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Recognition and Resolution of  
“Comprehension Uncertainty” in AI 

Sukanto Bhattacharya1,* and Kuldeep Kumar2 
1Deakin Graduate School of Business, Deakin University,  

2School of Business, Bond University,  
Australia 

1. Introduction 

1.1 Uncertainty resolution as an integral characteristic of intelligent systems 

Handling uncertainty is an important component of most intelligent behaviour – so 

uncertainty resolution is a key step in the design of an artificially intelligent decision system 

(Clark, 1990). Like other aspects of intelligent systems design, the aspect of uncertainty 

resolution is also typically sought to be handled by emulating natural intelligence (Halpern, 

2003; Ball and Christensen, 2009). In this regard, a number of computational uncertainty 

resolution approaches have been proposed and tested by Artificial Intelligence (AI) 

researchers over the past several decades since birth of AI as a scientific discipline in early 

1950s post- publication of Alan Turing’s landmark paper (Turing, 1950).  

The following chart categorizes various forms of uncertainty whose resolution ought to be a 

pertinent consideration in the design an artificial decision system that emulates natural 

intelligence:   

 

Fig. 1. Broad classifications of “uncertainty” that intelligent systems are expected to resolve  

                                                 
* Corresponding author  
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Temporal uncertainty, as the name suggests, arises out of imperfect foresight – i.e. it concerns 

the general problem of determining the future decision state of a dynamic system the 

current and past   decision states of which are known. As a sub-category of temporal 

uncertainty, parametric uncertainty is that form of uncertainty the resolution of which 

wholly depends on estimating a set of underlying parameters that determine a future 

decision state of a system given its current and/or past decision states. The fundamental 

premise is that there exist parameters, which if estimated accurately, would fully explain the 

temporal transition from current to a future decision state. In most practical AI applications 

it is handled by embedding an efficient parameter estimation kernel e.g. an asset price 

prediction kernel that is embedded within an intelligent financial trading system (Huang, 

Pasquier and Quek, 2009). On the other hand non-parametric uncertainty is that form of 

temporal uncertainty the resolution of which is either wholly or substantially independent 

of any parameters that can be statistically estimated from the current or past decision states 

of the system. That is, in resolving non-parametric uncertainty one cannot assume that there 

is a set of parameters whose accurate estimation can fully explain the dynamic system’s 

time-path (Kosut, Lau and Boyd, 1992). To resolve non-parametric uncertainty, AI models 

are usually equipped with some feedback/learning mechanism coupled with a performance 

measure index that indicates when optimal learning has occurred so that predictive utility 

isn’t lost on account of overtraining when predicting a future state using the current/past 

states as the inputs (Yang et al, 2010).  

Knowledge uncertainty, again as the name suggests, arises out of imperfect understanding – 

i.e. it concerns the general problem of determining the future decision state of a dynamic 

system the knowledge about whose current and/or past states are either incomplete, ill-

defined or inconsistent. If there is incomplete information available about the current decision 

state of the system then the sub-category of knowledge uncertainty it would be categorized 

under is informational uncertainty. A common way of dealing with informational 

uncertainty is to try and enhance the current level of information by applying an appropriate 

information theoretic tool e.g. Ding et al (2008) applied rough sets theory coupled with a 

self-adaptive algorithm to separately “mine” consistent and inconsistent decision rules; 

along with experimental validation for large incomplete information systems. If the 

information available about the current decision state of the system is ill-defined i.e. it is 

subject to interpretational ambiguity then it would come under the sub-category of linguistic 

uncertainty. A large part of interpretational ambiguity arises as a direct result of statements 

made in natural language (Walley and Cooman, 2001). Lotfi Zadeh, the proponent of fuzzy 

logic, contended that possibility measures are best used to resolve linguistic uncertainty in 

decision systems (Zadeh, 1965). If the information available about the current decision state 

of the system is inconsistent i.e. it is fundamentally dependent on the origin, then the 

