
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Algorithm Selection:
From Meta-Learning
to Hyper-Heuristics

Laura Cruz-Reyes1, Claudia Gómez-Santillán1,
Joaquín Pérez-Ortega2, Vanesa Landero3,

Marcela Quiroz1 and Alberto Ochoa4
1Instituto Tecnológico de Cd. Madero

2Centro Nacional de Investigación y Desarrollo Tecnológico
3Universidad Politécnica de Nuevo León

4Universidad de Ciudad Juárez

México

1. Introduction

In order for a company to be competitive, an indispensable requirement is the efficient
management of its resources. As a result derives a lot of complex optimization problems
that need to be solved with high-performance computing tools. In addition, due to the
complexity of these problems, it is considered that the most promising approach is the
solution with approximate algorithms; highlighting the heuristic optimizers. Within this
category are the basic heuristics that are experience-based techniques and the metaheuristic
algorithms that are inspired by natural or artificial optimization processes.

A variety of approximate algorithms, which had shown satisfactory performance in
optimization problems, had been proposed in the literature. However, there is not an
algorithm that performs better for all possible situations, given the amount of available
strategies, is necessary to select the one who adapts better to the problem. An important
point is to know which strategy is the best for the problem and why it is better.

The chapter begins with the formal definition of the Algorithm Selection Problem (ASP),
since its initial formulation. The following section describes examples of "Intelligent
Systems" that use a strategy of algorithm selection. After that, we present a review of
the literature related to the ASP solution. Section four presents the proposals of our
research group for the ASP solution; they are based on machine learning, neural network
and hyper-heuristics. Besides, the section presents experimental results in order to
conclude about the advantages and disadvantages of each approach. Due to a fully
automated solution to ASP is an undecidable problem, Section Five reviews other less
rigid approach which combines intelligently different strategies: The Hybrid Systems of
Metaheuristics.

www.intechopen.com

Intelligent Systems

78

2. The Algorithm Selection Problem (ASP)

Many optimization problems can be solved by multiple algorithms, with different
performance for different problem characteristics. Although some algorithms are better than
others on average, there is not a best algorithm for all the possible instances of a given
problem. This phenomenon is most pronounced among algorithms for solving NP-Hard
problems, because runtimes for these algorithms are often highly variable from instance to
instance of a problem (Leyton-Brown et al., 2003). In fact, it has long been recognized that
there is no single algorithm or system that will achieve the best performance in all cases
(Wolpert & Macready, 1997). Instead we are likely to attain better results, on average, across
many different classes of a problem, if we tailor the selection of an algorithm to the
characteristics of the problem instance (Smith-Miles et al., 2009). To address this concern, in
the last decades researches has developed technology to automatically choose an
appropriate optimization algorithm to solve a given instance of a problem, in order to obtain
the best performance.

Recent work has focused on creating algorithm portfolios, which contain a selection of state
of the art algorithms. To solve a particular problem with this portfolio, a pre-processing step
is run where the suitability of each algorithm in the portfolio for the problem at hand is
assessed. This step often involves some kind of machine learning, as the actual performance
of each algorithm on the given, unseen problem is unknown (Kotthoff et al., 2011).

The Algorithm Selection Problem (ASP) was first described by John R. Rice in 1976 (Rice,
1976) he defined this problem as: learning a mapping from feature space to algorithm
performance space, and acknowledged the importance of selecting the right features to
characterize the hardness of problem instances (Smith-Miles & Lopes, 2012). This definition
includes tree important characteristics (Rice, 1976):

a. Problem Space: The set of all possible instance of the problem. There are a big number of
independent characteristics that describe the different instances which are important for
the algorithm selection and performance. Some of these characteristics and their
influences on algorithm performance are usually unknown.

b. Algorithm Space: The set of all possible algorithms that can be used to solve the problem.
The dimension of this set could be unimaginable, and the influence of the algorithm
characteristics is uncertain.

c. Performance Measure: The criteria used to measure the performance of a particular
algorithm for a particular problem and see how difficult to solve (hard) is the instance.
There is considerable uncertainly in the use and interpretation of these measures (e. g.
some prefer fast execution, others effectiveness, others simplicity).

Rice proposed a basic model for this problem, which seeks to predict which algorithm from
a subset of the algorithm space is likely to perform best based on measurable features of a
collection of the problem space: Given a problem subset of the problem space P, a subset of
the algorithm space A, a mapping from P to A and the performance space Y. The Algorithm
Selection Problem can be formally defined as: for a particular problem instance p ∈ P, find
the selection mapping S(p) into the algorithm space A, such that the selected algorithm a ∈ A
maximizes the performance measure y for y(a,p) ∈ Y. This basic abstract model is
illustrated in Figure 1 (Rice, 1976; Smith-Miles & Lopes, 2012).

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

79

Fig. 1. The Algorithm Selection Problem (ASP)

The Figure 2 shows the dimensions of ASP and allows see a higher level of abstraction
scope. There are three dimensions: 1) in the x-axis expresses a set of algorithms of solution
s, t, w, y, z, 2) z-axis shows a set of instances of the problem a, b, c, d, and a new instance
e to solve, 3) in the y-axis the set of values of the results of applying the algorithms to each of
the instances is represented by vertical lines. As shown in figure, to solve the instance a and
b the algorithms have different performances, it is noteworthy that no algorithm is superior
to others in solving all instances. Moreover, as shown in figure the algorithm s has a
different performance by solving each of the instances. Finally the problem to be solved is to
select for the new instance e the algorithm that will solve better.

Fig. 2. Dimensions of algorithm selection problem

As we can see in the definition of the Algorithm Selection Problem there are three principal
aspects that must be tackled in order to solve the problem:

a. The selection of the set features of the problem that might be indicative of the performance
of the algorithms.

b. The selection of the set of algorithms that together allow to solve the largest number of
instances of the problem with the highest performance.

c. The selection of an efficient mapping mechanism that permits to select the best algorithm to
maximize the performance measure.

Some studies have been focused in construct a suitable set of features that adequately
measure the relative difficulty of the instances of the problem (Smith-Miles et al., 2009;
Messelis et al., 2009; Madani et al., 2009; Quiroz, 2009; Smith-Miles & Lopes, 2012).
Generally there are two main approaches used to characterize the instances: the first is to

www.intechopen.com

Intelligent Systems

80

identify problem dependent features based on domain knowledge of what makes a
particular instance challenging or easy to solve; the second is a more general set of features
derived from landscape analysis (Schiavinotto & Stützle, 2007; Czogalla & Fink, 2009). To
define the set of features that describe the characteristics of the instances is a difficult task
that requires expert domain knowledge of the problem. The indices of characterization
should be carefully chosen, so as to permit a correct discrimination of the difficulty of the
instances to explain the algorithms performance. There is little that will be learned via a
knowledge discovery process if the features selected to characterize the instances do not
have any differentiation power (Smith-Miles et al., 2009).

On the other hand, portfolio creation and algorithm selection has received a lot of attention
in areas that deal with solving computationally hard problems (Leyton-Brown et al., 2003;
O’Mahony et al., 2008). The current state of the art is such that often there are many
algorithms and systems for solving the same kind of problem; each with its own
performance on a particular problem. Machine learning is an established method of
addressing ASP (Lobjois & Lemâitre, 1998; Fink, 1998). Given the performance of each
algorithm on a set of training problems, we try to predict the performance on unseen
problems (Kotthoff et al., 2011). There have been many studies in the area of algorithm
performance prediction, which is strongly related to algorithm selection in the sense that
supervised learning or regression models are used to predict the performance ranking of a
set of algorithms, given a set of features of the instances (Smith-Miles & Lopes, 2012).

