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1. Introduction 

Two-fluid heat exchangers are widely used in almost every energy process such as those in 
power plants, gas turbines, air-conditioning systems, numerous chemical plants and home 
appliances. Every change of steady state or starting of a plant causes changes in the system 
which can considerably affect not only the observed process but also the safety of the plant’s 
operations. In all above cases, it is important to know the dynamic behavior of a heat 
exchanger in order to choose the most suitable design, controls and operations. The 
traditional design based on stationary approach has become inadequate and nowadays, 
more attention is devoted to the analysis of the heat exchanger’s dynamic behavior and its 
design is adjusted to such conditions of work. Although the process control technology has 
made considerable headway, its practical application requires the knowledge of the 
dynamic behavior of both the plant’s components and the plant as a whole.  

Ever since Profos (Profos, 1943) showed the first dynamic model of a simple heat exchanger 
and Takahashi (Takahashi, 1951) published the first transfer functions for ordinary heat 
exchangers, there have been numerous studies of the heat exchanger’s dynamic behavior. 
The historic overview of dynamic modeling is given in (Kays & London, 1984) and (Roetzel 
& Xuan, 1999) thus, the attention of this paper will be directed exclusively towards the 
review of some significant works in this area and works which this paper has been 
influenced by.  

The paper (Liapis & McAvoy, 1981) defines the conditions for obtaining analytical solutions 
of transient phenomena in the class of problems associated with heat and mass transfers in 
counter flow fluid streams. Their solutions take into account forced flow and the 
dependence of transient coefficient on the fluid’s flow and do not involve the effect of wall 
finite heat capacity. The exact solution of dynamic behavior of a parallel heat exchanger in 
which wall heat capacity is negligible in relation to the fluid capacity was shown in (Li, 
1986). These solutions are valid for both finite and nonfinite flow velocities. The paper 
(Romie, 1985) shows responses of outlet fluid temperatures for the equation of a step fluid 
inlet temperature change in a counter flow heat exchanger. The responses are determined by 
means of a finite difference method and involve the wall effect. The exact analytical solution 
for transient phenomena of a parallel flow heat exchanger for unit step change of inlet 
temperature of one of the fluids is given in (Romie, 1986). Although this solution includes 
the wall effect, it is limited to heat exchangers with equal fluid velocities or heat exchangers 
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in which both fluids are gases. The paper (Gvozdenac, 1987) shows analytical solution for 
transient response of parallel and counter flow heat exchangers. However, these solutions 
are limited to the case in which heat capacities of both fluids are negligibly small in relation 
to the heat exchanger’s separating wall capacity. Moreover, it is important to mention that 
papers (Romie, 1983), (Gvozdenac, 1986), (Spiga & Spiga, 1987) and (Spiga & Spiga, 1988) 
deal with two-dimensional problems of transition for cross flow heat exchangers with both 
fluids unmixed throughout. The last paper is the most general one and provides 
opportunities for calculating transient temperatures of wall temperatures and of both fluids 
by an analytical method for finite flow velocities and finite wall capacity. The paper 
(Gvozdenac, 1990) shows analytical solution of transient response of the parallel heat 
exchanger with finite heat capacity of the wall. The procedure presented in the above paper 
is also used for resolving dynamic response of the cross flow heat exchanger with the finite 
wall capacity (Gvozdenac, 1991). 

A very important book is that of Roetzel W and Xuan Y (Roetzel & Xuan, 1999) which 
provides detailed analysis of all important aspects of the heat exchanger’s dynamic behavior 
in general. It also gives detailed overview and analysis of literature.  

This paper shows solutions for energy functions which describe convective heat transfer 
between the wall of a heat exchanger and fluid streams of constant velocities. The analysis 
refers to parallel, counter and cross flow heat exchangers. Initial fluids and wall 
temperatures are equal but at the starting moment, there is unit step change of inlet 
temperature of one of the fluids. The presented model is valid for finite fluid velocities and 
finite heat capacity of the wall. The mathematical model is comprised of three linear partial 
differential equations which are resolved by manifold Laplace transforms. To a certain 
extent, this paper presents a synthesis of the author’s pervious papers with some simplified 
and improved final solutions. 

The availability of such analytical solutions enables engineers and designers a much better 
insight into the nature of heat transfers in parallel, counter and cross flow heat exchangers. 

For the purpose of easier practical application of these solutions, the potential users are 
offered MS Excel program at the web address: www.peec.uns.ac.rs. This program is open 
and can be not only adjusted to special requirements but also modified. 