resulting uncertainty would come under the sub-category of paradigmatic uncertainty. If 

available information is dependent on its origin then it can be expected to materially change 

if one chooses a different source for the same information. For example, software agents 

have to reason and act on a domain in which the universe of possible scenarios is 

fundamentally prescribed by the available metadata records. But these metadata records can 

sometimes be found to be mutually inconsistent when compared. The paradigmatic 

uncertainty resulting from the inconsistency and imprecision is best addressed by building 

in enough flexibility in the system so that the cogency of information related to the current 
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(and past) decision states gleaned from different sources is a set-valued rather than point-

valued feature (Sicilia, 2006).  

A three-valued extension of classical (i.e. binary) fuzzy logic was proposed by Smarandache 
(2002) when he coined the term “neutrosophic logic” as a generalization of fuzzy logic to 
such situations where it is impossible to de-fuzzify the original fuzzy–valued variables via 
some tractable membership function into either of set T or its complement TC where both T 
and TC are considered crisp sets. In these cases one has to allow for the possibility of a third 
unresolved state intermediate between T and TC. As an example one may cite the well 
known “thought experiment” in quantum metaphysics of Schrödinger’s cat (Schrödinger, 
1935) – the cat in a closed box is in limbo between two states “dead” and “alive” and it is 
impossible to tell which unless one opens the box at which point the effect of observer 
participation is said to intervene and cause that indeterminate state to collapse into a 
classical state of either a dead or an alive cat to be observed in the box. But as long as 
observer participation is completely absent one cannot in any way disentangle these two 
crisp sets!   

This brings us to the final form of uncertainty that an artificially intelligent decision system 
ought to be able to resolve – something which we christened here as “comprehension 
uncertainty”. While some elements of “comprehension uncertainty” is sought to be handled 
(often unknowingly) by the designers of intelligent systems by using one or more tools 
targeted to resolve either temporal or knowledge uncertainty, the concept of 
“comprehension uncertainty” has not yet been adequately described and addressed in 
contemporary AI literature. That is the reason we decided to depict this form of uncertainty 
using a dashed rather than continuous connector in the above chart. Also the question mark in 
the chart denotes the fact that there is no known repository of theoretical knowledge (not 
necessarily limited to the discipline of AI) that addresses such a form of uncertainty. The 
purpose of this chapter is to therefore posit a scientific theory of “comprehension 
uncertainty”. 

2. The meaning of “comprehension uncertainty” 

While all the other forms of uncertainty as discussed above necessarily originates from and 
deals with the contents/specification of an elementary set of interest, which is a subset of the 
universal set, by the term “comprehension uncertainty” we mean and include any form of 
uncertainty that originates from and deals with the contents/specification of the universal set itself. 
If the stock of our entire knowledge about a problem is universal (i.e. there is absolutely 
nothing else that is ‘fundamentally unknown’ about that problem) only then we can claim to 
fully comprehend the problem so that no “comprehension uncertainty” would then exist. 
There is a need here to distinguish between “complete knowledge” and “universal 
knowledge”. The knowledge about a problem can be said to be complete if it consists of the 
entire stock of current knowledge that is pertinent to that particular problem. However the 
current stock of knowledge, even in its entirety, may not be the universal knowledge simply 
because ways of adding to that current stock of knowledge could be beyond the current 
limits of comprehension i.e. the universal set could itself be ill-defined. If intelligent systems are 
primarily intended to emulate natural intelligence and treat “functional comparability” with 
natural intelligence as the most desirable outcome, then the limits to comprehension for 
natural intelligence should translate to similar limits for such systems as well.     
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2.1 How does natural intelligence resolve “comprehension uncertainty” in  
decision-making? 

