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1. Introduction 

With the development of human society, discharge of toxic organics in industrial waste 

water increased sharply. It is difficult to treat these types of waste water efficiently by 

traditional bio-process to meet the more critical discharge standard. Advanced oxidation 

processes (AOPs) attracted more and more attention as efficient methods to remove the toxic 

organics from waste water. Compared with other AOPs, electrochemical oxidation process 

was considered as an effective and environmental friendly process due to its simplicity in 

operation, robustness in system configuration, strong oxidizing ability, reliable performance 

for a wide variety of toxic organics and chemical reagents free.  

The electrochemical system is basically composed of anode, cathode, electrolyte and cell. 

Oxidation occurs on the anode while reduction occurs on the cathode simultaneously. For 

the electrochemical oxidation process, the toxic organics oxidation can be performed in 

several different ways, including direct and indirect oxidation, which are shown in Fig. 1. 

The oxidation mechanisms are generally observed to be influenced by the electrode 

material, the electrolyte composition and experimental conditions.  

In direct electrolysis, the toxic organics are oxidized directly on the anode surface after its 

adsorption without involvement of any other substances except the electrons, as shown in 

Fig. 1(a). 

Direct electrochemical oxidation is theoretically possible at low potentials, before oxygen 

evolution occurs. But the reaction rate is usually low and the anodic potential has to be 

controlled at a constant lower value to avoid the oxygen evolution reaction. At this low 

potential, the formation of polymer layer on the anode surface will be accelerated and the 

anode will lose its activity. This deactivation actually depends on the adsorption properties 

of the anode surface and the properties of the organic substrates. Aromatic compounds such 

as phenol (Foti et al., 1997; Gattrell & Kirk, 1993), chlorophenols (Rodgers et al., 1999; 

Rodrigo et al. 2001), naphthol (Panizza & Cerisola, 2003; Panizza & Cerisola, 2004) and 

pyridine (Iniesta et al., 2001a) were reported to form polymer layer on anode surface easily. 
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Fig. 1. Scheme of the electrochemical processes for the oxidation of organics: (a) direct 
electrolysis; (b) irreversible indirect electrolysis; (c) reversible indirect electrolysis 

In order to accelerate the organics oxidation rate, in practical applications, higher oxidation 
potential on anode is needed and other side reactions like oxygen evolution occur. Thus 
another important mechanism usually accompanied with the organics electrochemical 
oxidation. 

In indirect oxidation, the organic substrates do not donate electrons directly to the anode, 
but they would react with the active oxidants generated from the anode as showed in Fig. 1 
b (irreversible) and c (reversible). In reversible process, the redox reagents are turned over 
many times and recycled. The redox couples can be metal ions such as Ag+/Ag2+ (Farmer et 
al., 1992), Co2+/Co3+ (Leffrang et al., 1995), Fe2+/Fe3+ (Dhooge & Park, 1983) or inorganic 
ions such as Cl-/ClO- (Comninellis & Nerini, 1995; Szpyrkowicz et al., 1995), Br-/BrO- 
(Martinez-Huitle et al., 2005). These redox couples can be added to or present in the waste 
water. In irreversible process, strong oxidants like ozone (Chen et al., 2010; Wang et al., 
2006), chlorine (Panizza & Cerisola, 2003), hydrogen peroxide (Brillas et al., 1996; Brillas et 
al., 1995; Do & Chen, 1993) and hydroxyl free radicals (Johnson et al., 1999) etc. are 
generated and in-situ applied to mineralize the organic pollutants. 

In the electrochemical system, the most important component is the anodic material. 
Different anodic materials show diverse effectiveness for toxic organics oxidation and the 
organics oxidation mechanisms are also different. According to the model developed by 
Comninellis (1994), anode materials are classified into two types as active and nonactive 
anodes. The active anodes such as carbon, graphite, platinum, iridium oxide and ruthenium 
oxide electrodes have lower oxygen evolution overpotential and are good electrocatalysts 
for oxygen evolution reaction. The nonactive anodes such as tin dioxide, lead dioxide, boron 
doped diamond electrodes have higher oxygen evolution overpotential and are poor 
electrocatalysts for oxygen evolution reactions. On active anodes, organics usually are 
partially oxidized while organics can be mineralized to carbon dioxide completely on 
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nonactive anodes. The electrochemical oxidation process usually consumes large amount of 
electrical energy. In order to increase the energy efficiency and decrease the energy 
consumption, people have paid much attention to investigate more effective anodic materials. 