2.  Mathematical formulation 

Regardless of seeming similarity of partial differential equations arising from mathematical 
modeling, this paper analyzes parallel, cross and counter flow heat exchangers separately. 
However, simplifying assumptions in the derivation of differential equations are the same 
and are as follows: 

a. Heat transfer characteristics and physical properties are independent of temperature, 
position and time; 

b. The fluid velocity is constant in each flow passage; 
c. Axial conduction is negligible in both fluids and the wall; 
d. Overall heat losses are negligible; 
e. The heat generation and viscous dissipation within the fluids are negligible; 
f. Fluids are assumed to be finite-velocity liquids or gases. This means that the fluid 

transit or dwell times are not small compared to the duration of transience. 
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By respecting above assumptions, the energy balance for parallel, counter and cross flow 
heat exchangers will be mathematically formulated. 

2.1 Parallel flow 

On the basis of simplified assumptions and by applying energy equations to both fluids and 
the wall, one can obtain three simultaneous partial differential equations in the coordinate 
system as shown in Fig. 1. It is obvious that both fluids flow in the same direction but on 
different sides of the heat exchanger’s separating wall. Heat transfer areas and heat transfer 
coefficients from both sides are known. The length of the heat exchanger is L. 

 

Fig. 1. Schematic Description of Parallel Flow Heat Exchanger. 

Differential equations describing fluid-temperature fields in the heat exchanger core are 
statements of “micro” energy balances for an arbitrary differential control volume of that 
particular core. The following set of partial differential equations: 

 1 1 2 1( ) ( ) ( ) ( )w
w w w w

T
M c hA T T hA T T

t


       


  

 1 1
1 1 1 1

1

1
( ) ( )p w

T T
m c L hA T T

X U t

  
        

  
   

 2 2
2 2 2 2

2

1
( ) ( )p w

T T
m c L hA T T

X U t

  
        

  
  (1) 

represents the energy balance over the control volume shown in Fig. 1.  

Due to simplified standard assumptions underlying the theory, the mathematical model is 
linear and tractable by available methods of calculus.  

To define mathematical problem completely, inlet and initial conditions have to be prescribed: 

 

1 *

2

1 2

0
(0, )

0

(0, ) .

( ,0) ( ,0) ( ,0)

r

r

w r

T for t
T t

T for t

T t T const

T X T X T X T const

 


 
   

 (2) 
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These conditions assume that only fluid 1 inlet condition is perturbed. The step change of 
inlet temperature of fluid 1 is certainly the most important from physical point of view. 
Other inlet temperature changes can be analyzed using described mathematical model and 
procedures for their analytical solution.  

In equations 1 and 2, the convention of index 1 referring to weaker fluid flow and index 2 to 
stronger fluid flow is introduced. Fluid undergoing higher temperature changes because of 
smaller value of the thermal capacity pW m c   is called ″weaker″? The other flow is then 

″stronger″ and it is less changed in the heat exchanger. The product of mass flow rate and 
isobaric specific heat of fluid is the indicator of fluid’s flow ″strength″ and represents its 
essential characteristic. Therefore, it is necessary to make strict distinction between weaker 
and stronger flow. Only the weaker fluid flow can change the state for maximum 

temperature difference. Therefore,   ' '
max 1 2

min
pQ m c T T     . This is valid in steady state 

conditions although flow designation convention is also applicable to unsteady state 
analysis. 

Generally, the heat exchanger’s effectiveness is defined in the relation of actually exchanged 
heat and maximum possible one and it is the measure of thermodynamic quality of the 
device. In this way, the effectiveness of all heat exchangers can be a number taken from a 
closed interval [0, 1]   

Another convention is useful for further analysis. If weaker and stronger fluid flows are 
designated with indices 1 and 2, respectively, then standardized relation between heat 
capacities of fluids is: 

 1

2

(0 1)
W

W
     (3) 

The value 0  always designates that the stronger fluid flow tends to isothermal change 

in the heat exchanger since  
2

pm c   . With final Q , implying '' '
2 2 0T T  , this means 

that the flow 2 changes the phase (condensation or evaporation). On the contrary, 1   
refers to well balanced flows, i.e. the temperatures from inlet to outlet change equally. 

In order to define dimensionless temperatures, it is appropriate to choose reference 
temperature Tr and a characteristic temperature difference T* - Tr so that: 

 
*

( , )
( , ) ( 1, 2, )i r

i
r

T X t T
X t i w

T T
 

 


 (4) 

It is suitable that reference temperatures are minimum and maximum ones, i.e. T* and Tr, 

respectively. If the weaker flow is designated with index 1 and if * '
1T T  and '

2rT T  then, 

the weaker flow enters the heat exchanger with '
1 1  and the stronger flow with '

2 0  .  