As highly evolved, intelligent beings, humans have become adept at continually taking 
decisions based on information that is subject to various forms of uncertainty. We can 
negotiate a busy sidewalk more often than not without colliding with other pedestrians and 
can cross a road safely (again most of the times) without being flattened by a car although 
we have at best a very imprecise idea of the speed of an oncoming car. Human brain, as the 
highest seat of natural intelligence, has evolved unique ways of working with various 
uncertainties including “comprehension uncertainty”. Humans are also dealing with 
“comprehension uncertainty”, for example when designing an unmanned, deep-space 
probe. We design the space probe using our current stock of knowledge in astrophysics; 
thermodynamics etc., identifying, assessing and resolving the pertinent temporal and 
knowledge uncertainties. At the same time we are also cognisant of a gap in our knowledge. 
This is not because we haven’t been able to fully utilize our current stock of knowledge; 
rather it is the gap that exists between our current knowledge of deep space etc. and the 
universal knowledge which is outside of our “limits” of comprehension i.e. primarily 
originating from an ill-defined universal set.  

Artificially intelligent decision systems are typically programmed to inexorably seek a 
‘global’ optimum while in reality, the presence of “comprehension uncertainty” will always 
negate that prospect. What an intelligent system returns as a ‘global’ optimum is thus at best 
only such within its current domain knowledge and not a “universal” optimum. But an 
artificially intelligent system will always terminate its search once it attains what it perceives 
as the “global” optimum; based on the underlying premise that its current stock of domain-
specific knowledge is in fact the universal one! On the other hand, naturally intelligent 
beings recognize the fundamental gap between current and universal knowledge and so 
will endeavour to keep expanding their “limits of comprehension”. 

An artificially intelligent decision system ought to be designed to ‘realize’ that its current 

stock of knowledge may not be the universal knowledge pertinent to a decision problem it is 

invoked to work out. Emulating natural intelligence, AI models should aim to be ‘auto-

cognisant’ of any fundamental knowledge gaps and therefore be able to reconcile any 

deviations of the “global” from the “universal” optimum. A first step towards that is effective 

operationalization of the “comprehension uncertainty” concept. In the following section we 

posit and develop a formal conceptualization of the “comprehension uncertainty” concept. 

This basically involves an extension of classical probability theory to a realm of higher-order 

probabilities in a manner that is computationally tractable and fully reconcilable with the 

classical theory. Finally we posit and defend a logical framework justifying the due 

consideration of “comprehension uncertainty” in the context of designing artificially 

intelligent systems for practical applications in business, industry and society.      

3. Developing some necessary theoretical groundwork  

The primary objective of our work here is to simply posit the logically conceivable 
underpinnings of a probability theory extended to formalize comprehension uncertainty – 
we believe that our main purpose here is to merely open the proverbial Pandora’s Box and 
thereby spawn a healthy stream of new research along both philosophical as well as 
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mathematical lines. In that desired direction, we firstly posit and prove a fundamental 
theorem necessary for such an extension to the theory of probability. Subsequently we show 
some computational ‘tests’ to illustrate the posited framework.  

3.1 A foray into higher order probabilities 

It is well known that much of modern theory of probability rests upon the three 
fundamental Kolmogorov axioms (Kolmogorov, 1956) which are conventionally stated as 
follows:  

1st axiom: The probability of any event is a non-negative real number i.e. P(E) ≥ 0   ∀ E ∈ U  

2nd axiom: The probability of any one of the elementary events in the whole event space 
occurring is 1 i.e. P(U)=1  

3rd axiom: Any countable sequence of pair-wise non-overlapping events E1, E2, ... En satisfies 

the following relation:  P(E1  E2  ...  En) = ∑i P(Ei); i = 1, 2, ..., n. 