In the selection of the efficient mapping mechanism a challenging research goal is to design
a run-time system that can repeatedly execute a program, learning over time to make
decisions that maximize the performance measure. Since the right decisions may depend on
the problem size and parameters, the machine characteristics and load, the data distribution,
and other uncertain factors, this can be quite challenging. Some works treats algorithms in a
black-box manner: each time a single algorithm is selected and applied to the given instance
then a regression analysis or machine learning techniques are used to build a predictive
model of the performance of the algorithms given the features of the instances (Lobjois &
Lemâitre, 1998; Fink, 1998; Leyton-Brown et al., 2003; Ali & Smith, 2006). Other works focus
on dynamic selection of algorithm components while the instance is being solved. In that
sense, each instance is solved by a mixture of algorithms formed dynamically at run-time
(Lagoudakis & Littman, 2000; Samulowitz & Memisevic, 2007; Streeter et al., 2007). The use
of efficient mapping mechanism in intelligent systems is described in the next section.

3. Applications of algorithm selection to real world and theorists problems

The principles applied to ASP can be used in a wide range of applications in the real world
and theoretical. Generally an application that solves a real problem is an extended version of
parameters and constraints in another application that solves a theoretical problem. The
nature of the algorithm selection problem is dynamic because it must incorporate new
knowledge periodically, in order to preserve the efficacy of selection strategies. This section
describes some applications to real-world complex problems, such as knowledge discovery
and data mining, bioinformatics and Web services. It also describes some applications to
solve complex theoretical problems; some examples are NP-hard problems, also called
combinatorial optimization problems.

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

81

3.1 Bioinformatics

In (Nascimento et al., 2009) the authors investigate the performance of clustering algorithms
on gene expression data, by extracting rules that relate the characteristics of the data sets of
gene expression to the performance achieved by the algorithms. This represents a first
attempt to solve the problem of choosing the best cluster algorithm with independence of
gene expression data. In general, the choice of algorithms is basically driven by the
familiarity of biological experts to the algorithm, rather than the characteristics of the
algorithms themselves and of the data. In particular, the bioinformatics community has not
reached consensus on which method should be preferably used. This work is directly
derived from the Meta-Learning framework, originally proposed to support algorithm
selection for classification and regression problems. However, Meta-Learning has been
extended to other domains of application, e.g. to select algorithms for time series
forecasting, to support the design of planning systems, to analyze the performance of meta-
heuristics for optimization problems. Meta-Learning can be defined by considering four
aspects: (a) the problem space, P, (b) the meta-feature space, F, (c) the algorithm space, A
and (d) a performance metric, Y. As final remark, authors demonstrated that the rule-based
ensemble classifier presented the most accuracy rates in predicting the best clustering
algorithms for gene expression data sets. Besides, the set of extracted rules for the selection
of clustering algorithms, using an inductive decision tree algorithm, gave some interesting
guidelines for choosing the right method.

3.2 WEB services

In recent years, many studies have focused on developing feasible mechanisms to select
appropriate services from service systems in order to improve performance and efficiency.
However, these traditional methods do not provide effective guidance to users and, with
regard to ubiquitous computing, the services need to be context-aware. In consequence, the
work achieved by (Cai et al., 2009) proposed a novel service selection algorithm based on
Artificial Neural Network (ANN) for ubiquitous computing environment. This method can
exactly choose a most appropriate service from many service providers, due to the earlier
information of the cooperation between the devices. Among the elements that exist in the
definition of a service, Z represents the evaluation value of respective service providers’
service quality, and its value is calculated with a function that involves the time and the
conditions of current context environment, e.g. user context, computing context, physical
context, with a division into static and dynamical information.

Among the advantages of using ANN to solve the service selection problem, is that, the
method can easily adapt the evaluation process to the varying context information, and
hence, it can provide effective guidance so that lots of invalid selecting processes can be
avoided. The neural network selected was Back Propagation (BP) because is the most
commonly used; however, this algorithm was improved with a three-term approach:
learning rate, momentum factor and proportional factor. The efficiency of such algorithm
was obtained because adding the proportional factor enhanced the convergence speed and
stability. In conclusion, the authors claim, that this novel service selection outperforms the
traditional service selection scheme.

www.intechopen.com

Intelligent Systems

82

3.3 Learning systems

In (Bradzil et al., 2003) is described a meta-learning method to support selection of
candidate learning algorithms. Bradzil et al. use the Instance-Based Learning (IBL) approach
because IBL has the advantage that the system is extensible; once a new experimental result
becomes available, it can be easily integrated into the existing results without the need to
reinitiate complex re-learning. In this work a k-Nearest Neighbor (k-NN) algorithm to
identify the datasets that are most similar to the one is used. The distance between datasets
is assessed using a relatively small set of data characteristics, which was selected to
represent properties that affect algorithm performance; it is used to generate a
recommendation to the user in the form of a ranking. The prediction, is constructed by
aggregating performance information for the given candidate algorithms on the selected
datasets. They use a ranking method based on the relative performance between pairs of
algorithms. This work shown how can be exploited meta-learning to pre-select and
recommend one or more classification algorithms to the user. They claimed that choosing
adequate methods in a multistrategy learning system might significantly improve its overall
performance. Also it was shown that meta-learning with k-NN improves the quality of
rankings methods in general.

3.4 Knowledge discovery and data mining

In (Hilario & Kaousis, 2000) is addressed the model selection problem in knowledge
discovery systems, defined as the problem of selecting the most appropriate learning model
or algorithm for a given application task. In this work they propose framework for
characterizing learning algorithms for classification as well as their underlying models,
using learning algorithm profiles. These profiles consist of metalevel feature-value vectors,
which describe learning algorithms from the point of view of their representation and
functionality, efficiency, resilience, and practicality. Values for these features are assigned
on the basis of author specifications, expert consensus or previous empirical studies.
Authors review past evaluations of the better known learning algorithms and suggest an
experimental strategy for building algorithm profiles on more quantitative grounds. The
scope of this paper is limited to learning algorithms for classification tasks, but it can be
applied to learning models for other tasks such as regression or association.

In (Kalousis & Theoharis, 1999) is presented an Intelligent Assistant called NOEMON,
which by inducing helpful suggestion from background information can reduce the effort
in classifier selection task. For each registered classifier, NOEMON measures its
performance in order to collect datasets for constituting a morphologic space. For suggest
the most appropriate classifier, NOEMON decides on the basis of morphological
similarity between the new dataset and the existing collection. Rules are induced from
those measurements and accommodated in a knowledge database. Finally, the
suggestions on the most appropriate classifier for a dataset are based on those rules. The
purpose of NOEMON is to supply the expert with suggestions based on its knowledge on
the performance of the models and algorithms for related problems. This knowledge is
being accumulated in a knowledge base end is updated as new problems as are being
processed.

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

83

3.5 Scheduling problem

In (Kadioglu et al., 2011) the main idea is taken from an algorithm selector called Boolean
Satisfiability (SAT) based on nearest neighbor classifier. On one hand, authors presented
two extensions to it; one of them is based on the concept of distance-based weighting, where
they assign larger weights to instances that are closer to the test instance. The second
extension, is based on clustering-based adaptive neighborhood size, where authors adapt
the size of the neighborhood based on the properties of the given test instance. These two
extensions show moderate but consistent performance improvements to the algorithm
selection using Nearest-Neighbor Classification (Malitsky et al., 2011). On the other hand,
authors developed a new hybrid portfolio that combines algorithm selection and algorithm
scheduling, in static and dynamic ways. For static schedules the problem can be formulated
as an integer program, more precisely, as a resource constrained set covering problem,
where the goal is to select a number of solver-runtime pairs that together “cover” (i.e., solve)
as many training instances as possible. Regarding dynamic schedules, the column
generation approach works fast enough when yielding potentially sub-optimal but usually
high quality solutions. This allows us to embed the idea of dynamic schedules in the
previously developed nearest-neighbor approach, which selects optimal neighborhood sizes
by random sub-sampling validation. With SAT as the testbed, experimentation
demonstrated that author’s approach can handle highly diverse benchmarks, in particular a
mix of random, crafted, and industrial SAT instances, even when deliberately removed
entire families of instances from the training set. As a conclusion, authors presented a
heuristic method for computing solver schedules efficiently, which O’Mahony (O’Mahony
et al., 2008) identified as an open problem. In addition, they showed that a completely new
way of solver scheduling consisting of a combination of static schedules and solver selection
is able to achieve significantly better results than plain algorithm selection.