Till now, lead dioxide, tin dioxide and diamond as anodic materials have relative higher 
energy efficiency for electrochemical oxidation of toxic organics in waste water due to their 
high oxygen evolution potentials which can hinder the oxygen evolution side reaction in 
electrochemical oxidation process. These anodic materials have attracted much research 
interest and many research papers have been published. Also different preparation methods 
can affect the electrodes performance because the preparation methods have effect on the 
electrode morphology, crystal structure and other characteristics. Except the anodic 
materials mentioned above, Ta2O5-IrO2, Nb2O5-IrO2 and Pt-Ta2O5 etc. also are nonactive 
anodes and show good electrochemical properties. They may also have the potential to be 
used in electrochemical oxidation process. From the above mentioned considerations, it is 
necessary to summarize the efficient anodic materials for electrochemical oxidation of toxic 
organics. 

In this work, the development in last decade of the anodic materials including lead dioxide, 
tin dioxide and diamond materials will be reviewed in detail from their preparation, 
structure characterization and performance. A few other anodic materials will also be 
introduced briefly.  

2. Lead dioxide 

Lead dioxide has a long history of use as anode for the oxidation of organics and ozone 
generation because of its good conductivity and large overpotential for oxygen evolution. 
Lead dioxide anodes also have a lower cost compared to those based on precious metals. 
Lead dioxide anode can be prepared with different phase structures, surface morphologies 
with different doping and preparation conditions. Thus this can contribute to the 
fundamental understanding of the relationship between the structure and catalytic 
properties, which is very important to all catalysis fields (Li et al., 2011). Pure lead dioxide is 
an odorless dark-brown crystalline powder which is nearly insoluble in water. It has two 
major polymorphs, alpha and beta, which occur naturally as rare minerals scrutinyite and 
plattnerite, respectively. The alpha form has orthorhombic symmetry, space group Pbcn 
(No. 60), Pearson symbol oP12, lattice constants a = 0.497 nm, b = 0.596 nm, c = 0.544 nm, Z 
= 4 (four formula units per unit cell). The symmetry of the beta form is tetragonal, space 
group P42/mnm (No. 136), Pearson symbol tP6, lattice constants a = 0.491 nm, c = 0.3385 
nm, Z = 2. The crystal structures of alpha and beta form are shown in Fig. 2.  

2.1 The preparation of lead dioxide 

Lead dioxide is usually prepared by anodic deposition method. Basically, the lead source 
exists as lead(II) salt in the aqueous electrolyte, while electrode substrate as anode, under an 
anodic current, lead dioxide will deposit on the anode. The mechanism for lead dioxide 
formation on anode is still not clear. Velichenko (1996) proposed a two steps mechanism. 
The first step is the formation of adsorbed hydroxyl free radicals and the second step is the 
hydroxyl free radicals reacting with lead(II) ions to form Pb(OH)2+ as intermediate. And 
soon the Pb(OH)2+ is further oxidized to PbO2.  
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Fig. 2. The crystal structures for ┙-PbO2 (left) and ┚-PbO2(right) (green dots represent Pb 
while red dots represent O) 

The literature on the anodic deposition of lead dioxide is very extensive. And it is clear that the 
adhesion, surface morphology and ratio of alpha/beta form and catalytic activity can be 
influenced by substrate and its pretreatment process, dopant and its concentration, additives, 
depositing pH, depositing current density and potential, lead source and concentration and 
temperature etc. In order to improve lead dioxide anode performance including the activity 
and lifetime, people tried many different dopants, substrates and other techniques for the 
anodic deposition of lead dioxide. The earlier lead dioxide preparation was based on in situ 
oxidizing lead or lead alloy. This type of anode always suffered from continuous corrosion of 
the underlying lead substrate. It is only more recently that the stable lead dioxide can be 
anodic deposited on inert substrates such as titanium and carbon.  

Though some academic publications employed Pt, Au (Chang & Dennis, 1991; Velichenko et 

al., 1995; Yeo et al., 1992), graphite (Munichandraiah & Sathyanarayana, 1987), tantalum 

(Tahar & Savall, 1999) or glassy carbon (González-García et al., 2002; Sáez et al., 2011a; 

Velayutham & Noel, 1991) as substrate for lead dioxide anode electro-deposition, titanium is 

mostly used as the lead dioxide electrode substrate because titanium has relative low cost, 

strong mechanical strength and good adhesion to the lead dioxide layer. Titanium as 

electrode substrate is usually pretreated in order to remove the existing titanium oxide 

layer, grease and other contaminants on the surface. The usually used pretreatment process 

may include sandblasting, alkaline degrease followed by etching in boiling oxalic acid or 

hydrochloric acid. After this pretreatment, the substrate is relative clean and rough and 

suitable for anodic depositing lead dioxide. With the clean and rough surface, the deposited 

lead dioxide layer may be attached strongly. In order to further improve the electrode, some 

interlayer is also applied to titanium substrate before lead dioxide deposition. This 

interlayer may be helpful to improve the electrode conductivity, stability and activity. The 

interlayers proposed include platinum (Devilliers et al., 2003), TiO2/Ta2O5 (Ueda et al., 1995) 

and TiO2/RuO2 (Hine et al., 1984). Also some people proposed multi interlayers before 

catalyst layer applied. Ueda et al. (1995) employed a thermally formed oxide layer 