It is basically Kolmogorov’s second and third axioms as noted above that render any 
extensions of the probability concept to higher orders (i.e. “probability of probability”) 
superfluous as the information content of any such higher order probability can be 
satisfactorily transmuted via existing set-theoretic constructs. So, extending to a higher order 
would arguably yield trivial information. However the Kolmogorov axioms by themselves are 
also open to ‘extensions’ – for instance there is previous research that has revisited the proofs 
of the well-known Bell inequality based on underlying assumptions of separability and non-
contextuality and constructed a model of generalized “non-contextual contrapositive 
conditional probabilities” consistent with the results of the famous Aspect experiment 
showing in general such probabilities are not necessarily all positive (Atkinson, 2000). By 
themselves the Kolmogorov axioms do not unequivocally rule out an extension of the 
definition of the universal set U itself so as to make U possess a time-dynamic rather than a time-
static nature. So; in effect this means that if we were to consider a time-dynamic version of the 
universal set; then one would suddenly find that the information content of higher order 
probability no longer remains trivial i.e. an extension of the probability concept to higher 
orders (i.e. “probability of probability”) is no longer superfluous – in fact it is logical! The good 
thing is that no new probability calculus needs to be formulated to describe such a theory of 
higher-order probabilities and this extended theory could still rest on the Kolmogorov axioms 
and could still draw fundamentally from the standard set-theoretic approach (as we will be 
demonstrating shortly); by merely using an extended definition of the universal set U which 
would now denote not merely an event space but a broader concept, which we christen as 
event-spacetime, i.e. an event space that can evolve over a time dimension.  

Perhaps the only academic work preceding ours to have alluded that a higher-order 

probability theory is justifiable by an event space evolving over time was that by Haddawy 

and others (Haddawy, 1996; Lehner, Laskey and Dubois, 1996), where they provided “a 

logic that incorporates and integrates the concepts of subjective probability, objective 

probability, time and causality” (Lehner, Laskey and Dubois, 1996). We take a similar 

philosophical stance but go on to explicitly develop a logically tenable higher-order 

probability concept in discrete time. We have no doubt that an extension in continuous time 

is also attainable but it’s left for later.   
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Lemma 1 

The probability that any one of the elementary events contained within the event space-time will 
occur between two successive time points t0 and t1 given that the contents/contours of the event space 
remains unchanged from t0 to t1 is unity i.e. P (U0| U0 = U1) = 1. By extension, P(Ut| Ut = Ut+1) = 
1 for all t = 0, 1, 2, 3, ... 

Proof 

Lemma 1 results from a natural extension of Kolmogorov’s second axiom if we allow the 
event space to be of a time-dynamic nature i.e. if U is allowed to evolve through time in 
discrete intervals.  

QED  

Lemma 2 

If the classical probability of occurrence of a specific elementary event E contained within the event 
space-time is defined as P(E), then the first-order probability of occurrence of such event E becomes 
P{P(E)} = P1(E) = P{E | (U0 = U1)} = P(E).[P{(U0 = U1)|E}/P(U0 = U1)] 

Proof 

Applying the fundamental law of conditional probability we can write as follows: 

P{E | (U0 = U1)} = P{E∩(U0 = U1)}/ P(U0 = U1) 

P{E∩(U0 = U1)} = P{(U0 = U1)∩E} = P(E).P{(U0 = U1)|E}; and thus the result follows.  

QED 

Lemma 3 

Given the first-order probability of occurrence of elementary event E and assuming that (Ut = Ut+1) 
and (Ut+1 = Ut+2) are independent for all t = 0, 1, 2, 3, ..., the second-order probability of occurrence 
of E becomes P2(E) = P(E) . P1(E). [P{(U1 = U2)|E}/P(U1 = U2)]. 

Proof 

By definition, P2(E) = P{P1(E)} = P[{E | (U0 = U1)} ∩ {E|(U1 = U2)}] 

Since (Ut = Ut+1) and (Ut+1 = Ut+2) are assumed independent for t = 0, 1, 2, 3, ..., we can write: 

P[{E | (U0 = U1)} ∩ {E|(U1 = U2)}] = P{E | (U0 = U1)} . P{E|(U1 = U2)}. 

Substituting P{E | (U0 = U1)} with P1(E) and then applying the fundamental law of 
conditional probability; the result follows.  