3.6 Traveling salesman problem

In (Kanda et al., 2011), the work is focused in the selection of optimization algorithms for
solving TSP instances; this paper proposes a meta-learning approach to recommend
optimization algorithms for new TSP instances. Each instance is described by meta-features
of the TSP that influences the efficiency of the optimization algorithms. When more than one
algorithm reaches the best solution, the multi-label classification problem is addressed
applying three steps: 1) decomposition of multi-label instances into several single-label
instances, 2) elimination of multi-label instances, and 3) binary representation, in order to
transform multi-label instances into several binary classification problems. Features were
represented as a graph. The success of this meta-learning approach depended on the correct
identification of the meta-features that best relate the main aspects of a problem to the
performances of the used algorithms. Finally the authors claimed that it is necessary to
define and expand the set of metafeatures, which are important to characterize datasets in
order to improve the performance of the selection models.

3.7 Satisfiability problem

In (Xu et al., 2009) is described an algorithm for constructing per-instance algorithm
portfolios for SAT. It has been widely observed that there is no single “dominant” SAT
solver; instead, different solvers perform best on different instances. SATzilla is an

www.intechopen.com

Intelligent Systems

84

automated approach for constructing per-instance algorithm portfolios for SAT that use so-
called empirical hardness models to choose among their constituent solvers. This approach
takes as input a distribution of problem instances and a set of component solvers, and
constructs a portfolio optimizing a given objective function (such as mean runtime, percent
of instances solved, or score in a competition). The algorithm selection approach is based on
the idea of building an approximate runtime predictor, which can be seen as a heuristic
approximation to a perfect oracle. Specifically, they use machine learning techniques to
build an empirical hardness model, a computationally inexpensive predictor of an
algorithm’s runtime on a given problem instance based on features of the instance and the
algorithm’s past performance. By modeling several algorithms and, at runtime, choosing the
algorithm predicted to have the best performance; empirical hardness models can serve as
the basis for an algorithm portfolio that solves the algorithm selection problem
automatically.

3.8 Vehicle routing problem

In (Ruiz-Vanoye et al., 2008) the main contribution of this paper is to propose statistical
complexity indicators applied to the Vehicle Routing Problem with Time Windows
(VRPTW) instances in order that it allows to select appropriately the algorithm that better
solves a VRPTW instance. In order to verify the proposed indicators, they used the
discriminant analysis contained in SPSS software, such as a machine learning method to
find the relation between the characteristics of the problem and the performance of
algorithms (Perez et al., 2004), as well as the execution of 3 variants of the genetic algorithms
and the random search algorithm. The results obtained in this work showed a good
percentage of prediction taking into account that this based on statistical techniques and not
on data-mining techniques. By means of the experimentation, authors conclude that it is
possible to create indicators applied to VRPTW that help appropriately to predict the
algorithm that better solves the instances of the VRPTW.

4. Related work on automatic algorithm selection

In this section some examples of related works of the reviewed literature are classified by
Methods or methodologies utilized for establishing the relation between the problems and
algorithms, and solve the algorithm selection problem. 2.1. Solution Environments, where
the algorithm selection problem is boarded, are described in section 2.2.

4.1 Simple statistical tests

The most common method to compare experimentally algorithms consists in the
complementary use of a set of simple well-known statistical tests: The Sign, Wilcoxon and
Friedman tests, among others. The tests are based on the determination of the differences in
the average performance, which is observed experimentally: if the differences among the
algorithms are significant statistically, the algorithm with the best results is considered as
superior (Lawler 1985). Reeves comments that a heuristic with good averaged performance,
but with high dispersion, has a very high risk to show a poor or low performance in many
instances (Reeves 1993). He suggests as alternative to formulate for each algorithm, a utility
function adjusted to a gamma distribution, whose parameters permit to compare the
heuristics on a range of risk value.

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

85

4.2 Regression analysis

Gent and Walsh make an empirical study of the GSAT algorithm, it is an approximation
algorithm for SAT, and they apply regression analysis to model the growth of the cost of
obtaining the solution with the problem size (Gent 1997).

In (Cruz 1999), Pérez and Cruz present a statistical method to build algorithm performance
models, using polynomial functions, which relate the performance with the problem size.
This method first generates a representative sample of the algorithms performance, and then
the performance functions are determined by regression analysis, which finally are
incorporated in an algorithm selection mechanism. The polynomial functions are used to
predict the best algorithm that satisfies the user requirements.

The performance of local search algorithms Novelty and SAPS for solving instances of the
SAT problem were analyzed by (Hutter 2006). The authors used linear regression with
linear and quadratic basis functions to build prediction models. Firstly, they built a
prediction model, using problem features and algorithm performance, to predict the
algorithm run time. Secondly, they build another prediction model, using problem features,
algorithm parameter settings and algorithm performance. This model is used to
automatically adjust the algorithm’s parameters on a per instance basis in order to optimize
its performance.

4.3 Functions of probability distribution

Frost finds that the performance of the algorithms to solve CSP instances can be
approximated by two standard families of functions of continuous probability distribution
(Frost 1997). The resoluble instances can be modeled by the Weibull distribution and the
instances that are not resoluble by the lognormal distribution. He utilizes four parameters to
generate instances: number of constraints, number of prohibited value pairs per constraint,
the probability of a constraint existing between any pair of variables, the probability each
constraint is statistically independent of the others, and the probability that a value in the
domain of one variable in a constraint will be incompatible with a value in the domain of the
other variable in the constraint.

Hoos and Stuzle present a similar work to Frost. They find that the performance of
algorithms that solve the SAT instances can be characterized by an exponential distribution
(Hoos 2000). The execution time distribution is determined by the execution of k times of an
algorithm over a set of instances of the same family, using a high time as stop criteria and
storing for each successful run the execution time required to find the solution. The
empirical distribution of the execution time is the accumulated distribution associated with
these observations, and it allows projecting the execution time t (given by the user) to the
probability of finding a solution in this time. A family is a set of instances with the same
value of the parameters that are considered critical for the performance.

An algorithm portfolio architecture was proposed in (Silverthorn 2010). This architecture
employs three core components: a portfolio of algorithms; a generative model, which is fit to
data on those algorithms past performance, then used to predict their future performance;
and a policy for action selection, which repeatedly chooses algorithms based on those
predictions. Portfolio operation begins with offline training, in which a) training tasks are

www.intechopen.com

Intelligent Systems

86

drawn from the task distribution, b) each solver is run many times on each training task,
and c) a model is fit to the outcomes observed in training. In the test phase that follows,
repeatedly, (1) a test task is drawn from the same task distribution, (2) the model predicts
the likely outcomes of each solver, (3) the portfolio selects and runs a solver for some
duration, (4) the run’s outcome conditions later predictions, and (5) the process continues
from (2) until a time limit expires.

The models of solver behavior are two latent class models: a multinomial mixture that
captures the basic correlations between solvers, runs, and problem instances, and a mixture
of Dirichlet compound multinomial distributions that also captures the tendency of solver
outcomes to recur. Each model was embedded in a portfolio of diverse SAT solvers and
evaluated on competition benchmarks. Both models support effective problem solving, and
the DCM-based portfolio is competitive with the most prominent modern portfolio method
for SAT (Xu 2009).

4.4 Functions of heuristic rules

Rice introduced the poly-algorithm concept (Rice 1968) in the context of parallel numeric
software. He proposes the use of functions that can select, from a set of algorithms, the best
to solve a given situation. After the Rice work, other researchers have formulated different
functions that are presented in (Li 1997, Brewer 1995). The majority of the proposed
functions are simple heuristic rules about structural features of the parameters of the
instance that is being solved, or about the computational environment. The definition of the
rules requires of the human experience.