TiO2/Ta2O5 attached to the substrate, which could improve the layers adhesion to the 

substrate. After the oxide interlayer, Ueda et al. employed another alpha lead dioxide layer 

between the oxide interlayer and catalyst layer because the alpha lead dioxide layer is stress 
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free and can prevent the corrosive electrolyte penetrating to the substrate to destroy the 

anode. Finally an active beta lead dioxide and tantalum oxide composite layer was 

employed as catalyst layer and a stable and active lead dioxide anode was achieved. Feng 

and Johnson (1991) and Mohd and Pletcher (2006) proposed that F doped lead dioxide 

interlayer could give good adhesion and stability, while Bi or Fe doped lead dioxide catalyst 

layer could give the desired electrocatalytic activity. Except employing the interlayers to 

enhance the adhesion and control the inside stress of the lead dioxide anode, some soluble 

organic additives were also applied in the electroplating bath. Munichandraiah and 

Sathyanarayana (1987) found that Teepol could improve the adherence while creating a 

higher surface area. Ghaemi et al. (2006) and Wen et al. (1990) found that by adding Triton 

X-100 to the electroplating bath, the adhesion between the substrate and catalyst layer was 

improved, so as the mechanical strength and oxygen evolution potential. Adding gelatin 

and sodium dodecylsulfonate to the electroplating bath could modify the electrode 

morphology and decrease the beta lead dioxide content (Wen et al., 1990). Polyvinyl 

pyridine could be used to control both the morphology and crystallite size (Ghasemi et al., 

2007). Other additives such as tetraalkylammonium ions were also applied in lead dioxide 

anode preparation process (Ghanasekaran et al., 1976; Pletcher & Wills, 2004). Low et al. 

(2009) reported that a highly reflective lead dioxide electrode could be prepared by adding 

hexadecyltrimethylammonium chloride or bromide to the electroplating bath. 

In last decades, people tried different dopants to improve the lead dioxide coated anode 

characteristics and large improvements were achieved without any doubt. Generally, the 

doped lead dioxide anode was prepared by simply adding doping elements into the 

electroplating bath. And the effective dopants are generally F-, Bi3+, Fe3+, Co2+ etc. F- and Fe3+ 

doping as mentioned above, could enhance the adhesion and mechanical strength (Feng & 

Johnson, 1991; Mohd & Pletcher, 2006). While Bi3+ (Feng & Johnson, 1991; Iniesta et al., 

2001c; Liu et al., 2008b; Mondal et al., 2001; Mohd & Pletcher, 2006; Yeo et al., 1989) and Co2+ 

(Andrade et al., 2008; Velichenko et al.,2002) were reported to enhance the organics 

oxidation and reduce the electrode fouling by organics. During the organics oxidation, it 

was suggested that the dopants promote the formation of adsorbed OH radicals by 

increasing the oxygen vacancies concentration in lead dioxide lattice. In addition, 

preparation and properties of the rare earth doped lead dioxide were seldom reported. 

Kong et al. (2007) reported that the crystal structure of the PbO2 electrodes was influenced 

by doping with different rare earth oxides. The presence of Er2O3 and La2O3 in the PbO2 

films could enhance the direct anodic oxidation, which was helpful to mineralize organic 

wastes. Yang et al. (2010) reported that Nd, Sm, Gd, Ce doping did not change the crystal 

form of PbO2 electrodes but improve the crystal purity of beta-PbO2. SEM results indicated 

that the morphology of the electrode surface had changed at different degrees. The lifetime 

and activity were improved by rare earth doping.  

Nanostructured material is a hot topic in modern research because nano-material usually 
has the particles size in nano meter scale and relative large surface area. So people also paid 
effort to prepare lead dioxide anode with nano-structure. The nano-structured lead dioxide 
anode usually was prepared by employing nano-structured template as deposition 
substrate. Inguanta et al. (2008) and Perret et al. (2009) proposed electrodepositing lead 
dioxide onto commercial anodic alumina membranes with mean pore diameter of c.a. 210 
nm. The electroplating was conducted in a lead nitrate solution bath and after the 
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deposition, the alumina was dissolved in sodium hydroxide to achieve free standing lead 
dioxide nanowire clusters. Bartlett et al. (2002) deposited lead dioxide onto self-assembled 
polystyrene microspheres and then the polystyrene was dissolved out by an organic solvent 
to get a highly ordered lead dioxide nano-structure. Tan et al. (2011) prepared nano lead 
dioxide by employing self-organized TiO2 nanotube arrays as substrate. 