For the purpose of simplifying the mathematical model the dimensionless distance and 
dimensionless time are introduced: 

 
*

,
X t

x NTU z
L t

    (5) 
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The number of heat transfer units is:  

 1 2

1 2 1

( ) ( ) 1

( ) ( )

hA hA
NTU

hA hA W


 


 (6) 

and time parameter 

 *

1 2( ) ( )
w wc M

t
hA hA





 (7) 

Further, the relation for the product of heat transfer coefficient and heat transfer area of each 
fluid and the sum of these products is as follows: 

 1
1 2 1

1 2

( )
, 1

( ) ( )

hA
K K K

hA hA
  


 (8) 

Finally, complex dimensionless parameter is: 

 
1

( 1, 2)i
i

w w i i

W
C L i

c M K U
   

 
 (9) 

It is inversely proportional to the fluid speed in heat exchanger flow channels. The high 

fluid velocity with other unchanged values in the equation (9) means that 0iC   and that 

fluid dwell time in the heat exchanger is short. As the fluid velocity decreases, the value of 

parameters Ci increases and the time of fluid dwell time in the core of the heat exchanger is 

prolonged. Fluid velocity in heat exchangers is:  

 ( , 1, 2)i
i

i i

m
U fluid velocity i

F
 




 (10) 

Now, the system of equations (1) can be written in the following form :  

 1 1 2 2
w

w K K
z


  


    


  

 1 1
1 2 1wC K

z x

    
    
 

  

 2 1 2
2 2w

K
C

z x

   


 
    
 

 (11) 

The initial and inlet conditions (Eqs. 2) become: 

 

1

2

1 2

0 0
(0, )

1 0

(0, ) 0

( ,0) ( ,0) ( ,0) 0w

for z
z

for z

z

x x x




  


  

  

 (12) 
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The equation (11) and (12) define transient response of parallel flow heat exchanger with 

finite wall capacitance. Mathematical model is valid for the case when 1 2W W  and 

temperature of fluid 1 is perturbed (unit step change). 

Outlet temperatures of both fluids in steady state ( z  ) are: 

 

"
1

"
2

( , ) 1

( , )

NTU

NTU

 

  

  

  
 (13) 

where   is effectiveness of heat exchanger. Effectiveness of parallel heat exchanger is as 

follows: 

 
 1 exp (1 )

0 1
1

NTU
for


 


  

  
  (14) 

For the case 0   the effectiveness is  

  1 exp NTU     (15) 

and is valid for all types of heat exchangers.  

For the case when stronger fluid (fluid 2) is perturbed, the inlet condition of the 
mathematical problem is changed and is as follows: 

 

1

2

1 2

(0, ) 0

0 0
(0, )

1 0

( ,0) ( ,0) ( ,0) 0w

z

for z
z

for z

x x x





  




  
  

 (16) 

In this case, outlet temperatures in the conditions of steady state are equal: 

 

"
1

"
2

( , )

( , ) 1

NTU

NTU

  

 

  

  
 (17) 

In this way, resolving of this mathematical problem for two inlet conditions includes all 

possible cases of fluid flow strength, i.e. 1 2 1 2W W and W W  . Only the case 1 2W W  is 

analyzed in this paper because of limited space. However, the presented procedure for 

resolving mathematical model for all types of heat exchangers gives opportunities to get 

easily to the solution in case when  1 2W W . 

2.2 Counter flow  

In the same way as in the case of parallel flow heat exchanger, it is possible to set up 
mathematical model of counter flow heat exchanger (Fig. 2). The essential difference 
between these two heat exchangers is in inlet conditions.  
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h1, A1

h2, A2 2

1

X L0

F2

F1

x NTU0

' '

1 1m , T

' '

2 2m , T
dX

 

Fig. 2. Schematic Description of Counter Flow Heat Exchanger 

Procedure similar to the above for parallel flow delivers the following mathematical 
formulation for the transient behavior of counter flow heat exchanger:  

 1 1 2 2
w

w K K
z


  


    


  

 1 1
1 2 1wC K

z x

    
    
 

  

 2 1 2
2 2w

K
C

z x

   


 
    
 

 (18) 

The initial and inlet conditions are: 

 

1

2

1 2

0 0
(0, )

1 0

( , ) 0

( ,0) ( ,0) ( ,0) 0w

for z
z

for z

NTU z

x x x




  


  


  

 (19) 

If the system of equations (11) and (18) is compared, it can be observed that the difference is 
only in the sign before the second member on the right side of the third equation. If we 
compare equations (12) and (19) (inlet and initial conditions), the difference is only in the 
second equation. However, these seemingly small differences make substantial differences 
in the solution of the problem which will be shown later on. 