The objective of the proposed methodology in (Beck 2004) is to find the best solution to a
new instance, when a total limit time T is given. Firstly, the selection strategies for a set of
algorithms A were formulated and denominated as prediction rules, these are: Selection is
based on the cost of the best solution found by each algorithm; Selection is based on the
change in the cost of the best solutions found at 10 second intervals; Selection is based on the
extrapolation of the current cost and slope to a predicted cost at T.

These rules are applied for the training dataset and the optimal sampling time t* (required
time to select the algorithm with the less solution error) is identified for each of them.
After, when a new instance is given, each prediction rule is utilized to find the algorithm
with the best found solution in a time tp = |A| x t*, and it is executed in the remaining
time tr = T - tp. One of the advantages is that the methodology can be applied to different
problems and algorithms. Nevertheless, the new dataset must have similarity with the
training dataset.

4.5 Machine learning

The algorithm selection problem is focused by Lagoudakis and Littam in (Lagoudakis 2000)
as a minimization problem of execution total time, which is solved with a Reinforced
Learning algorithm (RL). Two classical problems were focused: selecting and ordering. A
function that predicts the best algorithm for a new instance using its problem size is
determined by means of training. The learned function permits to combine several recursive
algorithms to improve its performance: the actual problem is divided in subproblems in

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

87

each recursive step, and the most adequate algorithm in size is used for each of them. This
work is extended to backtracking algorithms to SAT problem in (Lagoudakis 2001).

A system (PHYTHIA-II) to select the most appropriated software to solve a scientific
problem is proposed in (Houstis 2002). The user introduces the problem features (operators
of the equation, its domain, values of the variables, etc.) and time requirements and allowed
error. The principal components of PHYTHIA-II are the statistical analysis, pattern
extraction module and inference engine. The first consists in ranking the algorithms
performance data by means of Friedman rank sums (Hollander 1973). The second utilizes
different machine learning methods to extract performance patterns and represent them
with decision and logic rules. The third is the process to correspond the features of a new
problem with the produced rules; the objective is to predict the best algorithm and the most
appropriated parameters to solve the problem.

The METAL research group proposed a method to select the most appropriate classification
algorithm for a set of similar instances (Soares 2003). They used a K-nearest neighborhood
algorithm to identify the group of instances from a historical registry that exhibit similar
features to those of a new instance group. The algorithm performance on instances of
historical registry is known and is used to predict the best algorithms for the new instance
group. The similarity among instances groups is obtained considering three types of
problem features: general, statistical and derived from information theory.

A Bayesian approach is proposed in (Guo, 2004) to construct an algorithm selection
system which is applied to the Sorting and Most Probable Explanation (MPE) problems.
From a set of training instances, their features and the run time of the best algorithm that
solves each instance are utilized to build the Bayesian network. Guo proposed four
representative indexes from the Sorting problem features: the size of the input
permutation and three presortedness measures. For the MPE problem he utilizes general
features of the problem and several statistical indexes of the Bayesian network that
represents the problem.

A methodology for instance based selection of solver's policies that solves instances of the
SAT problem was proposed by (Nikolic 2009). The policies are heuristics that guide the
search process. Different configurations of these policies are solution strategies. The problem
structure of all instances was characterized by indices. The problem instances were grouped
by the values of these indices, forming instances families. All problem instances were solved
by all solution strategies. The best solution strategy for each family is selected. The k-nearest
neighbor algorithm selects the solution strategy for a new input instance. The results of the
performance of the algorithm ARGOSmart, that performs the proposed methodology, were
superior to ARGOSAT algorithm.

5. Approaches to building algorithm selectors

In this chapter we solve ASP with two approaches: meta-learning and hyper-heuristics. The
meta-learning approach is oriented to learning about classification using machine learning
methods; three methods are explored to solve an optimization problem: Discriminant
Analysis (Pérez, 2004), C4.5 and the Self-Organising Neural Network. The hyper-heuristic
approach is oriented to automatically produce an adequate combination of available low-
level heuristics in order to effectively solve a given instance (Burke et al., 2010); a hyper-

www.intechopen.com

Intelligent Systems

88

heuristic strategy is incorporated in an ant colony algorithm to select the heuristic that best
adjust one of its control parameter.

5.1 Selection of metaheuristics using meta-learning

In this section a methodology based on Meta-Learning is presented for characterizing
algorithm performance from past experience data. The characterization is used to select the
best algorithm for a new instance of a given problem. The phases of the methodology are
described and exemplified with the well known one-dimensional Bin-Packing problem.

5.1.1 Algorithms for the solution of the Bin Packing Problem

The Bin Packing Problem (BPP) is an NP-hard combinatorial optimization problem, in
which the objective is to determine the smallest number of bins to pack a set of objects. For
obtaining suboptimal solutions of BPP, with less computational effort, we used
deterministic and non-deterministic algorithms. The algorithm performance is evaluated
with the optimal deviation percentage and the processing time (Quiroz, 2009).

The deterministic algorithms always follow the same path to arrive at the same solution. The
First Fit Decreasing (FFD) algorithm places the items in the first bin that can hold them. The
Best Fit Decreasing (BFD) places the items in the best-filled bin that can hold them. The
Match to First Fit (MFF) algorithm is a variation of FFD, wich uses complementary bins for
holding temporarily items. The Match to Best Fit (MBF) algorithm is a variation of BFD and,
like MFF uses complementary bins. The Modified Best Fit Decreasing (MBFD) partially pack
the bins in order to find a “good fit” item combination.

The Non-Deterministic Algorithms do not obtain the same solution in different executions,
but in many cases they are faster than deterministic algorithms. The Ant Colony
Optimization (ACO) algorithm builds a solution with each ant: it starts with an empty bin;
next, each new bin is filled with “selected items” until no remaining item fits in it; finally, a
“selected item” is chosen stochastically using mainly a pheromone trail (Ducatelle, 2001). In
the Threshold Accepting (TA) algorithm, a new feasible solution is accepted if the difference
with the previous solution is within a threshold temperature; the value of the temperature is
decreased each time until a thermal equilibrium is reached (Pérez, 2002).

5.1.2 Methodology

The methodology proposed for performance characterization and its application to
algorithm selection consists of three consecutive phases: Initial Training, Prediction and
Training with Feedback. Figure 3 depicts these phases.

In the Initial Training Phase, two internal processes build a past experience database: the
Problem Characterization Process obtains statistical indices to measure the computational
complexity of a problem instance and, the Algorithm characterization Process solves
instances with the available algorithms to obtain performance indices. The Training Process
finally builds a knowledge base using the Problem and Algorithms Database. This
knowledge is represented through a learning model, which relates the algorithms
performance and the problem characteristics. In the Prediction Phase, The relationship
learned is used to predict the best algorithm for a new given instance. In the Training with

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

89

Feedback phase, the new solved instances are incorporated into the characterization process
for increasing the selection quality. The relationship learned in the knowledge base is
improved with a new set of solved instances and is used again in the prediction phase.

Fig. 3. Phases of the algorithm selection methodology

Initial training phase

The steps of this phase are shown in Figure 4 In step 1 (Characteristics Modeling) indices are
derived for measuring the influence of problem characteristics on algorithm performance
(see Equations 1 to 5). In step 2 (Statistical Sampling) a set of representative instances are
generated with stratified sampling and a sample size derived from survey sampling. In step
3 (Characteristics Measurement) the parameter values of each instance are transformed into
indices. In step 4 (Instances Solution) instances are solved using a set of heuristic algorithms.
In Step 5 (Clustering) groups are integrated in such a way that they are constituted by
instances with similar characteristics, and for which an algorithm outperformed the others.
Finally, in step 6 (Classification) the identified grouping is learned into formal classifiers.

Fig. 4. Steps of the initial training phase

We propose five indices to characterize the instances of BPP:

Instance size p expresses a relationship between instance size and the maximum size solved,
where, n is the number of items, maxn is the maximum size solved

www.intechopen.com

Intelligent Systems

90

n

p
maxn

 (1)

a. Constrained capacity t expresses a relationship between the average item size and the bin
size. The size of item i is si and the bin size is c.

 1
i

i

(s / c)

t i n
n

  


 (2)

b. Item dispersion d expresses the dispersion degree of the item size values.