In general, composites in metal electroplating have been used to improve the strength, wear 
resistance, corrosion resistance, and catalytic activity. Thus people also utilized this 
composites technology to prepare lead dioxide anode. PTFE and polypyrrole have good 
hydrophobic property and they are applied to introduce hydrophobicity and assist the gases 
release, aid the interaction between the organic molecules and electrode surface (Hwang & 
Lee, 1996; Ho & Hwang, 1994; Tong et al., 2008; Yoshiyama et al., 1994; Zhao et al., 2010). 
The PTFE and polypyrrole may also have the function of reducing the coating films inside 
stress thus to improve the electrode stability. Fu et al. (2010) reported that PbO2/PVA 
composites electrode also had excellent electrocatalytic activity and longer life time and 
higher corrosion resistance due to the addition of PVA deducing the lead dioxide particle 
size and increasing the conductivity. Binh et al. (2011) very recently tried to prepared 
PbO2/PANI composite anode. People also used composites materials like PbO2/RuO2 
(Musiani et al., 1999; Bertoncello et al., 1999), PbO2/Co3O4 (Musiani, 1996; Bertoncello et al., 
1999), PbO2/IrO2 (Musiani, 2000) to get a more stable and active anode for oxygen evolution. 
More recently, the PbO2/TiO2 composites have attracted considerable attention due to its 
potential application in photo electrocatalytic oxidation of organic waste in wastewater 
(Velichenko et al., 2009). Li et al. (2006a; 2006b) reported the electrochemically assisted 
photocatalytic degradation of toxic organic waste on composites PbO2/TiO2 photoelectrode. 

Except the above mentioned, anodic deposition of lead dioxide was attempted to be assisted 
by ultrasound waves (González-García et al., 2002; Sáez et al., 2011b; Ghasemi et al., 2008). 
The results indicated that the ultrasound could improve the prepared lead dioxide stability, 
adhesion and mechanical strength. 

2.2 Lead dioxide anode application in waste water treatment 

Lead dioxide anode has wide applications in oxygen evolution, ozone generation, lead acid 
batteries, manufacturing fine chemicals and water and waste water treatment. For waste 
water treatment, due to its relative high cost compared to the most favorable biological 
process, the electro oxidation process was usually used to oxidize organic wastes which are 
toxic and resistant to biological treatment. These organic compounds usually include phenol 
(Andrade et al., 2008; Tahar & Savall, 1999), aniline (Hmani et al., 2009), benzoquinone, 
chlorinated phenol (Cao et al., 2009; Tan et al.,2011), nitrophenol (Liu et al., 2008a), naphthol 
(Panizza & Cerisola, 2003; Panizza & Cerisola, 2004), cyanide (Hine et al., 1986), benzene 
(Hamza et al., 2011), cresols (Flox et al., 2009), chloranilic acid, indoles, tannic acid, 1,2-
dichloroethane, herbicides (Panizza et al., 2008), pesticides (Youssef et al., 2010), surfactants 
(Weiss et al., 2006) and dyes. 

Borras et al. (2003) studied the initial stages of oxidation of aqueous solutions of p-
chlorophenol (p-CP) and p-nitrophenol (p-NP) on Bi-doped PbO2 electrodes. Benzoquinone 
and aliphatic acids were identified as the primary oxidation intermediates. Oxidation of 
benzoquinone was found to be the slow step during the early stages of the electrochemical 
combustion process. The effect of competing adsorption of p-CP and p-NP on Bi–PbO2 was 
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also examined, and the presence of p-NP in solution was found to inhibit the p-CP oxidation 
during concurrent oxidation of both phenols. 

Liu et al. (2008a; 2008b; 2009) studied the electrocatalytic oxidation of o-nitrophenol (o-NP), 

m-nitrophenol (m-NP) and p-nitrophenol (p-NP), dinitro-phenol and trinitro-phenol at Bi-

doped lead dioxide anode in acid medium by cyclic voltammetry and bulk electrolysis. The 

results of voltammetric studies indicated that these nitrophenol isomers were indirectly 

oxidized by hydroxyl radicals in the solutions. Molecular configuration including the 

electron character and hydrogen bonds of NPs significantly influenced the electrocatalytic 

oxidation of these isomers. The efficiency for electrocatalytic oxidation of NPs lay in the 

order of p-NP > m-NP > o-NP, while 2,6-dinitrophenol >2,5-dinitrophenol > 2,4-

dinitrophenol > 2,4,6-trinitrophenol. Hydroquinone, catechol, resorcinol, benzoquinone, 

aminophenols, glutaconic acid and maleic acid and oxalic acid had been detected as soluble 

products during the electrolysis of NPs.  

