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1. Introduction 

Numerical models are primary tools used for weather forecast and climate projections. 

Richardson (1922) made the first effort to predict weather numerically. Subsequently, a 

number of simple numerical and analytical models were proposed to explain the general 

circulation of the atmosphere (e.g., Charney, 1948; Eady, 1949; Philips, 1956; Matsuno, 1966; 

Gill, 1980). The present state-of-the-art models are constantly being evaluated and refined 

with the help of observations and theory to better understand the earth’s weather and 

climate. Our gradual progress in developing and utilizing complex numerical models have 

lead to a hierarchy of models: i) atmospheric global climate models (AGCMs, Smagornisky 

et al., 1965; Benwell and Bretherton, 1968; Phillips and Shukla, 1973; Manabe, 1975; Simmons 

and Bengtsson, 1984); ii) coupled atmosphere-ocean GCMs (Manabe and Bryan, 1969); iii) 

hydrostatic and non-hydrostatic regional models (Wang and Halpern, 1970; Dudhia, 1993); 

(iv) cloud-system resolving models with regional domains (Grabowski et al. 1998; 

Grabowski and Moncrieff, 2001) and global domains (Miura et al., 2007; Satoh et al., 2008). A 

comprehensive review of the present day numerical models can be found in Tao and 

Moncrieff (2009). 

Each category of model has advantages and disadvantages in terms of area coverage, spatial 

resolution, computational efficiency, and the representations of the physical processes; i.e., 

convection, microphysics, radiation, and surface exchange. Typically, regional models have 

higher resolution albeit a limited computational domain. On the other hand, GCMs with 

lower resolution cut the advantage of global coverage. A recent development is the 

introduction of tropical channel models (TCMs) which are defined as models that are global 

in the zonal direction but bounded in the meridional direction. A TCM has the following 

considerable advantages over the aforementioned modeling approaches: (1) A standard 

regional model needs boundary conditions in the zonal and the meridional directions, 

whereas a TCM is continuous in the east-west direction and thereby isolates the influences 

that arrive solely from the meridional boundaries (i.e., extratropics). It also allows free 

circumnavigation of tropical modes in the zonal direction. (2) The use of lateral boundary 

conditions only in the meridional direction enables a controlled quantification of the effects 

of extratropical disturbances on the tropics. 3) TCMs with nonhydrostatic dynamical cores 
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can have higher resolution and more sophisticated physics compared to GCMs. This is 

essential to capture the multi-scale organized convection in the tropics and its influence on 

the general circulation (Arakawa and Schubert, 1974; Chen et al., 1996; Houze, 2004; 

Moncrieff, 2010). 

The objective of this chapter is to describe several TCMs that have been developed recently 
with an emphasis on their applications for the simulation and understanding of the tropical 
mean state and variabilty including the Madden-Julian oscillation (MJO), tropical cyclones 
(TCs) and double intertropical convergence zone (ITCZ). 

Section 2 describes the models, data, and the design of the numerical simulations. Section 3 
includes diagnoses of the simulations from three different TCMs. Section 4 summarizes the 
results along with the implications and limitations of the tropical channel model approach. 

2. Model  

We describe three different TCMs; two of them are constructed based on two different non-
hydrostatic mesoscale models, and the third one is based on a hydrostatic GCM.  

2.1 TCM based on MM5 

A TCM was developed based on the fifth-generation Pennsylvania State University-
National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5; Dudhia, 1993; 
Grell et al., 1995). This atmosphere-only channel model employs a Mercator projection 
centered at the equator with open boundaries in the North-South direction. The model 
domain covers the entire tropics, with overlapping east-west boundaries. Tests ensured that 
simulated perturbations propagate zonally through the overlapping grids without 
distortion. Especially, two test runs are made in which the overlapping zone is located over 
the western Pacific and Atlantic Oceans, respectively. Results from these two simulations 
are the same over these regions with or without the overlapping zone. Hereafter, we refer to 
this tropical channel model as tropical MM5 (TMM5).  

The dynamics and physics packages of TMM5 are same as those of the regular regional 
MM5, based on equations for a fully compressible, non-hydrostatic atmosphere. This TCM 
retains the two-way nesting capabilities. The spatial differencing is centered and of second 
order. There are 28 unevenly spaced full-sigma levels, with the maximum resolution in the 
boundary layer and the model top at 50 hPa. All nested domains are activated at the initial 
time of the simulation. The output is taken every 3 hours.  