 ()d t  (3)

c. Number of factors f expresses the proportion of items whose sizes are factors of the bin
capacity.

 1
i

i

factor(c ,s)

f i n
n

  


 (4)

d. Bin usage b expresses the proportion of the total size that can fit in a bin of capacity c.

1 if

 1
otherwise

i
i

i
i

c s

b i nc

s

 

  






 (5)

Prediction phase

The steps of this phase are shown in Figure 5. For a new instance, step 7 (Characteristics
Measurement) calculates its characteristic values using indices. Step 8 uses the learned
classifiers to determine, from the characteristics of the new instance, which group it
belongs to. The algorithm associated to this group is the expected best algorithm for the
instance.

Fig. 5. Steps of the prediction phase

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

91

Training and FeedBack phase

The steps of this phase are shown in Figure 6. The objective is to feedback the system in
order to maintain it in a continuous training. For each new solved and characterized
instance, step 9 (Instance Solution) obtains the real best algorithm. Afterwards, step 10
(Patterns Verification) compares the result, if the prediction is wrong and the average
accuracy is beyond an specified threshold, then the classifiers are rebuilt using the old and
new dataset; otherwise the new instance is stored and the process ends.

Fig. 6. Steps of the training with feedback phase

5.1.3 Experimentation

For test purposes 2,430 random instances of the Bin-Packing problem were generated,
characterized and solved using the seven heuristic algorithms described in Section 5.1.1.
Table 1 shows a small instance set, which were selected from the sample.

Instance
Problem characteristic indices Real best

algorithms p b t f d

E1i10.txt 0.078 0.427 0.029 0.000 0.003 FFD,TA
E50i10.txt 0.556 0.003 0.679 0.048 0.199 BFD,ACO
E147i10.txt 0.900 0.002 0.530 0.000 0.033 TA

Table 1. Example of random intances with their characteristics and the best algorithms

The K-means clustering method was used to create similar instance groups. Four groups
were obtained; each group was associated with a similar instances set and an algorithm with
the best performance for it. Three algorithms had poor performance and were outperformed
by the other four algorithms. The Discriminant Analysis (DA) and C4.5 classification
methods were used to build the algorithm selector. We use the machine learning methods
available in SPSS version 11.5 and Weka 3.4.2, respectively. Afterwards, for validating the
system, 1,369 standard instances were collected [Ross 2002]. In the selection of the best
algorithm for all standard instances, the experimental results showed an accuracy of 76%
with DA and 81% with C4.5. This accuracy was compared with a random selection from the

www.intechopen.com

Intelligent Systems

92

seven algorithms: 14.2%. For the instances of the remaining percentage (100-76%), the
selected algorithms generate a solution close to the optimal.

The selection system with feedback was implemented using a neural network, particularly
the Self-Organizing Map (SOM) of Kohonen available in Matlab 7.0. The best results were
obtained with only two problem characteristic indices (p,t) in a multi-network. The accuracy
increased from 78.8% in 100 epochs up to 100% in 20,000 epochs. These percentages
correspond to the network with initial-training and training-with-feedback, respectively.
The SOM was gradually feedback with all the available instances. Using all indices (p,b,t,f,d)
the SOM only reached 76.6% even with feedback.

5.2 Selection of heuristics in a hyper-heuristic framework

A hyper-heuristic is an automated methodology for selecting heuristics to solve hard
computational search problems (Burke et al., 2009; Burke et al., 2010; Duarte et al., 2007). Its
methodology is form by a high-level algorithm that, given a particular problem instance and
a number of low-level heuristics or metaheuristic, can select and apply an appropriate low-
level heuristic or metaheuristic at each decision step. These procedures on their way to work
raise the generality at which search strategy can operate. General scheme for design a hyper-
heuristic is shown in Figure 7.

Hyper-
Heuristic

D
o
m
a
i
n

B
a
r
r
i
e
r

E
v
a
l
u
a
t
i
o
n
F
u
n
c
t
i
o
n

Set of low level heuristic or
Metaheuristic

 H1 H2 H3 Hn

Problem to be

solved

The problem solution space

Fig. 7. Hyper-heuristic Elements

The first low-level algorithms build a solution incrementally; starting with an empty
solution with the goal is to intelligently select the next construction heuristics or
metaheuristic to gradually build a complete solution (Garrido, & Castro, 2009).

5.2.1 Representative examples

SQRP is the problem of locating information in a network based on a query formed by
keywords. The goal of SQRP is to determine the shortest paths from a node that issues a
query to nodes that can appropriately answer it (by providing the requested information).
Each query traverses the network, moving from the initiating node to a neighboring node
and then to a neighbor of a neighbor and so forth, until it locates the requested resource or

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

93

gives up in its absence. Due to its complexity (Michlmayr, 2007) solutions proposed to SQRP
typically limit to special cases.

Hyper-Heuristic_AdaNAS (HH_AdaNAS) is an adaptive metaheuristic algorithm, which
resolves SQRP (Hernandez, 2010). This algorithm was created from AdaNAS (Gómez et al.,
2010). The high-level algorithm is formed by HH_AdaNAS, which use as solution algorithm
AdaNAS, that is inspired by an ant colony and the set of low-level heuristics are included in
the algorithm called HH_TTL. The goal of hyperheuristic HH_TTL is to define by itself in
real time, the most adequate values for time to live (TTL) parameter during the execution of
the algorithm. The main difference between AdaNAS and HH_AdaNAS are:
when applying the modification of the TTL and the calculation of the amount of TTL to be
allocated. In the Figure 8 we show HH_AdaNAS is form by AdaNAS + HH_TTL.

TOPOLOGY

NODE

SQRP

REPOSITORY

P2P-NETWORK Hyper-Heuristic

HH_AdaNAS

Hyper-Heuristic

HH_AdaNAS

D
o
m
a
i
n

B
a
rr
i
e
r

E
v
a
l
u
a
t
i
o
n

F
u
n

c
t
i
o
n

AdaNAS

SURVIVAL RULE
Tables

Learning:

pheromone table
τ and tables D, N

y H.

+

x
Z

HH_TTL

H1 H2 H3 H4

H1: To increase TTL in 1 unit.

H2: Maintains TTL constant.

H3 = Falls TTL in 1 unit.

H4 = Falls TTL in 2 units.

Tables Learning:

pheromone table τhh and
tables η.

TOPOLOGY

NODE

SQRP

REPOSITORY

P2P-NETWORK

TOPOLOGY

NODE

SQRP

REPOSITORY

P2P-NETWORK Hyper-Heuristic

HH_AdaNAS

Hyper-Heuristic

HH_AdaNAS

D
o
m
a
i
n

B
a
rr
i
e
r

E
v
a
l
u
a
t
i
o
n

F
u
n

c
t
i
o
n

AdaNAS

SURVIVAL RULESURVIVAL RULE
Tables

Learning:

pheromone table
τ and tables D, N

y H.

+

x
Z

HH_TTL

H1 H2 H3 H4

H1: To increase TTL in 1 unit.

H2: Maintains TTL constant.

H3 = Falls TTL in 1 unit.

H4 = Falls TTL in 2 units.

Tables Learning:

pheromone table τhh and
tables η.

HH_TTL

H1 H2 H3 H4

H1: To increase TTL in 1 unit.

H2: Maintains TTL constant.

H3 = Falls TTL in 1 unit.

H4 = Falls TTL in 2 units.

Tables Learning:

pheromone table τhh and
tables η.

HH_TTL

H1 H2 H3 H4

H1: To increase TTL in 1 unit.

H2: Maintains TTL constant.

H3 = Falls TTL in 1 unit.

H4 = Falls TTL in 2 units.

Tables Learning:

pheromone table τhh and
tables η.

Fig. 8. HH_AdaNAS is form by AdaNAS + HH_TTL.

Data structures of HH_AdaNAS

HH_AdaNAS inherited some data structures of AdaNAS, as the pheromone table τ and the
tables H, D and N. Besides the data structures of the high level metaheuristics, are the
structures that help to select the low-level heuristic these are the pheromone table τhh and
the table hiperheuristic visibility states η. All the tables stored heuristic information or
gained experience in the past. The relationship of these structures is shown in Figure 9.