Awad and Abo (2005) investigated the electrocatalytic degradation of Acid Blue and Basic 

Brown dyes from artificial wastewater on lead dioxide anode in different conductive 

electrolytes. It was shown that complete degradation of these dyes was dependent primarily 

on type and concentration of the conductive electrolyte. The highest electrocatalytic activity 

was achieved in the presence of NaCl. The possibility of electrode poisoning as a result of 

growth of adherent film on the anode surface or production of stable intermediates not 

easily further oxidized by direct electrolysis in H2SO4 might be accountable for the poor 

performance observed in this conductive electrolyte. Optimizing the conditions that ensure 

effective electrochemical degradation of Acid Blue and Basic Brown dyes on lead dioxide 

electrode necessitated the control of all the operating factors. 

The above mentioned studies, however, were conducted in lab with controlled pH and low 

current density, which were seldom used in real waste water treatment plants. Only few 

papers dealt with real waste water such as landfill leachate (Cossu et al., 1998), tannery 

waste, dye plant effluents etc (Ciriaco et al., 2009). However, due to the complex 

composition of the real waste water, the mechanism for organic compounds oxidation was 

difficult to discuss. Before the technology could be practically use, a lot of research work 

including the bench scale and pilot scale test should be done. 

3. Tin dioxide 

Tin dioxide is a well known n-type semiconductor with a wide band gap (>3.7eV). It 

crystallizes with the rutile structure, also called cassiterite structure, which belongs to the 

space group D14 (P42/mnm), with a unit cell containing two tin and four oxygen atoms 

(Fig. 3).  

In Fig. 3, the oxygen atoms are placed approximately at the corner of regular octahedron, 

and tin atoms are placed approximately at the corners of regular octahedron, and tin atoms 

are located approximately at the corners of an equivalent triangle. The lattice parameters are 

a=b=0.4737 nm, c=0.3185 nm. The d-spacing for SnO2(110) and SnO2(101) is 0.3350 nm and 

0.2643 nm, respectively. Due to its advantageous electrical, electrochemical and optical 

properties, SnO2 has been widely used in various fields such as gas sensors, solar cells and 

electrode material for electrolysis and lithium ion batteries. 
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Fig. 3. The cassiterite crystal structure for tin dioxide lattice (small dots are Sn atoms and 
larger dots are O atoms) 

3.1 The preparation of tin dioxide 

Tin dioxide as an anode material is usually prepared on a substrate, which can support the 

tin dioxide active layer. The mostly used substrate is titanium, the same as lead dioxide 

anode used. Also the titanium shall be pretreated before active layer coating. The 

pretreatment process is also the same as described in section 2.1, that is sandblasting, 

degreasing by alkaline or acetone and boiling in acid. However, tin dioxide layer can not be 

prepared by anodic deposition. It is prepared usually by thermal decomposition method, in 

which tin salt can be oxidized to tin oxide in air at high temperature. According to the 

coating solution preparation method, the thermal decomposition method can be classified 

into dip-coating pyrolysis and sol-gel dip coating method.  

3.1.1 The dip-coating pyrolysis method 

In this method, the coating solution is directly prepared from metal salt. That is to dissolve 

the metal chloride into alcohol solvent. The alcohol solvent can be absolute ethanol, 

isopropanol, butanol or the mixture of them. If any dopants needed, the doping elements 

shall also be dissolved into the mixture. In order to get a uniform solution, a few drops of 

hydrochloric acid are usually added to avoid the hydrolysis of the metal salts. Then the 

pretreated titanium substrate can be dipped into the coating solution and then a liquid film 

formed on the titanium surface. Then the substrate is moved to an oven to dry at 80-100 ℃ 

for about 10 min to evaporate the solvent. After then, the titanium substrate is moved to a 

furnace, in there, the coated tin salt is transformed to tin oxide under high temperature. This 

procedure, as illustrated in Fig.4, is repeated for 15~30 times until a required tin oxide film 

thickness achieved. 

The dip-coating pyrolysis procedure is relative simple, easy operating and cost effective. 

