged by observed improvement after applying multiperiodic control we calculated
also the compromise solution (Table 1, Fig. 2-5). For the first system the improvement is about
25% and for the second system is about 0.46%. We see that received compromise solution for
POMC problem is strongly proper according Definition 1. Thus these results confirm that for
the considered system of two continuous stirred tank reactors cooperated with the help of the
inventory interactions it is wise to apply multiperiodic approach.

u t11( ), v1( )tu t12( ),

t

(a) System 1

u t21( ), v2( )tu t22( ),

t

(b) System 2

Fig. 2. The optimal control ũ∗
ij(t) and the inventory interaction ṽ∗

i (t) (i, j = 1, 2) for POPC

problem
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x t11( ) ,

,

, x13( )

,

tx t12( )

x t21( ) x t22( ) x t23( )

t

(a)

x12( ),x t11( ) ,

, ,

x13(x t11( )) x x t13 12( ( ))

x x t22 21( ( )) x x t23 21( ( )) x x t23 22( ( ))

x tij( )

(b)

Fig. 3. The optimal state x̃∗
ij(t) (i = 1, 2; j = 1, 2, 3) for POPC problem

u t u t11 12( ), ( ), v1( )t

t

(a) System 1

u t u t21 22( ), ( ), v2( )t

t

(b) System 2

Fig. 4. The optimal control ũ∗
ij(t) and the inventory interaction ṽ∗

i (t) (i, j = 1, 2) for POMC

problem
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t

x t11( ) ,, x13( )tx t12( )

x t21( ), x t22( ), x t23( )

(a)

x tij( )

x12( ),x t11( ) ,

, ,

x13(x t11( )) x x t13 12( ( ))

x x t22 21( ( )) x x t23 21( ( )) x x t23 22( ( ))

(b)

Fig. 5. The optimal state x̃∗
ij(t) (i = 1, 2; j = 1, 2, 30 for POMC problem

5. Conclusion

The polyoptimal multiperiodic control problem for complex systems with the inventory
couplings was analysed. The ideal point evolutionary algorithm was proposed for the
solving of this problem. It has been shown that the multiperiodic operation of the complex
cross-recycled chemical production systems may ensure the uniform improvement of the
vector objective function as compared with the steady-state operation, and with the periodic
operation. Such polyoptimal solution may be preferred by practitioners. The method applied
shows the advantage of the moderate extent of the computational effort necessary for the
finding of a best compromise solution. The solution obtained this way may be further
exploited as the starting point for the implementation of some improved nested multiobjective
optimization based, for example, on the verification of the attainability of the given aspiration
levels for particular objective functions.
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