QED 

Thus, given the first-order probability of occurrence of an elementary event E, the second-
order probability is obtained as a “probability of the first-order probability” and is 
necessarily either equal to or less than the first-order probability, as is suggested by common 
intuition. This logic could then be extended to each of the subsequent higher order 
probability terms. Based on lemmas 1 – 3, we next propose and prove a fundamental 
theorem of higher order (hereafter H-O) probabilities. 
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A fundamental theorem of higher order probabilities (in discrete time) 

If we set P0(E)  P(E), then Pt(E) = P(E). Pt-1(E).[P{(Ut-1= Ut)|E}/P(Ut-1= Ut)] for t = 1, 2,3, ..., n 

Proof 

 P1(E) = P{P0(E)} = P(E). [P{(U0 = U1)|E}/P(U0 = U1)] from lemma 2 

 P2(E) = P{P1(E)} = P(E) . P1(E) . [P{(U1 = U2)|E}/P(U1 = U2)] .. from lemma 3 

P3(E) = P[{E | (U0 = U1)} ∩ {E|(U1 = U2)} ∩ {E|(U2 = U3)}] 

           = P[[{E | (U0 = U1)} ∩ {E|(U1 = U2)}] ∩ {E|(U2 = U3)}] 

             = P2(E) . P{E|(U2 = U3)}                 

             = P(E). P2(E).[P{(U2 = U3)|E}/P(U2 = U3)   

                         P4(E) = P[{E | (U0 = U1)} ∩ {E|(U1 = U2)} ∩ {E|(U2 = U3)} ∩ {E|(U3 = U4)}] 

                                    = P[[{E | (U0 = U1)} ∩ {E|(U1 = U2)} ∩ {E|(U2 = U3)}] ∩ {E|(U3 = U4)}] 

             = P3(E) . P{E|(U3 = U4)}     

             = P(E). P3(E).[P{(U3 = U4)|E}/P(U3 = U4)]   

Extending to the (t-1)-th term, we can therefore write: 

 Pt-1(E) = P(E). P t-2(E).[P{(Ut-2= Ut-1)|E}/P(Ut-2= Ut-1) (1) 

The expression for the t-th term is derived from (1) as follows: 

        Pt(E) = P(E). P(t-2)+1(E).[P{(U(t-2)+1=Ut)|E}/P(U(t-2)+1 = Ut)  

 = P(E).Pt-1(E).[P{(Ut-1=Ut)|E}/P(Ut-1=Ut)  (2) 

However we may also write: 

Pt(E)=P[{E | (U0 = U1)}∩{E|(U1 = U2)}∩{E|(U2 = U3)}∩{E|(U3 = U4)}∩...∩{E|(Ut-1 = Ut)}]  

=P[[{E|(U0=U1)}∩{E|(U1=U2)}∩{E|(U2=U3)}∩{E|(U3=U4)}∩...∩{E|(Ut-2 =Ut-1)]∩{E|(Ut-1= Ut)}] 

= Pt-1(E) . P{E|(Ut-1 = Ut)} 

 = Pt-1(E). P(E). [P{(Ut-1=Ut)|E}/P(Ut-1=Ut)] (3) 

As (2) is identical to (3); by principle of mathematical induction the general case is proved for t= n. 

QED 

Obviously then, if P(Ut-1=Ut) = P{(Ut-1=Ut)|E}, for all t = 1, 2, 3, ..., n; we will end up with 

Pn(E) =[P(E)]n which makes this approach to H-O probability fully consistent with classical 

probability theory and in fact a very natural extension thereof if one sees the fundamentally 

time-dynamic characteristic of U. 
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3.2 Simple computational ‘tests’ to better illustrate the above-posited concept of  
H-O probability  