Several simulations are performed spanning between one to several weeks and are used to 
evaluate the skill of simulations by TMM5 against observations and reanalyses. Based on 
these tests and the work of Gustafson and Weare (2004a,b), the selected parameterizations 
are: (i) Betts-Miller convective scheme (Betts and Miller, 1986); (ii) explicit moisture 
calculations using a simple ice scheme (Dudhia, 1989); (iii) planetary boundary layer (PBL) 
scheme of the NCEP Eta model (Janjic, 1994), and (iv) Rapid Radiative Transfer Model 
longwave (RRTM, Mlïawer et al., 1997) and Dudhia (1989) shortwave radiation. The success 
of the Betts-Miller scheme, designed for the coarse resolution climate models, is perhaps 
because the simulations are in the hydrostatic regime at the resolutions employed (grid 
spacing of 111 and 37 km). Over the land, a 5-layer soil model option of the MM5 is used.  
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The model domains and the simulations are shown in Fig.1 and Table 1, respectively. The 

simulation 1DOM, with a model domain of 21°S-21°N, has a horizontal resolution of 111 km 

(D1 in Fig. 1). This is an ideal set up to study the intraseasonal varibility like the MJO which 

is of global scale in the zonal direction (Madden and Julian, 1971, 1972; Li and Zhou, 2009), 

and most of its variance is confined within the 20° latitude zones (Zhang and Dong, 2004). 

The purpose of the option of a two-way nested inner domain of 37 km over the Indian and 

western Pacific Oceans (D2 in Fig. 1) is to assess the effect of increasing horizontal 

resolution. This is our simulation 2DOM. Both simulations were integrated for four months 

from 1 March to 30 June, 2002, with sea surface temperature (SST) prescribed from 

observations (see section 2.4).  

 

Fig. 1. Outer domain for the TMM5 (D1, 0-360°, 21°S-21°N) and the nested domain  

(D2, 37-183°E, 11°S-11°N). Domains D1 and D2 have resolutions of 111 km and 37 km, 

respectively.   

Experiment Integration Time Remarks 

1DOM 1 March- 30 June, 
2002  

Single domain simulation to test and validate 
the model  

2DOM 1 March- 30 June, 
2002  

Nested domain (111 km / 37 km) 

Table 1. The description of the simulations using the tropical channel MM5.  

2.2 TCM based on WRF 

Another tropical channel model is based on the Weather Research and Forecasting (WRF) 

model developed at the NCAR. We refer this as tropical WRF or TWRF 

(http://www.nrcm.ucar.edu). Conceptually, the configuration of TWRF is similar to TMM5. 

The horizontal grid-spacing of the TWRF is 36 km, and the meridional boundaries are 

placed at 30°S and 45°N. The model top is at 50 hPa, and 35 vertical levels are used. Output 

is archived every 3 hours. The configuration of the TWRF is shown in Fig. 2. The inner 

domains have grid-spacings of 12 km (domain D2 in Fig. 2) and 4 km (D3 in Fig. 2) 

respectively, and they are located over the warm pool region of the Indian and west Pacific 

oceans. Two-way interactions occur between the domains in the nested simulations. No 

cumulus parameterization is applied in the 4 km (cloud-system resolving) domain.  

Preliminary simulations over the maritime continent evaluated the skill of the TWRF 

simulations. Based on these tests, the suite of parameterizations selected for this present study 

are: Kain-Fritsch cumulus parameterization (KF, Kain, 2004), WSM6 cloud microphysics 

(Hong et al., 2004), CAM 3.0 radiation scheme (Collins et al., 2006), YSU boundary layer 
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scheme (Hong et al., 2006), and Noah land surface model (Chen and Dudhia, 2001). Note that 

the Betts-Miller scheme (BM, Betts and Miller, 1986) available within the MM5 differs from the 

Betts-Miller scheme (BMJ, Janjic, 1994) available within the WRF.  