When HH_AdaNAS searches for the next node, in the routing process of the query, is based
on the pheromone table τ and tables D, N y H; these tables are intended to give information
on distant D, H is a table that records the successes of past queries and number of
documents N which are the closest nodes that can satisfy the query. In the same way, when
HH_TTL chooses the following low level heuristic, through data structures τhh and η. The
memory is composed of two data structures that store information of prior consultations.
The first of these memories is the pheromone table τhh which has three dimensions, and the
other memory structure is the table hiper-heuristic visibility states η, which allows the hiper-

www.intechopen.com

Intelligent Systems

94

heuristic know in what state is SQRP. Is to say, if is necessary to add more TTL, because the
amount of resources found are few and decreases the lifetime.

τ

Hyper-Heuristic

Ant Colony Algorithm

HH_AdaNAS

D N H

HH_TTL. Tables storage long learning,
applied in selecting the next low-level

heuristic.

Tables Storage: Short and Long learning,
applied in selecting the next neighbor.

τhh η

τ

Hyper-Heuristic

Ant Colony Algorithm

HH_AdaNAS

D N H

HH_TTL. Tables storage long learning,
applied in selecting the next low-level

heuristic.

Tables Storage: Short and Long learning,
applied in selecting the next neighbor.

τhh η

Fig. 9. Storage structures of HH_AdaNAS.

The pheromone table τ is divided into n two-dimensional tables, one corresponding to each
node i of the network. These tables contain only entries for a node fixed i, therefore, its
dimensions are at most |L|×|Γ (i)|, where L is the dictionary, which defines the keywords
allowed for consultation and Γ (i) is the set of neighboring nodes of i. Each in turn contains a
two-dimensional table |m|×|h|, where m is the states visibility set of the problem and h is
the available heuristics set. The pheromone table is also called learning structure long.

The visibility state table η expresses the weight of the relation between SQRP-states and
TTL-heuristics and was inspired by the deterministic survival rule designed by Rivera
(Rivera G. 2009). Table η is formed by the combination of |m|×|h|, where a visibility state
mi is identified mainly by α, which depends on the node selected by AdaNAS to route the
query SQRP. The variable α in Equation 6 contributes to ensure that the node selected by
HH_AdaNAS, in the future, not decreases the performance of the algorithm. A TTL-
heuristic is intelligently selected according with the past performance given by its
pheromone value, and its visibility value, given by an expert. The Figure 10 shows the
visibility state table used in this work.

 h1 h2 h3 h4

m1 1 0.75 0.5 0.25

m2 0.75 1 0.5 0.5

m3 0.5 0.5 1 0.75

m4 0.25 0.5 0.75 1

Fig. 10. Visibility state table

 =(i , j ,l i , j ,l xH / D) / Z (6)

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

95

Where Hi,j,l indicates the number of documents consistent with the query l, Di,j,l indicates the
length of the route to obtain the documents, i represented the current node and j is the node
chosen, and Zx is a measure of current performance. In this work the visibility states are: m1
= (α > 1)&(TTL < D)&(TTL != 1), m2 = (α > 1)&(TTL < D)&(TTL = 1), m3 = (H = 0) ||((α >
1)&(TTL ≥ D))|| ((α ≤ 1)&(TTL = 1)) and m4 = (α ≤ 1)&(TTL > 1). All the visibility states are
calculated to identify which heuristic will be applied to TTL.

5.2.2 Experimentation

The experimental environment used during experiments, and the results obtained are
presented in this section. Software: Microsoft Windows 7 Home Premium; Java programming
language, Java Platform, JDK 1.6; and integrated development, Eclipse 3.4. Hardware:
Computer equipment with processor Intel (R) Core (TM) i5 CPU M430 2.27 GHz and RAM
memory of 4 GB. Instances: It has 90 different SQRP instances; each of them consists of three
files that represent the topology, queries and repositories. The description of the features can
be found in (Cruz et al. 2008).

The average performance was studied by computing three performance measures of each
100 queries: Average hops, defined as the average amount of links traveled by a Forward
Ant until its death that is, reaching either the maximum amount of results required or
running out of TTL. Average hits, defined as the average number of resources found by
each Forward Ant until its death, and Average efficiency, defined as the average of
resources found per traversed edge (hits/hops). The initial Configuration of HH_AdaNAS
is shown in Table 2. The parameter values were based on values suggested of the literature
as (Dorigo & Stützle, 2004; Michlmayr, 2007; Aguirre, 2008 and Rivera, 2009).

In this section we show experimentally that HH_AdaNAS algorithm outperforms the
AdaNAS algorithm. Also HH_AdaNAS outperforms NAS (Aguirre, 2008), SemAnt
(Michlmayr, 2007) and random walk algorithms (Cruz et al., 2008), this was reported in
(Gómez et al., 2010), so HH_AdaNAS algorithm is positioned as the best of them.

Table 2. Shows the assignment of values for each HH_AdaNAS parameter.

In this experiment, we compare the HH_AdaNAS and AdaNAS algorithms. The
performance achieved is measured by the rate of found documents and the experiments
were conducted under equal conditions, so each algorithm was run 30 times per instance
and used the same configuration parameters for the two algorithms, which is described
in Table 2.

www.intechopen.com

Intelligent Systems

96

The Figure 11 shows the average efficiency performed during a set of queries with
HH_AdaNAS and AdaNAS algorithms; for the two algorithms the behavior is
approximately the same. The algorithm HH_AdaNAS at the beginning the efficiency is
around 2.38 hits per hop in the first 100 queries and the algorithm AdaNAS start
approximately at 2.37 hits per query also in the top 100 queries. Analyzing at another
example of the experiment, after processing the 11 000 queries at the end the efficiency
increases around 3.31 hits per hop for the algorithm HH_AdaNAS and the algorithm
AdaNAS at 3.21 hits per query. Finally, due to the result we conclude that HH_AdaNAS
achieves a final improvement in performance of 28.09%, while AdaNAS reaches an
improvement of 26.16%.

Fig. 11. The average efficiency performed during 11,000 queries with two algorithms.

6. Hybrid systems of metaheuristics: an approximate solution of ASP

The majority of problems related with ASP have a high level of complexity, according to
application domains. An alternative solution is the use of Hybrid Systems based on
Heuristics and Metaheuristics. Algorithm selection has attracted the attention of some
research in hybrid intelligent systems, for which many algorithms and large datasets are
available. Hybrid Intelligent Systems seek to take advantage of the synergy between various
intelligent techniques in solving real problems (Ludermir et al., 2011).

6.1 Relation of meta-learning and hybridization

Although some algorithms based on Hybrid Systems of Metaheuristics are better than
others on average, there is rarely a best algorithm for a given problem according to the
complexity and application domain related with the proposal solution. Instead, it is often
the case that different algorithms perform well on different problem instances. This
condition is most accentuated among algorithms for solving NP-Hard problems, because
runtimes of these algorithms are often highly variable from instance to instance.

When algorithms present high runtime variability, one is faced with the problem of
deciding which algorithm to use. Rice called this the “algorithm selection problem” (Rice,
1976). The algorithm selection has not received widespread attention. The most common
approach to algorithm selection has been to measure the performance of different
algorithms on a given instances set with certain distribution, and then select the algorithm
with the lowest average runtime.

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

97

This “winner-take-all” approach has produced recent and important advances in algorithm
design and refinement, but has caused the rejection of many algorithms that has an excellent
performance on an specific cases, but result uncompetitive on average. The following two
questions emerge from the literature (Leyton-Brown, 2003). How to perform an algorithm
selection for a given instance? How to evaluate novel hybrid algorithms?

a. Algorithms with high average running times can be combined to form a hybrid
algorithm more robust and with low average running time when the algorithm inputs
are sufficiently easy and uncorrelated.

b. New hybrid algorithm design should find more robust solution and focus on problems
on which a single algorithm performs poorly.

c. A portfolio of algorithms can also be integrated through the use of hybrid algorithms
because the solutions are considering more innovative.