To provide a simple illustration of how the H-O probabilities would pan out in discrete 
event-spacetime we have done a series of computations the results of which are graphically 
represented below. The graphs show the temporal evolution of the event-spacetime in 
discrete “time steps” and the resulting Pt(E) values for t = 1, 2, ..., 5. We assume three 
temporal evolution forms – “expanding event-spacetime”, “contracting event-spacetime” and 
“oscillating event-spacetime” and plot the Pt(E) values for each of these three forms starting 
with a pervading assumption that P(Ut-1 = Ut) = 1. This assumption simplifies a lot of the 
computations as Pt(E) then depends totally on P{(Ut-1 = Ut)/E}. When P{(Ut-1 = Ut)/E} = 1, 
we see that Pt(E) converges to P(E)t for all values of t. On the other hand, when P{(Ut-1 = 
Ut)/E} = 0, Pt(E) converges to zero for all values of t. So, holding P(E) = 0.10, in an 
“expanding event-spacetime”, P1(E) = P(E) = 0.10, p2(E) = 0.102 = 0.01 and so on for P{(Ut-

1=Ut)/E} = 1. For P{(Ut-1=Ut)/E} = 0, P1(E) = p2(E) = P3(E) = p4(E) = P5(E) = 0, while Pt(E) 
values are seen to oscillate for P{(Ut-1=Ut)/E} values randomly oscillating about 0.50 – the 
degree of oscillation decreasing with increasing order of probability i.e. P1(E) oscillates more 
than P2(E), P2(E) more than P3(E) and so on.  

 

Fig. 2. Expanding Event-Spacetime, [P(E) = 0.10] 
 Plot of Pt(E); t = 1, 2, ..., 5 for P{(Ut -1 = Ut)/E} increasing from 0 to 1 in steps of 0.05  

The expanding event-spacetime represents the situation where, with passage of time and 
evolution of the current stock of domain knowledge, there is a steadily increasing 
“probability of probability” of the occurrence of the elementary event of interest. The 
contracting event-spacetime represents the situation where, with passage of time and 
evolution of the current stock of domain knowledge, there is a steadily decreasing 
“probability of probability” of the occurrence of the elementary event of interest. The 
oscillating event-spacetime represents the situation where, with passage of time and 
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evolution of the current stock of domain knowledge, there is an erratic pattern in the 
“probability of probability” of the occurrence of the elementary event of interest because of 
the fact that some old knowledge that were ‘replaced’ by new knowledge make comebacks 
following  newer discoveries. 

 

Fig. 3. Contracting Event-Spacetime, [P(E) = 0.10] 
 Plot of Pt(E); t = 1, 2, ..., 5 for P{(Ut -1 = Ut)/E} decreasing from 1 to 0 in steps of 0.05  

 

Fig. 4. Oscillating Event-Spacetime, [P(E) = 0.10] 
 Plot of Pt(E); t = 1, 2, ..., 5 for P{(Ut -1 = Ut)/E} allowed to randomly oscillate about 0.50  
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3.3 H-O probability implications for intelligent resolution of comprehension 
uncertainty 

Although we do not mathematically compute H-O probabilities while taking decisions (or 

for that matter even ordinary probabilities), human intelligence does enough ‘background 

processing’ of fringe information (mostly even without knowing) to ‘see’ a bigger picture of 

the likely scenarios. Going back to the example of crossing a busy road, we are continuously 

processing information (often unknowingly) from the environment in terms of the rapidly 

changing pertinent event space. As long as the pertinent event space is ‘pre-populated’ with 

likely forms of road hazards, an artificially intelligent system can be ‘trained’ to emulate 

human decision-making and cross the road. It is when the contents of the pertinent event 

space dynamically changes that would throw off even the most advanced of AI-based 

systems given the current state of design of such systems. This is pretty much what 

Bhattacharya, Wang and Xu (2010) identified as a ‘gap’ in the current state of design of 

intelligent systems. The current design paradigm is overwhelmingly concerned with the 

“how” rather than the “why” – and resolution of comprehension uncertainty involves more 

of the “why”. Rather than trying to answer “how to avoid being hit by a vehicle or some 

other hazard while crossing” AI designers ought to be focusing on “why are we vulnerable 

while crossing a busy road”.  