 

Fig. 2. Model domains for the tropical channel WRF (D1, 0°-360°, 30°S-45°N) and the nested 

domains (D2, 79°-183°E, 21°S-16°N and D3, 90°-157°E, 6°S-10°N). Domains D1, D2, and D3 

have resolutions of 36 km, 12 km and 4 km, respectively. The simulation from 1996 to 2000 

includes only the outer domain. The southern boundary was further moved to 45°S for the 

simulation from 1 December 1999 to 1 January 2006. The domain for the TMM5 is also marked 

here by the dashed lines (0°-360°, 21°S-21°N). See the text and Table 2 for further details.  

The simulations using the TWRF are listed in Table 2. The simulation 1DOM in Table 2 is 

used to document the mean state. A similar multi-year simulation with a larger domain 

(1DOM_2 in Table 2) is also considered to evaluate its skill in capturing double ITCZ and 

tropical cyclones. Two other experiments (2DOM and 3DOM in Table 2) document the effect 

of increased horizontal resolution over the Indo-Pacific warm pool region.  

Experiment Integration Time Description 

1DOM 1 January 1996- 1 

January 2001 

1-way nested from NCEP-NCAR reanalysis with 

lateral boundaries at 30°S and 45°N 

1DOM_2 1 December 1999-1 

January 2006 

Same as 1DOM, but with lateral boundaries at 45°S 

and 45°N 

2DOM 1 January 1996-12 

February 1998 

2-way nested domains (36 km / 12 km) 

3DOM 

 

1 January 1997-1 

July 1997 

2-way nested domains (36 km / 12 km /4 km), 

4 km domain is cloud resolving. 

Table 2. The description of TWRF simulations. The horizontal resolution is 36 km for all the 

simulations except the nested runs (2DOM and 3DOM). See Fig. 2 for domain definitions 

and text for further details. [DOM : Domain]. 

2.3 TCM based on ECHAM4 

TCMs based on regional models like MM5 and WRF, require boundary conditions from 
different datasets (other models or reanalysis). One disadvantage is that the variabilty in the 
prescribed boundary conditions may be different from the intrinsic variabilty produced by 
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the model. To overcome this problem, a GCM-based framework, in which the boundary 
conditions come from the parallel simulation (‘control’) of the same model can be used. Such 
a GCM-based framework also presents a global view of the atmospheric variabilty and can 
be used for forecasting. 

The GCM used is the atmosphere-only ECHAM4, which captures the tropical variability 
reasonably well (Sperber et al., 2005; Lin et al., 2006; Zhang et al., 2006). The model is 
integrated for 20 years using the prescribed monthly SST. This is our control simulation 
(‘control’ in Table 3). In the other experiment (‘NS’ in Table 3), the model prognostic 
variables are nudged toward the ‘controlled’ annual cycle state over the 20°-30° latitudinal 
zone (red in Fig. 3) to remove the extratropical influences without interfering with the 
influences from the zonal direction. By comparing the simulations in the control and the NS 
experiments, the influences of the extratropics on the tropics can be estimated.  

 

Fig. 3. Schematic diagram of the numerical experiments in which the prognostic variables in 
20°-30° latitude zones (red) are relaxed toward the controlled climatological annual cycle. 
See text and Table 3 for further details. 

Experiment Description Purpose
Control ECHAM4 atmosphere only To provide lateral boundary 

conditions for other simulations 

NS Relaxed to the annual cycle 
derived from the control 
simulation over 20°-30° latitudes

To evaluate the role of the 
extratropical influence on the tropics 

Table 3. The description of the simulations using ECHAM4. (NS: North South). 

2.4 Data 

Model validation uses a number of observations and reanalyses data. They include: the 
NCEP-NCAR Re-analysis (Kalnay et al., 1996) winds; The European Centre for Medium-
Range Weather Forecasts (ECMWF) 40-years Re-analysis (ERA40) winds (Uppala et al., 
2005); Surface winds from the European Remote Sensing (ERS) satellites (Bentamy et al., 
1999) and the NCEP-DOE Reanalysis (NCEP2, Kanamitsu et al., 2002); And two 
precipitation datasets including the merged analysis of precipitation (CMAP; Xie and 
Arkin, 1997), and the global precipitation climatological project (GPCP, Huffman et al., 
1997) combined precipitation dataset. 
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The NCEP global tropospheric analyses (final or ‘FNL’ data, 1°x1°, 6 hourly) provide initial 

and lateral boundary conditions for the TMM5. The SSTs for TMM5 are also from this 

reanalysis, which contain intraseasonal fluctuations. The initial and boundary conditions of the 

TWRF are from the NCEP-NCAR reanalysis. The SSTs for TWRF are from the Atmospheric 

Model Intercomparison Project (AMIP; 1°x1°, 6-hourly; Taylor et al., 2000). For brevity, both 

reanalysis and CMAP/GPCP precipitation will be referred to as “observations”. 