In previous section we use machine learning algorithms to automatically acquire knowledge
for algorithm selection, leading to a reduced need for experts and a potential improvement
of performance. In general, the algorithm selection problem can be treated via meta-learning
approaches. The results of this approach can cause an important impact on hybridization. In
order to clarify this point, is important to speculate about how the empirical results of meta-
learning can be analyzed from a theoretical perspective with different intentions:

a. Confirm the sense of the selection rules
b. Generate insights into algorithm behavior that can be used to refine the algorithms.

The acquired knowledge is confirmed when the performance of the refined algorithms is
evaluated. The knowledge can be used to integrate complementary strategies in a hybrid
algorithm.

6.2 Use of hybridization to solve ASP in social domains

The principal advanced in the reduction of Complexity is related with the amalgam of
different perspectives established on different techniques which to demonstrate their
efficiency in different application domains with good results.

Hybridization of Algorithms is one of the most adequate ways to try to improve and solve
different ASP related with the optimization of time. Many applied ASP´s have an impact on
social domains specially to solve dynamic and complex models related with human
behavior. In (Araiza, 2011) is possible analyze with a Multiagents System the concept of
“Social Isolation”, featuring this behavior on the time according with interchanges related
with a minority and the associated health effects, when this occurs.

In addition, is possible specify the deep and impact of a viral marketing campaign using a
Social Model related with Online Social Networking. In (Azpeitia, 2011), an adequate ASP
determines the way on the future of this campaign and permits analyze the track of this to
understand their best features.

6.3 Future trends on the resolution of ASP using a hybrid system of metaheuristics

We expected that the future trends for solving ASP with hybridization will be based on
models that tend to perform activities according to a selection framework and a dynamic

www.intechopen.com

Intelligent Systems

98

contextual area. The decision of the most appropriate actions requires advanced Artificial
Intelligence Technique to satisfy a plethora of application domains in which interaction and
conclusive results are needed. This only is possible with Intelligent Systems equipped with
high processing speed, knowledge bases and an innovative model for designing
experiments, something will happen in this decade.

7. Conclusions

Many real world problems belong to a special class of problems called NP-hard, which
means that there are no known efficient algorithms to solve them exactly in the worst case.
The specialized literature offers a variety of heuristic algorithms, which have shown
satisfactory performance. However, despite the efforts of the scientific community in
developing new strategies, to date, there is no an algorithm that is the best for all possible
situations. The design of appropriate algorithms to specific conditions is often the best
option. In consequence, several approaches have emerged to deal with the algorithm
selection problem. We review hyper-heuristics and meta-learning; both related and
promising approaches.

Meta-learning, through machine learning methods like clustering and classification, is a
well-established approach of selecting algorithms, particularity to solve hard optimization
problems. Despite this, comparisons and evaluations of machine learning methods to build
algorithm selector is not a common practice. We compared three machine learning
techniques for algorithm selection on standard data sets. The experimental results revealed
in general, a high performance with respect to a random algorithm selector, but low perform
with respect to other classification tasks. We identified that the Self-Organising Neural
Network is a promising method for selection; it could reaches 100% of accuracy when
feedback was incorporated and the number of problem characteristics was the minimum.

On the other hand, hyper-heuristics offers a general framework to design algorithms that
ideally can select and generate heuristics adapted to a particular problem instance. We use
this approach to automatically select, among basic-heuristics, the most promising to adjust a
parameter control of an Ant Colony Optimization algorithm for routing messages. The
adaptive parameter tuning with hyper-heuristics is a recent open research.

In order to get a bigger picture of the algorithm performance we need to know them in
depth. However, most of the algorithmic performance studies have focused exclusively on
identifying sets of instances of different degrees of difficulty; in reducing the time needed
to resolve these cases and reduce the solution errors; in many cases following the strategy
"the -winner takes-all". Although these are important goals, most approaches have been
quite particular. In that sense, statistical methods and machine learning will be an
important element to build performance models for understanding the relationship
between the characteristics of optimization problems, the search space that defines the
behavior of algorithms that solve, and the final performance achieved by these
algorithms. We envision that the knowledge gained, in addition to supporting the growth
of the area, will be useful to automate the selection of algorithms and refine algorithms;
hiper-heuristics, hybridization, and meta-learning go in the same direction and can
complement each other.

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

99

8. Acknowledgment

This research was supported in part by CONACYT and DGEST

9. References

Ali, S. & Smith, K. (2006). On learning algorithm selection for classification. Applied Soft
Computing, Vol. 6, No. 2, (January 2006), pp. 119-38.

Aguirre, M. (2008). Algoritmo de Búsqueda Semántica para Redes P2P Complejas. Master’s thesis,
División de Estudio de Posgrado e Investigación del Instituto Tecnológico de
Ciudad Madero, Tamaulipas, México.

Azpeitia, D. (2011). Critical Factors for Success of a Viral Marketing Campaign of Real-Estate
Sector at Facebook: The strength of weak learnability. Proceedings of the HIS
Workshop at MICAI

Beck, J. & Freuder, E. (2004). Simple Rules for Low-Knowledge Algorithm Selection.
Proceedings of the 1st International Conference on Integration of IA and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, Nice, France, April
2004, J. Regin and M. Rueher (Ed.). Springer-Verlag Vol. 3011, pp. 50-64.

Brazdil, P. B., Soares C., & Pinto, D. C. J. (2003). Ranking Learning Algorithms: Using IBL
and Meta-Learning on Accuracy and Time Results. Machine Learning, Vol. 50, No. 3,
pp. 251–277, ISSN: 08856125

Brewer, E. (1995). High-Level Optimization Via Automated Statistical Modeling. Proceedings
of Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995, ACM
Press, New York, USA, pp. 80-91

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. & Woodward, J. (2009). Exploring
hyper-heuristic methodologies with genetic programming. In: Computational
Intelligence: Collaboration, Fusion and Emergence, Intelligent Systems Reference
Library

Burke, K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E. & Woodward, R. (2010). A
Classification of Hyper-heuristic Approaches, In: International Series in Operations
Research & Management Science, Gendreau, M. and Potvin, J.Y. pp.(449). Springer
Science+Business Media, ISBN 978-1-4419-1663-1, NY, USA

Cai, H., Hu X., Lü Q., & Cao, Q. (2009). A novel intelligent service selection algorithm and
application for ubiquitous web services environment. Expert Systems with
Applications, Vol. 36, No. 2, Part 1, pp. 2200-2212, ISSN: 09574174

Cruz, L. (1999). Automatización del Diseño de la Fragmentación Vertical y Ubicación en Bases de
Datos Distribuidas usando Métodos Heurísticos y Exactos. Master’s thesis, Instituto
Tecnológico y de Estudios Superiores de Monterrey, México.