As soon as the focus of the design shifts to the “why”, the link with comprehension 

uncertainty becomes a very natural extension thereof. Then we are simply asking why a 

particular event space is a pertinent one for the problem at hand? The natural answer is that 

in a specified time window, it contains all the elementary events out of which one or a few 

are conducive for the desired outcome. Then the question naturally progresses to what 

would happen outside that specified time window? If we are pre-populating the pertinent 

event space and then assuming that it would hold good for all times, it would be at the cost 

of ignoring comprehension uncertainty which can defeat the AI design. At this point it is 

perhaps useful to again remind readers that it is not the vagueness or imprecision associated 

with some contents of an event space that is of importance here (existing uncertainty 

resolution methods like rough sets, fuzzy logic etc. are adequate for dealing with those) – it 

is a temporal instability of the event space itself that is crux of the comprehension 

uncertainty concept. 

The mathematics of H-O probabilities then offers a plausible route towards formal 

incorporation of comprehension uncertainty within artificially intelligent systems designed 

to replicate naturally intelligent decision-making. As naturally intelligent beings, humans 

are capable of somehow grasping the “limits to comprehension” that result from a gap 

between current knowledge and universal knowledge. If this was not the case then 

‘research’ as an intellectual endeavour would have ceased! In the current design paradigm 

the focus is on training AI models to ‘search’ for global optimality while, ideally, the focus 

ought to be on training such models to do ‘research’ rather than ‘search’! Recognition and 

incorporation of comprehension uncertainty in their learning framework would at least 

allow future AI models to ‘grasp’ the limits to comprehension so as not to invariably 

terminate as soon as a ‘globally optimal’ decision point has been reached using the current 

domain knowledge. 
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4. Conclusion: “comprehending the incomprehensible” – the future of  
AI systems design   

In its current state, the design of artificially intelligent systems is pre-occupied with solving 
the “how” problems and as such do not quite recognize the need for resolving 
comprehension uncertainty. In fact, the concept of comprehension uncertainty was not even 
formally posited prior to this work by us although there have been a few takes on the 
mathematics of H-O probabilities. Earlier researchers mainly found the concept of H-O 
probabilities superfluous because they failed to view it in the context of formalizing 
comprehension uncertainty like we have done in this article.  

However, given that the exact emulation of human intelligence continues to remain the 
Holy Grail for AI researchers, they have to grapple with comprehension uncertainty at some 
point or the other. The reason for this is simple – a hallmark of human intelligence is that it 
recognizes the limitations of the current stock of knowledge from which it draws. Thus any 
artificial system that ultimately seeks to emulate that intelligence must also necessarily see 
the limitations in current domain knowledge and allow for the fact that the current domain 
knowledge can evolve over time so that the global optimum attained with the current stock 
of knowledge may not remain the same at a future time. Once an artificially intelligent 
system is hardwired to recognize the time-dynamic aspect of the relevant event space within 
which it has to calculate the probabilities of certain outcomes and take a decision so as to 
maximize the expected value of the most desirable outcome, it will not terminate its search 
as soon as global optimality is reached in terms of the contents/contours of the current 
event space. It would rather go into a ‘dormant’ mode and continue to monitor the 
evolution of the event space and ‘re-engage’ in its search as soon as P{(Ut-1=Ut)/E} > 0 at any 
subsequent time point. 

With the formal hardwiring of comprehension uncertainty within the core design of an 
artificially intelligent system it can be trained to transcend from simply answering the 
“how” to ultimately formulating the “why” – firstly; why is the current body of knowledge 
an exhaustive source to draw from for finding the optimal solution to a particular problem 
and secondly; why that current body of knowledge may not be continue to remain an 
exhaustive source to draw from for all time in future. When it has been trained to formulate 
these “why” questions, only then can we expect an artificially intelligent system to take that 
significant leap towards finally gaining parity with natural intelligence.   
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