Outlet temperatures of both fluids in steady state ( z  ) are as in the case of parallel flow 
heat exchanger but the effectiveness is in case of counter flow heat exchanger designed as 
follows: 

 
 
 

1 exp (1 )
0 1

1 exp (1 )

NTU
for

NTU


 

 
  

  
   

 (20) 

and 

 1
1

NTU
for

NTU
  


 (21) 
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When stronger fluid (fluid 2) is perturbed, the inlet condition of the mathematical problem 
is changed and is as follows: 

 

1

2

1 2

(0, ) 0

0 0
( , )

1 0

( ,0) ( ,0) ( ,0) 0w

z

for z
NTU z

for z

x x x





  




  

  

 (22) 

The problem formulated in this way is valid for W1 ≤ W2. For the case W1 ≥ W2, the problem 
is very similar and because of that it will not be elaborated in details. 

2.3 Cross flow (both fluids unmixed) 

The drawing of cross flow heat exchanger which is used for mathematical analysis is shown 
in Fig. 3. It contains the necessary system of designation and coordinates which will be used 
in this paper. The fluid 1 flows in the X direction and the fluid 2 in the Y direction. The fluid 
flows are not mixed perpendicularly to their flow.  

Based on these assumptions and by applying energy equations to both fluids, three 
simultaneous partial differential equations can be obtained in the coordinate system as 
shown in Fig. 3. 

        1 21 2
w

w w w w

T
M c h A T T h A T T

t


     


  

    1 1
1 1 11

1

1
p o w

T T
m c X h A T T

X U t

  
    

  
  

    2 2
2 2 22

2

1
p o w

T T
m c Y h A T T

Y U t

  
    

  
 (23) 

Independent variables in space and time (X, Y and t) vary from 0 to the length of heat 
exchangers Xo and Yo, i.e from 0 to . By comparing the system of equations (1), it can be 
noticed that there is the presence of the space coordinate (Y) and the existence of two 
dimensions of heat exchangers (Xo and Yo).  

y NTU

x NTU
 

Fig. 3. Schematic Description of Cross Flow Heat Exchanger. 
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Initial and inlet conditions of analyzed problem are as follows: 

 1 *

0
(0, , )

0

T for t
T Y t

T for t

 


  

 2( ,0, )T X t T const    

 1 2( , ,0) ( , ,0) ( , ,0)wT X Y T X Y T X Y T const     (24) 

By introducing new dimensionless variable: 

 
*

, ,
o o

X Y t
x NTU x NTU z

X Y t
      (25) 

the set of equations (23) is as follows: 

 1 1 2 2
w

w K K
z


  


    


  

 1 1
1 2 1wC K

z x

    
    
 

  

 2 2
2 1 2wC K

z y

    
    
 

 (26) 

and initial and inlet conditions (Eq. 24) as: 

 1

0 0
(0, , )

1 0

for z
y z

for z



  

  

 2( ,0, ) 0x z    

 1 2( , ,0) ( , ,0) ( , ,0) 0wx y x y x y      (27) 

Outlet temperatures of both fluids in steady state ( z  ) are defined by Eq. (13) but the 

effectiveness in the case of cross flow heat exchanger is defined as follows (Bačlić, 1978): 

 

 

     /2
0 1

2

1 exp (1 )

1
2 2 2n

n
n

NTU

I NTU I NTU I NTU

 

    






    

 
          

 
  (28) 

and 

      0 11 exp 2 2 2 1NTU I NTU I NTU for              (29) 

In Eqs. (28 and 29), the ( )nI   is modified Bessel function. 
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For the case when stronger fluid (fluid 2) is perturbed, the inlet condition of the 
mathematical problem is changed and it is as follows: 

 1( ,0, ) 0x z    

 
2

0 0
(0, , )

1 0

for z
y z

for z



  

  

 1 2( , ,0) ( , ,0) ( , ,0) 0wx y x y x y      (30) 

As opposed to parallel and counter flow heat exchangers where outlet fluid temperatures 
are constant over the whole length of outlet edges, it is not the case for cross flow heat 
exchangers. Then, outlet temperature from the heat exchanger is obtained as mean 
temperature at the outlet edge of the heat exchanger.  

Special cases of cross flow heat exchangers when one or both fluid flows are mixed 
throughout will not be elaborated in this paper.  

In the Section that follows, defined mathematical problems for determining temperature 
fields and outlet temperatures will be resolved for three basic types: parallel, counter and 
cross flow heat exchangers. 