3. Results  

3.1 Tropical MM5 (TMM5) 

The TMM5 simulations show considerable ability to capture an MJO event in comparison to 
most GCMs (Slingo et al., 1996; Lin et al., 2006; Zhang et al. 2006; Kim et al., 2009). The MJO 
event appeared in April-May 2002 (Fig. 4a), with the eastward propagating zonal wind 
anomalies switching from easterlies to westerlies on intraseasonal timescales. This event 
occured during a season in which the MJO is closest to the equator but, on average, is 
weaker than in other seasons (Zhang and Dong, 2004). After initiation, however, it 
propagated eastward at a speed slightly faster than the average phase speed of the MJO (5 
m s-1, marked by a straight line in Fig. 4a).  

The start time (1 March) of the TMM5 simulations is about two months before the initiation 
of the MJO phase with active deep convection and low-level westerlies in May over the 
Indian Ocean. This choice of start time assesses the model’s capability to reproduce the 
initiation of the MJO event, namely, the intraseasonal transition from low-level easterlies to 
westerlies (or from convectively inactive to active periods). In numerical models, forecast of 
future development of the MJO tends to have greater predictability when the MJO is already 
present at the initial time (Jones et al., 2000). Nevertheless, numerical experiments suggested 
predictability limit is about 10-15 days for rainfall, and about 25-30 days for upper-level 
winds (Waliser et al., 2003).  

The results from the simulations 1DOM and 2DOM (Table 1) are shown in Fig. 4b and Fig. 
4c, respectively. Simulated zonal winds at 850 hPa (hereafter U850) in D1 (middle panel) 
exhibits the same intraseasonal switch between easterly and westerly anomalies and 
eastward propagation over the Indian Ocean. Over the western Pacific, however, it moves 
faster than in reanalysis. This problem appears to be partially remedied by including the 
higher resolution nested domain D2 (Fig. 4c). In both simulations, the amplitudes of the 
anomalies are larger than that in reanalysis. Notice that the westward propagating synoptic-
scale westerly anomalies embedded in the MJO envelope over the Indian Ocean are 
captured by the simulation with the nested domain (2DOM in Table 1). These detailed 
structures in simulated anomalies are perhaps due to the higher resolution of the model.  

The most interesting result from this simulation is that the initiation of the MJO event over 

the Indian Ocean is reproduced by the model at about the same time as shown by reanalysis 

two months after the model initial time. The MJO is thought to be unpredictable beyond two 

to three weeks (e.g., Waliser et al., 2003). If this is correct, then the reproduction of the U850 

anomalies by TMM5 cannot be attributed to the initial conditions.  

The above results lead to a hypothesis that this MJO event is generated by the influences 
from the lateral boundaries. This hypothesis is supported by a series of sensitivity tests that 
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demonstrate that the simulated MJO initiation is critically dependent on the time-varying 
lateral boundary conditions from the reanalysis (Ray et al., 2009). When such lateral 
boundary conditions are replaced by time-independent conditions, the model fails to 
reproduce the MJO initiation. In particular, the diagnoses of the zonal momentum budget 
for the MJO initiation region reveals that the advection by meridional winds is important 
prior to the initiation of this MJO (Ray and Zhang, 2010). 

   

Fig. 4. Time-longitude diagrams of daily U850 anomalies (m s-1) averaged over 10°S-10°N 
from the (a) NCEP-NCAR reanalysis (NNR), (b) TMM5 single domain simulation (1DOM in 
Table 1), and (c) TMM5 nested domain simulation (2DOM in Table 1). A 3-day running 
mean is applied. 

3.2 Tropical WRF (TWRF) 

We describe the performance of the TWRF in terms of its ability to capture the mean 
precipitation, double ITCZ, and hurricane statistics.  