However, this method may also introduce non-uniform tin oxide layer with cracks and 

islands structure due to the inside stress deduced from the thermal treatment. The typical 

antimony doped tin dioxide electrode surface morphology is shown in Fig. 5. This structure 

may contribute to the poor stability.  
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Fig. 4. The illustration for the tin oxide electrode preparation procedure 

 

Fig. 5. Typical SEM image of antimony doped tin dioxide electrode prepared by dip-coating 
pyrolysis 

In this procedure, the coating solution composition and pyrolysis temperature are key 

factors to affect the electrode activity. From the extensive report on doped tin dioxide 

electrode preparation, the optimized pyrolysis temperature usually lies in the range of 500-

600 ℃ (Comninellis & Chen, 2010). The antimony is the mostly used dopant because its 

higher valence (+5) can introduce more oxygen vacancies in the tin dioxide lattice, which 

can improve the electrode conductivity and introduce more active sites for electrochemical 

oxidation. Also Sb5+ has the similar ionic radius, which can facilitate higher dopant 

concentration in the lattice. However, the optimized Sb doping concentration varied greatly 

(in the range between 1.6%-10% atomic) among different research groups (Vicent et al., 1998; 

Montilla et al., 2002; Montilla et al., 2004a; Montilla et al., 2004b). This was possible on one 

hand because people usually used the atomic percent in the coating solution, the final Sb 

concentration in the electrode was not determined accurately. On the other hand, the details 

of the preparation procedure may be different, such as the drying time and temperature, 

heating times and durations etc. which would affect the electrode performance even with 

the similar doping levels. 

Ti substrate pretreatment 

Tin and dopant salt 
alcohol solution 

Dry and pyrolysis 

Dip coating 

Repeat 
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3.1.2 Sol-gel dip coating method 

In order to overcome the shortages derived by direct pyrolysis method, sol-gel dip coating 
method was developed to prepare tin dioxide electrode. Actually, the sol-gel dip coating 
method is not a new concept in material chemistry. It has wide application in panel display 
manufacturing, nano materials preparation etc. In this technique for tin dioxide electrode 
preparation, the similar Ti substrate pretreatment is needed, while the coating solution is 
colloidal rather than an alcoholic solution.  

The colloidal can be achieved both from inorganic metal salt or organic metal compounds. 
In a typical colloidal preparation procedure using inorganic metal salt as precursor, 
ammonia is added to the inorganic salt solution to facilitate the hydrolysis of metal salts. 
After hydrolysis, the colloidal is washed to remove the chloride ions, which is believed to be 
harmful to the electrode stability. Then the colloidal with water as solvent is heated up to 80 
℃ to finish the transformation from metal hydroxide to metal oxide and facilitate the 

doping ions into the tin oxide lattice. On the completion of hydrolysis and doping, the 
colloidal’s color is becoming deep from yellow (lower Sb concentration) to grey (higher Sb 
concentration). In order to get a more uniform sol, some additives such as oxalic acid or 
polyethylene glycol can be added into the colloidal solution.  

By coating the present colloidal solution on titanium followed high temperature heating for 
many times, the prepared electrode showed relative smooth and uniform surface structure. 
A typical SEM image of antimony doped tin dioxide electrode prepared by sol-gel dip 
coating method is showed in Fig. 6.  

 

Fig. 6. SEM image of antimony doped tin dioxide electrode prepared by sol-gel dip coating 
method 

From Fig. 6, the relative smooth surface and fewer cracks may prevent the corrosive 
electrolyte penetrating inside the catalyst layer, thus enhance the electrode stability. In 
another hand, the free contamination from chloride ions in the electrode may retard the 
hydration of the oxide layer and also contribute to a longer lifetime. Also in sol-gel dip 
coating method, the dopants concentration is easily controlled. Thus this technique attracts 
more and more attention in tin dioxide electrode preparation, though it suffers from the 
preparation of colloidal solution. 

Except the above mentioned preparation method, people also attempted to prepare tin oxide 
electrode by electroplating tin metal or tin alloy onto titanium, followed by an oxidation 
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process in oven with air. In a typical electroplating procedure for antimony doped tin dioxide 
electrodes, the cleaned Ti substrate was first cathodic deposited in acidic solution containing 
Sn2+ and followed in citric acid solution containing Sb3+ with the same current density at room 
temperature. The metal ions (Sn2+, Sb3+) were reduced to metal alloy (SbSn) on the cathode. 
Repeat the electroplating procedure 3-5 times to get a thick metal alloy layer. Finally, the 
electrodes were calcined at high temperature for 3 h to obtain the Sb-SnO2/Ti electrodes. 