3. General solution 

The set of three partial differential equations for all types of heat exchanger are linear (Eqs. 
11, 18 and 26). These systems can be solved by using multifold Laplace transform. In the 
case of parallel and counter flow heat exchangers, it is double-fold and in the case of cross 
flow it is three-fold Laplace transform.  

3.1 Parallel flow 

By applying this transform over the equations (11) and initial and inlet condition (Eq.16), the 
following algebraic equations are obtained:  

 1 1 2 2

1
w

K K

p

    




    

 1
1

2 2

1 1 1
w

C p
s

K K p
 

  
     

 
    

 2
2

1 1

( 1)
w

C p
s

K K

  
   
    

 
   (31) 

From this set of equations, the outlet and wall temperatures are as follows: 

 


   

  
  

       



1 2

2 1
w

1 2

12 1
1

K K

K s C p 1 1

K K pp 1
KK s C p 1 s C p 1

 (32) 
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 2
1

2 1 2 1

1

1 1
w K

K s C p K s C p p


   

       

  (33) 

 2
1

1 1

w

K
s C p







   

  (34) 

After performing some mathematical transformations and by using some well known 
relations: 

   1
0

1 1
1

1

n

n
nx x






  
   ;      

0

n
n m n m

m

n
a b a b

m




 
    

 
  (35) 

the temperatures can be expressed in the following form which is convenient for developing 
the inverse Laplace transform: 
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     
       

     
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 (36) 
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 

     
      

     

  
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

 

  

 

   

     
       

     

  
     

        
   

 

 (38) 
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From the techniques of Laplace transformation (convolution and translation theorems) and 
using the Laplace transforms of special functions Fn(x, c) and In,m(x, c, d), defined in the 
Appendix, one can obtain the inverse Laplace transformation of Eqs. 36-38, and the transient 
temperature distributions for the parallel flow heat exchanger: 
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     
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     


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 (39) 
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 

   

     
       

     
      

              
       

 


 (41) 

Outlet temperatures of both fluids are obtained for x = NTU.  

In the practical use of solutions, the computation of integrals in this paper is done through 
collocation at nine Chebishev’s points: 0.0000000000; ± 0.1679061842; ± 0.5287617831; ± 
0.6010186554; ± 0.9115893077, for the given integration interval.  

Special case ω = 0 

In this case, 2( , ) 0x z   resulting in reduced Eq. (31): 

 1

1 1

2 2 2

1

1
( 1)

w

K

p C K
p s p

K K K

  
 

      
 

  (42) 

After some mathematical manipulations, using already mentioned techniques, this equation 
can be transformed into: 
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 


 (43) 

The inverse two-fold Laplace transform of Eq. 43 gives: 
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and Eq. 32 gives: 
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         
  (45) 

This solution is valid for all types of heat exchangers with ω = 0. 

3.2 Counter flow 

A very similar procedure can be applied for resolving the mathematical model of counter 
flow heat exchanger. The set of algebraic equations obtained after two-fold Laplace 
transform of Eqs. (18) and initial and inlet conditions (Eq (19)) is as follows: 

 1 1 2 2( 1) wp K K           (46) 
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C
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K K K p
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 
       

 
   (47) 
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1
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 

        
 

    (48) 

The procedure will be explained in more details here since this case is much more complex 
than the previous one. By introducing designations:  

 1
2 1 2
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1
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C
s p K s C p K s p

K K


 
          

 
, (49) 

 1 1 2
2
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K K C

s p s C p s p
K K
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 

 
            

 
, (50) 

 1 2( , ) 1
( , ) ( , )

K K
A s p p

s p s p 
    , (51) 

the both fluids and wall temperatures of the counter flow heat exchanger are as follows: 

www.intechopen.com



 
Heat Exchangers – Basics Design Applications 

 

66

  1 2 1 2
2 0,w

K K K K
p

p A A
 

  
 

  
   

 
 (52) 

  2 1 2 1 2
1 22

0,
K K K K K

p
p Ap A

 
   

 
   

    
 

 (53) 
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 (54) 

It is very simple to prove that: 

 1 2 1
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1 1 1

( 1)

n
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n m n m
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n
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
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 
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 
     

  
  , (55) 

and that inverse Laplace transformations of the functions 1/ǂm+1(s,p) and 1/ǃm+1(s,p) 
(m=1,2,3,…) with respect to the complex parameter s are: 

 1 1
11 1

2 22
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, (56) 
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        

. (57) 

The essential problem in resolving dynamic behavior of the counter flow heat exchanger is 
in the use of other inlet conditions (Eq. 19). 