3.2.1 Mean state 

Fig. 5 shows the mean precipitation from two different datasets and TWRF simulation 
(1DOM in Table 2). The model lacks precipitation over the equatorial Indian Ocean and 
the west African monsoonal region. However the model overestimates precipitation in the 
west Pacific, particularly in the region north of maritime continent and in the south Pacific 
convergence zone (SPCZ). The error in the mean state is found to be a primary reason for 
the poor simulation of the MJO in this model (Ray et al., 2011), even when higher 
resolution nested domains are included (2DOM and 3DOM in Table 2). However, such 
error does not seem to affect the simulation of convectively coupled Kelvin waves in the 
model (Tulich et al., 2011). Overall, precipitation is overestimated in the southern 
hemishere, and underestimated close to the equator (5°S-5°N, Murthi et al., 2011). The 
large bias in the precipitation over the southern Indian Ocean was thought to be due to 
the interactions between tropical cyclones and the southern boundaries. To rectify this 
problem, southern boundaries are further moved to 45°S in another experiment (1DOM_2 
in Table 2). However, this does not improve the result significantly, indicating potential 
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problems with the model physics (Tulich et al., 2011; Murthi et al., 2011). Nevertheless, 
the model reasonably captures the initiation of certain MJO events that are influenced by 
the extratropics (Ray et al., 2011), and genesis of tropical cyclones from easterly waves 
(see section 3.2.3).  

 

Fig. 5. Annual mean rainfall (mm day-1) during 1996-2000 from the (a) CMAP (b) GPCP and 
(c) TWRF simulation 1DOM in Table 2. 

3.2.2 Double ITCZ 

It is known that the presence of a too-strong double ITCZ in the Pacific is a common bias in 
AGCMs (e.g., Meehl and Arblaster, 1998), as well as in the coupled GCMs (Mechoso et al., 
1995). We examine the double ITCZ with respect to surface wind convergence and 
precipitation over the eastern Pacific, since the double ITCZ is most prominent over the 
eastern Pacific during March and April (Zhang, 2001).  
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Figure 6 shows the seasonal cycles in SST (shaded) and surface wind divergence (contoured) 
over the equatorial eastern Pacific (100°W-140°W). Note that our simulation period includes 
the strong ENSO event of 1997-98 (McPhaden, 1999). During March-April, the convergence 
south and north of the equator is captured well by the model. Over the equator, the 
observations show weak convergence, but the simulation indicates divergence. During 
boreal summer, the model shows much stronger convergence south of the equator 
compared to the observations. Overall, the TWRF has a distinct double ITCZ and no 
significant improvement occurred when nested domains were employed. 

  

Fig. 6. Seasonal cycles of SST (shaded, °C) and surface wind divergence (contours, 106 s-1) 

from the (a) ERS, (b) ERA40, (c) NCEP2, and (d) TWRF. All are averaged over the eastern 

Pacific (100°W-140°W) during the period 1996-2000. Solid (dashed) contours represent 

convergence (divergence). 

3.2.3 Tropical cyclones 

Using an objective tracking algoritm similar to Walsh et al. (2004), Tulich et al. (2011) 
estimated the genesis locations and tracks of tropical cyclones from the model simulation 
1DOM_2 (Table 2). Fig. 7 shows the latitudinal distribution of TC genesis events over three 
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different ocean basins. The error in the distribution is presumably due to the error in the 
model’s easterly wave climatology that is intimately linked to the genesis of TCs (Landsea, 
1993; Frank and Roundy, 2006). The model greatly overestimates the number of storms over 
the western Pacific (Fig. 7a), but underestimates over the north Atlantic (Fig. 7c). The model 
also overestimates over the eastern Pacific (Fig. 7b). Overall, while the TWRF simulation 
captures the global and seasonal distribution of tropical cyclones, their numbers are 
overestimated. 

However, the simulation with a nested domain of 12 km over the Atlantic during the 2005 

hurricane season produces resonable cyclone statistics (Fig. 8, Done et al., 2011). Compared 

to 27 observed tropical storms, the model produces 29 storms, indicating great improvement 

with the increase in the horizontal resolution.  

 

Fig. 7. Histogram of TC genesis events versus latitude for the TWRF (sold) and observations 

(dashed) over the (a) NW Pacific, (b) NE Pacific, and (c) N Atlantic. The total number of 

genesis events are indicated next to the corresponding histogram. (From Tulich et al., 2011). 