Except the preparation techniques, people also tried a lot of dopants to improve the tin 
oxide electrode activity. Except the above mentioned antimony dopant, Pt/Sb co-doped tin 
dioxide electrode was prepared and reported to have longer lifetime (Vicent et al., 1998). 
Berenguer et al. (2009) found that Ru and Pt co-doped tin dioxide electrode had better 
electrocatalytic activity for oxygen evolution. It was reported that with trace amount of 
nickel and antimony doped tin dioxide electrode showed promising applications for anodic 
oxidation and the current efficiency for ozone generation could reach upto 50%, which was 
much higher than that on lead dioxide (Christensen et al., 2009; Wang et al., 2005). In order 
to improve the adhesion and stability, people also tried to apply interlayer between the 
substrate and the top active layer. Debiemme-Chouvy et al. (2011) prepared conductive 
SnO2 films deposited on a glass substrate by the spray pyrolysis technique. In order to 
improve the electrochemical behaviour of the SnO2 films, conductive F-doped layer was first 
deposited followed by the deposition of a Sb-doped layer to form a bi-layer film. Ding et al. 
(2010) introduced a Sb doped tin dioxide inter-layer onto a titanium using electrodeposition 
method followed by coating its surface using thermo-decomposition procedures. 

3.2 Tin dioxide anode application in waste water treatment 

Extensive research indicates that tin dioxide and doped tin dioxide electrode has good 
activity toward organics degradation (Comninellis & Vercesi, 1991; Comninellis & Pulgarin, 
1993; Houk et al., 1998; Stuki et al., 1991; Steve et al., 1999; Polcaro et al., 1999; Vicent et al., 
1998). Generally, the organic waste is similar to those being treated by lead dioxide, which 
are toxic and resistant to biological treatment.  

Houk et al. (1998) evaluated electrochemical incineration of benzoquinone in aqueous media 
using a quaternary metal oxide electrode, which is a Ti or Pt anode coated with a film of the 
oxides of Ti, Ru, Sn and Sb. They concluded that the quaternary metal oxide films applied to 
Ti or Pt substrates exhibited high and persistent activity as anode materials for the 
electrochemical incineration of benzoquinone.  

Feng et al. (2008) doped Gd into Ti-based Sb-SnO2 anodes to investigate its performance on 
electrochemical destruction of phenol. They found that doping the anode with rare earth 
gadolinium (Gd) could improve the electrochemical oxidation rate of phenol. Cui et al. 
(2009a) prepared rare earth Ce, Eu, Gd and Dy doped Ti/Sb–SnO2 electrodes by thermal 
decomposition and the performance of electrodes for the electro-catalytic decomposition of 
a model pollutant phenol was investigated. They also investigated the bisphenol A 
degradation on tin dioxide anode (Cui et al., 2009b). 

Cossu et al. (1998) investigated landfill leachate oxidation on SnO2 and PbO2 anodes, 
respectively. Tin dioxide electrode showed similar performance as the PbO2. Polcaro et al. 
(1999) studied electrochemical oxidation of 2-chlorophenol at Ti/PbO2 and Ti/SnO2 anodes. 
Results showed that, although similar average faradaic yields were obtained using Ti/PbO2 
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or Ti/SnO2 anodes, the latter material is preferred because of its better ability to oxidize 
toxic compounds. 

Adams et al. (2009) fabricated four different SnO2-based electrodes (SnO2–Sb2O5/Ti, SnO2–
Sb2O5–PtOx/Ti, SnO2–Sb2O5–RuO2/Ti and SnO2–Sb2O5–IrO2/Ti) using thermal decomposition 
method and systemically studied their stability and electrocatalytic activity towards the 
degradation of 2-nitrophenol (2-NPh), 3-nitrophenol (3-NPh) and 4-nitrophenol (4-NPh). It 
was found that by incorporating different metal oxides into the Sb-doped SnO2 coating, the 
lifetime was significantly increased. 

Wang et al. (2006) and Chen et al. (2010) found out that introducing trace amount of nikel 
into antimony doped tin oxide electrode could enhance its activity toward 4-chlorophenol 
and phenol degradation. The possible reason may be due to the hybrid effect of electro-
oxidation and ozone oxidation because ozone could be in-situ generated on this type anode 
during electrolysis. 

The doped tin dioxide electrode showed promising activity toward organics degradation, 
the activity in some cases is higher than lead dioxide, however its lifetime is shorter. Their 
stability must be improved further before its practical application in real wastewater 
treatment. 

4. Diamond  

Diamond is a fascinating material and exhibits many unique technologically important 
properties, including high thermal conductivity, wide band gap, high electron and hole 
mobility, high breakdown electric field, hardness, optical transparency and chemical 
inertness. Diamond has a cubic lattice constructed from sp3-hybridized tetrahedral arranged 
carbon atoms with each carbon atom bonded to four other carbon atoms. The stacking 
sequence is ABCABC with every third layer plane identical as showed in Fig. 7. This 
structure is fundamentally different from that of graphite. Impurities in diamond can make 
it an insulator with a resistivity of >106 Ohm m and a band gap of 5.5 eV. 