If the Eq. 54 is collocated into x=NTU then, INLET temperature of the fluid 2 is obtained 

which is according to given inlet conditions 2( , ) 0NTU z  , therefore: 

  1 11 1 2 1 2
22

0,s NTU s NTU

K K K K K
L p L

p AA


    
 
 

              
           

  (58) 

This is Fredholm’s integral equation of the second order. The problem is reduced to its 
solving.  

The collocation method is used for solving this equation. Perhaps, it is the simplest one. The 
trial function is: 

    2 2
1

0, 0, 1 exp( ) exp( )
!

 
         

  


kNCP

k
k

z
z z a z

k
   (59) 

In equations (58) and further on, 2(0, )   is the steady-state fluid 2 outlet temperature for 

the counter flow heat exchanger. It can be calculated by using the second of Eq. 13 and 
effectiveness of counter flow heat exchanger (Eqs. 20 and 21). It follows that: 
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  
 
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Laplace transform of trial function (Eq. 59) is: 
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9
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p p p
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    
  (61) 

The trial function chosen in this way satisfies completely the equation (58) in points z = 0 

and z → ∞. Within the interval 0 < z < ∞, it is necessary to determine collocation points and 

coefficients ak (k = 1, 2, 3, ... , NCP). Here, the NCP is the number of collocation points. The 

accuracy in which the outlet temperatures of fluid 2 versus time are determined depends 

directly on NCP. In this model of heat exchanger, there are many influential factors and 

determination of the number of collocation points for the given accuracy of outlet 

temperature is simplest through practical testing of the solution. For the heat exchanger’s 

parameters appearing in practice, it can be said that NCP varying from 5 to 7 is sufficient for 

the accuracy of four significant figures and for z ≤ 15.  

Substituting the equation (61) in the equation (58) and collocating resulting equation in the 

NCP point, a set of linear algebraic equations is obtained and their solving generates 

unknown constants ak. The set of algebraic solutions can also be written in the following 

form : 
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a
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     (62) 

Substituting the equation (61) in (58) and using Eqs. (55), (56) and (57), it is obtained: 
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 (64) 

The equations (63) and (64) define members in the set of algebraic equations (62). For 

determining constants ak, it is possible to use any of the well known methods.  

The temperature distribution of both fluids and the separating wall can be calculated by 

using Eqs. (52-54) and by substituting the Laplace transform of fluid 2 outlet temperature 

given by Eq. (59). Constants ak are now known and are valid for all values of z within the 

close interval where the collocation is performed.  

Temperatures of fluid and wall are as follows: 
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 (67) 

3.3 Cross flow 

The equations (25) are linear per θ1(x, y, z), θw(x, y, z), and θ2(x, y, z). If three-fold Laplace 
transform of above equations is taken in relation to x, y and z with complex parameters s, q, 
and p, respectively, and if inlet and initial conditions are used (equation 15), a set of 
algebraic equations is generated : 

 1 1 2 2( 1) wp K K           (68) 

   2
2 1 11 w

K
K s C p

p q
       


   (69) 
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  1 2 21 wK q C p          (70) 

Solving the set of algebraic set (equations (16)-(18)) is as follows: 
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After performing certain mathematical transformations as done in previous cases, the 
algebraic equation (71) can be expressed in the following form: 
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which is very suitable for inverse Laplace transforms by means of functions ( , )nF x c  and 

, ( , , )n mI x c d  defined in the Annex. However, for the case n = m in the equation (74) and later 

on, the twofold sum will be separated into two (single and double) sums so that: 
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The insertion of the equation (74) in equations (72) and (73) generates the following 

algebraic equations: 

 
     

     

1
2 1 2

1 1 2
2 1 0 2 1

1 11
1 2

1 2
1 0 2 1 1 2

1 1 1

1 1 1

n

n n
n

m n mn

n m n m
n m

K K K

p q K s C p p p q K s C p

n K K

m p p K s C p q K q C p




 


   

  
 


  

             

  
 

             







 (76) 

 
     

1 1
1 2

2 1 1 1
0 0 2 1 1 21 1 1

m n mn

n m n m
n m

n K K

m p p K s C p q K q C p


  

   
 

  
  

             
 

 (77) 

Now it is possible to get the inverse Laplace transform equation (75)-(77), so that: 
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The equations (78)-(80) are analytical expressions for temperature fields of fluids 1 and 2 

and separating wall of cross heat exchanger dependant on time. At the beginning, the inlet 

temperature of fluid 1 is instantly raised from 0 to 1, and flow velocities of both fluids are 

constant. 