  

Fig. 8. Initial locations (black circles) and tracks (blue lines) of tropical cyclones in the 

Atlantic Basin during 2005 in (top) the IBTrACS dataset and (bottom) TWRF simulation. 

(From Done et al., 2011). 
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3.3 Tropical ECHAM4 

Fig. 9 compares the simulated mean state from the observations and the model over the 

Indo-Pacific region. Lower tropospheric winds are westerly over the Indian Ocean (Fig. 9a, 

shaded) but easterlies prevail in the upper troposphere (Fig. 9a, contoured). This is captured 

well by the control simulation (Fig. 9b). However, in the experiment NS (Table 3), U850 is 

weaker over the equatorial western Indian Ocean, and U200 is of opposite sign over much of 

the Indian Ocean (Fig. 9c), and is underestimated over the west Pacific. The precipitation 

and OLR in the control (Fig. 9e) are similar to those in the observations (Fig. 9d), although 

precipitation (OLR) is everestimated (underestimated). Note that unlike TWRF, the control 

simulation does not lack precipitation over the equatorial Indian Ocean (Fig. 5c). However, 

in the NS, precipitation is significantly reduced over the equatorial Indian Ocean, and is 

increased over the SPCZ region (Fig. 9f). The ITCZ is shifted further from the equator in NS, 

with very little precipitation north of the equatorial Pacific. The MJO variance in the NS is 

also reduced substantially compared to the control indicating possible influences from the 

extratropics. To what extent the mean state is responsible for the lack of variability remains 

to be investigated more thoroughly (Ray and Li, 2011).  

 

Fig. 9. (left) Mean zonal winds at 850 hPa (U850, m s-1, shaded) and at 200 hPa (U200, m s-1, 

contoured). (right) Mean precipitation (mm day-1, shaded) and OLR (W m-2, contoured). All 

are averaged over 20 years. Contour intervals are 4 m s-1 for U200, and 10 W m-2 for OLR. 

For U200, solid (dashed) lines represent westerlies (easterlies). 
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4. Conclusion 

Tropical channel models (TCMs) are defined as models that are global in the zonal direction 
but bounded in the meridional direction. Such a model can be constructed using existing 
regional models or even the GCMs. Two TCMs based on regional models MM5 and WRF, 
and the third one based on the ECHAM4 GCM, were described. Although all three TCMs 
are atmosphere only, they could be coupled to an ocean model. Therefore the TCM is a 
unique tool to study the tropics and its interactions with the extratropics. 

The simulations using TCMs are far from perfect. There are biases in the mean state, ITCZ, 
MJO, and other tropical modes. The gross fetures of an MJO event are reproduced after two 
months from the start of simulation using the TCM based on MM5 (TMM5). This is well 
beyond the usual MJO predictability limit of 15-20 days associated with global models 
(Waliser et al., 2003). The TCM simulations are forced by presecribed boundary conditions, 
and are not initial value problems. Longer integration of another TCM based on WRF 
(TWRF) does not lead to better tropical variabilty compared to that in GCMs. This is 
unexpected since, compared to a GCM, a TCM simulation has the added constraint of 
specified meridional boundary conditions. The error in the mean state is a possible reason 
for the poor representation of tropical variabilty in TWRF. It is not known to what extent the 
error in the mean state inhibits tropical variabilty, although it is likely to be model 
dependent.  

These studies suggest a new practice in tropical prediction: a high-resolution domain of the 

tropics nested within a relatively coarse-resolution global model. The latter is known to 

suffer less from deficiencies in cumulus parameterizations in the extratropics because of the 

strong dynamic large-scale control of convection there. This approach of global nested 

domains, currently being explored by some modeling groups, permits two-way tropical-

extratropical interactions with a more precise treatment of tropical convection and much 

more computational efficiency than a global high-resolution model. The results call for 

further attention to the untapped potential of high-resolution nonhydrostatic models 

(Moncrieff et al., 2007) in the simulation and forecasting of tropical atmospheric convection, 

such as that undertaken within the WCRP-WWRP/THORPEX coordinated project, the Year 

of Tropical Convection (YOTC, Waliser and Moncrieff, 2008; see www.ucar.edu/yotc).  
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