 

Fig. 7. Diamond lattice structure 

4.1 Diamond preparation 

Diamond films are usually synthesized by chemical vapor deposition (CVD). Early CVD of 
diamond was carried out by thermal decomposition of carbon containing gases under high 
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temperature. However, this technique may suffer low growth rate, which will retard its 
commercial application. In addition, the electrode may be contaminated with non-diamond 
carbon and required frequent interruptions to remove the accumulated graphite by 
hydrogen etching at high temperature. 

In order to improve the diamond conductivity, boron was usually added to the diamond film 
as dopant. Boron to carbon ratio from ca. 0.02 to ca. 10-6 was widely accepted by different 
research groups. The standard method used for CVD boron doped diamond (BDD) was 
initially thermal diffusion and ion implantation (Prawer, 1995). These processes were made ex 
situ, after the film growth, and the no contamination of the growth reactor (Martin, et al., 
1996.) is the main advantage. However, alternative techniques have shown that highly doped 
films could be prepared using in situ process from a solid source of boron inside the reactor 
and by introducing of B2O3 in a methanol-acetone mixture (Okano et al., 1990). It was observed 
better results evidenced by more homogeneity in films bulk, also showing a linear relation 
between the doping levels and boron concentration in the precursor source. Boron doping 
using other boron sources was also reported such as B2H6 by Mort et al. (1989) and Fujimori et 
al. (1990), while B(OCH3)3 was used as boron source by Ran et al. (1993). 

4.2 Boron doped diamond (BDD) electrode application in waste water treatment 

BDD film was found to be the most active anodic material for degradation of refractory or 
priority pollutants such as isopropanol and acetic acid (Foti et al., 1999), different carboxylic 
acids (Gandini et al., 2000), 4-chlorophenol (Rodrigo et al., 2001; Gherardini et al., 2001), 
phenol (Iniesta et al., 2001b), 3-methylpyridine (Iniesta et al., 2001a), benzoic acid (Montilla 
et al., 2002), polyacrylates (Bellagamba et al., 2002), 4-chlorophenoxyacetic acid (Boye et al., 
2002) and an amaranth dyestuff (Hattori et al., 2003). All these investigations could confirm 
very high current efficiencies for COD removal, usually higher than 90%. Migliorinia et al. 
(2011) investigated the electrochemical degradation of Reactive Orange (RO) 16 Dye on 
BDD/Ti electrode. 

BDD electrode as a developing anodic material showed very promising applications in 
electrochemical oxidation for waste water treatment due to its high energy efficiency and 
stability. However, its high cost and difficulty to find a proper substrate are its major 
drawbacks. In fact, only silicon, tantalum, niobium and tungsten as substrate can obtain 
stable diamond film. Silicon is brittle and its conductivity is poor. Tantalum, niobium and 
tungsten are too expensive. Titanium is a good candidate with low cost, strong mechanical 
strength and good electrical conductivity. However, diamond film deposited on titanium is 
not stable enough. During long term electrolysis, the diamond film can be detached from the 
titanium substrate. Thus there are still a lot of work to do before this promising anode 
material commercial available. 

5. Other anodic materials 

According to the model developed by Comninellis (1994), the Ta2O5 and Nb2O5 are also non-
active anodes. Tantalum oxide and niobium oxide show very high electrochemical stability. 
They have powerful oxidizing ability and can be used to oxidize water to ozone efficiently 
(Santana et al., 2004; Da Silva et al., 2004; Kaneda et al., 2005; Awad et al. 2006; Kitsuka et al., 
2007). Their preparation is usually followed a thermal decomposition method and the 
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procedure is similar to that of tin dioxide electrode except the coating solution used. Though 
they are non-active eletrodes for oxygen evolution and may show high efficiency for toxic 
organics degradation, their application in waste water treatment is seldom reported except a 
few reports on ozone generation. Perhaps it is due to the high cost to prepare these types 
electrodes because precious metal is usually used. 

6. Summary and prospect 

In this section, the non-active anode materials including lead dioxide, tin dioxide, diamond, 
tantalum oxide and niobium oxide electrode were briefly reviewed from their fundamental 
concept, preparation techniques and application in waste water treatment by electrochemical 
oxidation. Electrochemical oxidation technology showed promising application in oxidation of 
toxic and non-biodegradable organic wastes. However, from the view point of anodic 
material, which is one of the key factors of the electrochemical oxidation system, there is still a 
lot of work to do before the electrochemical oxidation technology can be widely applied in real 
waste water treatment plants. For example, the cost of diamond shall be further decreased, 
while the stability of doped tin dioxide shall be improved. 
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