Outlet temperatures of both fluids are obtained by integrating temperatures along outlet 

edges of the heat exchanger. This is how outlet temperatures become equal;  
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"
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( ) ( , , )

a

z x b z dx
a

   , (82) 

where a = NTU and b = ω·NTU. 

Substituting equations (79) and (80) in equations (81) and (82) generates accurate explicit 

expressions for mean outlet temperatures: 
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Above solutions are also valid for the case of indefinite fluid velocities (C1 = C2 = 0).  

4. Calculation results 

The main purpose of this paper is to provide exact analytical solutions by which 

performances of parallel, counter and cross flow heat exchangers can be calculated and 

compared. Many parameters are involved in temperature distributions of both fluids and 

the wall and, therefore, it is not possible to present quantitative influences of all these 

parameters in this paper. However, there is enough space to give particular results showing 

main characteristics of solutions. 

Programming of equations expressing temperature fields and outlet temperatures for 

considered types of heat exchangers can be very tiresome. Therefore, the website 

www.peec.uns.ac.rs presents programs in MS EXCEL for calculations. Programs can be 

modified and improved as required.  

The example of a heat exchanger where NTU = 1, ω = 0.5, K1 = 0.25 (K2 = 1 – K1 = 0.75), C1 = 

4.0 and C2 = 0.5 will be discussed below. The temperature distributions of both fluids and 

the wall of PARALLEL flow heat exchanger are plotted versus dimensionless heat 

exchanger length (distance x) for z = 2 and 4 in Figure 4.  

The occurrence of heating up of separating wall and fluid 1 by fluid 2 is typical for parallel 

flow heat exchanger. This can happen at the beginning of a non-steady state process when 

the velocity of the fluid 2 flow is higher than the velocity of fluid 1. This will be explained 

somewhat later when comparing outlet temperatures for all three types of heat exchangers. 

The Figure 5 shows temperature distribution for the COUNTER flow heat exchanger. The 

parameters of this heat exchanger are the same as for the parallel one. Differences of 

temperature distribution between parallel and counter flow heat exchangers are evident.  
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Fig. 4. Temperature Distribution of Both Fluids and the Wall of Parallel Flow Heat 
Exchanger for z = 2 and 4. 
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Fig. 5. Temperature Distribution of Both fluids and the Wall of Counter Flow Heat 
Exchanger for z = 2 and 4. 

As an example of the use of presented solutions for cross flow heat exchanger,  temperature 

fields for both fluids and separating wall are given for the same case (NTU = 1, ω = 0.5, K1 = 

0.25, C1 = 4, and C2 = 0.5). Temperature fields of both fluids and the wall are shown for 

dimensionless lengths of heat exchangers at dimensionless time z = 6 (Figure 6). At the time 

z = 6, the front of both fluids has left boundaries of the heat exchanger. Along the outlet 
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fluid edge, wall temperature has been significantly raised but wall temperature along the 

outlet edge of the fluid 1 is very modest. The perturbation of the fluid 1 has just left the 

outlet edge of the heat exchanger. For the fluid 2, the perturbation has moved far away from 

the outlet edge. Since the the perturbation front of the fluid 1 has just left the outlet edge of 

the heat exchanger, wall temperature at this edge are low. The same conclusion is also valid 

for fluid 2 temperature. However, it should be noted that the strength of the fluid 2 flow is 

two times higher that the strength of the fluid 1.  

i

 

Fig. 6. Temperature Fields of Both Fluids and The wall of CROSS Flow Heat Exchanger for z 
= 2 and 4. 

Fig. 7 shows outlet temperatures of both fluid flows for all three types of heat exchangers. 

The size of these three heat exchangers is NTU = 1.0 and ω = 0.5. The characteristics of 

transient heat are also equal for all three types of heat exchangers and they are defined by K1 

= 0.25, i.e., K2 = 1 - K1 = 0.75. The velocity of fluid flow 1 (C1 = 4.0, i.e., 1 11 /U C ) is less 

than the velocity of the flow 2 (C2 = 0.5, i.e., 2 21 /U C ). This means that the fluid 1 flows 

longer through the flow channels than fluid 2. In the analyzed case, the ratio of fluid 

velocities is U1/U2 = 0.04167. For the fluid 2, the time from z=0 to 1 is necessary to pass the 

whole length of the heat exchanger at its side of the separating wall. The time z = 5.33 is 

required for the fluid 1.  

The change curve of outlet temperature of fluid 2 is continuous for all three cases (Fig. 7). It 

is logical that the highest outlet temperature is achieved in the counter flow heat exchanger 

for which the effectiveness (steady-state) is also the highest for the same values of NTU and 

ω. It is followed by the cross flow and then by the parallel flow heat exchanger as the worst 

among the three. In all cases, the final outlet temperature ( )z   is equal to 

1 ( , , )NTU flow arrangement   . Also, in transient regime, differences regarding the 

quality of exchangers are retained.  

It is opposite for the fluid 1. The lowest temperature is obtained for the counter flow heat 

exchanger and the highest for the parallel one. Final outlet temperatures are equal 
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( , , )NTU flow arrangement    . It is logical that the outlet temperature of the fluid 1 is a 

discontinued function. After the step unit increase of the temperature of the fluid 1 at z = 0, 

the temperature of the fluid 1 falls due to heating of the wall of the heat exchanger and then 

heating of the fluid 2. However, in the case of the parallel flow heat exchanger, in the 

beginning after perturbation, the outlet temperature of the fluid 1 grows even before the 

perturbation reaches the outlet of the exchanger. This means that at one time of the non-

steady state part of the process, the fluid 2 heats up the flow of the fluid 1, as well as the 

wall instead of vice versa. Namely, ahead of the front, there is the fluid flow 2 heated up by 

the fluid flow 1. Since the velocity of the fluid flow 2 is higher than the velocity of the fluid 

flow 1 therefore, it heats up later non-perturbed part of the flow 1 which is ahead of the 

moving front of the perturbation. By all means, this indicates that before the occurrence of 

the perturbation all non-dimensionless temperatures are equal to zero (initial condition). 

After the time z = 5.33, the perturbation of the fluid 1 has reached the outlet edge of the 

exchanger which is registered by the step change of the outlet temperature. In case of the 

cross and counter flow heat exchangers, there is not heating up of the fluid flow 1 ahead of 

the perturbation front (Fig. 7). The fluid flow 1 cools down in the beginning by heating up 

the wall of the heat exchanger and the part of the fluid flow 2 in case of the cross flow heat 

exchanger and the whole fluid flow 1 in the case of counter flow but, it cannot happen that 

the fluid flow 2 gets ahead of the perturbation front and causes a reversal process of the heat 

transfer which is possible in case of the parallel flow heat exchanger. 

 

  
 

Fig. 7. Outlet Temperature of Both Fluids for Parallel, Counter and Cross Flow Heat 
Exchangers. 
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5. Conclusion 

A method providing exact analytical solutions for transient response of parallel, counter and 
cross flow heat exchangers with finite wall capacitance is presented. Solutions are valid in 
the case where velocities are different or equal. These solutions procedure provides 
necessary basis for the study of parameters estimated, model discriminations and control of 
all analyzed heat exchangers. 

Generally speaking, the analytical method is superior to numerical techniques because the 
final solution also preserves physical essence of the problem. Testing of solutions given in 
this paper indicates that they can be used in practice efficiently when designing and 
managing processes with heat exchangers. 

6. Appendix 

Functions ( , )nF x c  and , ( , , )n mI x c d  and their Laplace transforms are given as described 

below (x ≥ 0, ,c d    , and n, m = 1, 2, 3,....). For x < 0, both functions are equal to zero. 

 
   

 

1 1
( , ) exp

1 !

n

n n

x
F x c c x

n s c
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    
 

 (A.1) 
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1 1
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n m n m j n m
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m j
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j s c s c d



 


  
    

    
  (A.2) 

Some additional details about these functions can be found in an earlier paper (Gvozdenac, 
1986). 

7. Nomenclature 

A1, A2 total heat transfer area on sides 1 and 2 of a heat exchanger, respectively, [m2] 
F1, F2 cross-section area of flow passages 1 and 2, respectively, [m2] 
cp isobaric specific heat of fluid, [J/(kg K)] 
cw specific heat of core material, [J/(kg K)] 
h heat transfer coefficient between fluid and the heat exchanger wall, [W/(K m2)] 
Mw mass of heat exchanger core, [kg] 

m  mass flow rate, [kg/s] 

NTU number of heat transfer units, [-] (Eq. ) 
T temperature, [K] 
t time, [s] 

W thermal capacity rate of fluid, pm c  , [W/K] 

Wmin lesser of W1 and W2, [W/K] 
X, Y distance from fluid entrances, [m] 
U fluid velocity, [m/s] 
ρ density, [kg/m3] 
κ unit step function 
θ dimensionless temperature 
x, y, z dimensionless independent variables, (Eqs. ) 
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Subscripts: 

1 fluid 1 
2 fluid 2 
w wall 
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