Cruz, L., Gómez, C., Aguirre, M., Schaeffer, S., Turrubiates, T., Ortega, R. & Fraire,H.(2008).
NAS algorithm for semantic query routing systems in complex networks. In:
International Symposium on Distributed Computing and Artificial Intelligence 2008/
Advances in Soft Computing 2009. Corchado J., Rodríguez S., Llinas J. & Molina J.,
pp. (284-292), Springer, Berlin /Heidelberg, ISBN 978-3-540-85862-1, DOI
10.1007/978-3-540-85863-8

Czogalla, J. & Fink, A. (2009). Fitness Landscape Analysis for the Resource Constrained
Project Scheduling Problem. Lecture Notes in Computer Science, Learning and
Intelligent Optimization, Vol. 5851, pp. 104-118

Dorigo, M. & Stützle, T. (2004). Ant Colony Optimization. MIT Press, Cambridge, MA., ISBN
0-262-04219-3, EUA

www.intechopen.com

Intelligent Systems

100

Duarte, A., Pantrigo, J., Gallego, M. (2007). Metaheurísticas, Ed. Dykinson S.L. España
Ducatelle, F., & Levine, J. (2001). Ant Colony Optimisation for Bin Packing and Cutting

Stock Problems. Proceedings of the UK Workshop on Computational Intelligence,
Edinburgh

Fink, E. (1998). How to solve it automatically: Selection among Problem-Solving methods.
Proceedings of ICAPS 1998, pp. 128–136

Frost, D.; Rish, I. & Vila, L. (1997). Summarizing CSP hardness with continuous probability
distributions. Proceedings of the 14th National Conference on AI, American Association
for Artificial Intelligence, pp. 327-333

Garrido, P. & Castro C. (2009). Stable solving of cvrps using hyperheuristics. Proceedings of
the 11th Annual conference on Genetic and evolutionary computation (GECCO'09), ACM,
Montreal, Canada, July 2009

Gent, I.; Macintyre, E.; Prosser, P. & Walsh, T. (1997). The Scaling of Search Cost. In:
Proceedings of the fourteenth national conference on artificial intelligence and ninth
conference on Innovative applications of artificial intelligence, pp. 315-320, AAI Press,
Retrieved from: https://www.aaai.org/Papers/AAAI/1997/AAAI97-049.pdf

Gómez, C.G., Cruz, L., Meza, E., Schaeffer, E. & Castilla, G.(2010). A Self-Adaptive Ant
Colony System for Semantic Query Routing Problem in P2P Networks. Computación
y Sistemas Vol. 13, No. 4, pp (433-448), ISSN 1405-5546

Guo, H. & Hsu, W. (2004). A Learning-based Algorithm Selection Meta-reasoner for the
Real-time MPE Problem. Proceedings of the 17th Australian Joint Conference on
Artificial Intelligence, Cairns, Australian, Dec 2004, G. I. Webb and Xinghuo Yu
(Ed.), Springer-Verlag Vol. 3339, pp. 307-318

Hernández P. (2010). Método Adaptativo para el Ajuste de Parámetros de un Algoritmo Evolutivo
Hiperheurístico. Master’s thesis, División de Estudio de Posgrado e Investigación del
Instituto Tecnológico de Ciudad Madero, Tamaulipas, México

Hilario, M., & Kalousis, A. (2000). Building algorithm profiles for prior model selection in
knowledge discovery systems. International Journal of Engineering Intelligent Systems
for Electrical Engineering and Communications, Vol. 8, No. 2, 2000, pp. 77-88, ISSN:
09691170

Hollander, M. & Wolfe, D. (1973). Non-parametric Statistical Methods. John Wiley and Sons.
New York, USA

Hoos, H. & Stutzle, T. (2000). Systematic vs. Local Search for SAT. Journal of Automated
Reasoning, Vol. 24, pp. 421-481

Houstis, E.; Catlin, A. & Rice, J. (2002). PYTHIA-II: A Knowledge/Database System for
Managing Performance Data and Recommending Scientific Software, ACM
Transactions on Mathematical Software (TOMS) - Special issue in honor of John
Rice's 65th birthday, Vol. 26, No. 2, (June 2000)

Hutter, F.; Hamadi, Y.; Hoos, H. & Leyton-Brown, K. (2006). Performance prediction and
automated tuning of randomized and parametric algorithms. Lecture Notes in
Computer Science, Principles and Practice of Constraint Programming, Vol. 4204, pp.
213-228

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann, M. (2011). Algorithm
Selection and Scheduling, Proceedings of the 17th International Conference on Principles
and Practice of Constraint Programming (CP2011), Italy, September 2011

Kalousis, A., & Theoharis, T. (1999). NOEMON: Design, implementation and performance
results of an intelligent assistant for classifier selection, Intelligent Data Analysis,
Vol. 3, No. 5, pp. 319-337, ISSN: 1088467X

www.intechopen.com

Algorithm Selection: From Meta-Learning to Hyper-Heuristics

101

Kotthoff, L.; Gent, I. & Miguel I. (2011). A Preliminary Evaluation of Machine Learning in
Algorithm Selection for Search Problems. In: AAAI Publications, Fourth International
Symposium on Combinatorial Search (SoCS), Borrajo, Daniel and Likhachev, Maxim
and López, Carlos Linare, pp. 84-91, AAAI Press, Retrieved from:
http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4006

Lagoudakis, M. & Littman, M. (2000). Algorithm Selection Using Reinforcement Learning.
Proceedings of the Sixteenth International Conference on Machine Learning. P. Langley
(Ed.), AAAI Press, pp. 511–518

Lagoudakis, M. & Littman, M. (2001). Learning to select branching rules in the dpll
procedure for satisfiability. Electronic Notes in Discrete Mathematics, Vol. 9, (June
2001), pp. 344-359

Lawler, E.; Lenstra, J.; Rinnooy, K. & Schmoys, D. (1985). The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization. John Wiley & Sons, New York, USA

Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden, J. & Shoham, Y. (2003). A
portfolio approach to algorithm selection. Proceedings of International joint conference
on artificial intelligence, Vol. 18, pp. 1542-3

Li, J.; Skjellum, A. & Falgout, R. (1997). A Poly-Algorithm for Parallel Dense Matrix
Multiplication on Two-Dimensional Process Grid Topologies. Concurrency, Practice
and Experience, Vol. 9, No. 5, pp. 345-389

Lobjois, L. & Lemâitre, M. (1998). Branch and bound algorithm selection by performance
prediction. In: AAAI '98/IAAI '98 Proceedings of the fifteenth national/tenth conference
on Artificial intelligence/Innovative applications of artificial intelligence, Jack Mostow,
Charles Rich, Bruce Buchanan, pp. 353-358, AAAI Press, Retrieved from:
http://www.aaai.org/Papers/AAAI/1998/AAAI98-050.pdf

Ludermir, T.B.; Ricardo B. C. Prudêncio, R.B.C; Zanchettin, C. (2011). Feature and algorithm
selection with Hybrid Intelligent Techniques. International Journal Hybrid Intelligent
Systems ,Vol. 8, No. 3, pp. 115-116

Madani, O.; Raghavan, H. & Jones, R. (2009). On the Empirical Complexity of Text
Classification Problems. SRI AI Center Technical Report

Malitsky, Y., Sabharwal, A., Samulowitz, H., & Sellmann M. (2011). Non-Model-Based
Algorithm Portfolios for SAT, Proceedings of the 14th international conference on
Theory and Applications of Satisfiability Testing, Ann Arbor, June 2011

Messelis, T.; Haspeslagh, S.; Bilgin, B.; De Causmaecker, P. & Vanden Berghe, G. (2009).
Towards prediction of algorithm performance in real world optimization problems.
Proceedings of the 21st Benelux Conference on Artificial Intelligence, BNAIC, Eindhoven,
pp. 177-183

Michlmayr, E. (2007). Ant Algorithms for Self-Organization in Social Networks. PhD thesis,
Women's Postgraduate College for Internet Technologies (WIT), Vienna, Austria

Nascimento, A. C. A., Prudencio, R. B. C., Costa, I. G., & de Souto, M. C. P. (2009). Mining
rules for the automatic selection process of clustering methods applied to cancer
gene expression data, Proceedings of 19th International Conference on Artificial Neural
Networks (ICANN), Cyprus, September 2009

Nikolić, M.; Marić, F. & Janičić, P. (2009). Instance-Based Selection of Policies for SAT
Solvers. Lecture Notes in Computer Science, Theory and Applications of Satisfiability
Testing, Vol. 5584, pp. 326-340

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., & O’Sullivan, B. (2009). Using Case-
based Reasoning in an Algorithm Portfolio for Constraint Solving. (2008).

www.intechopen.com

Intelligent Systems

102

Proceedings of The 19th Irish Conference on Artificial Intelligence and Cognitive Science,
Ireland, August 2008

Pérez, O.J., Pazos, R.A., Frausto, J., Rodríguez, G., Romero, D., Cruz, L. (2004). A Statistical
Approach for Algorithm Selection. Lectures Notes in Computer Science, Vol. 3059,
(May 2004) pp. 417-431, ISSN: 0302-9743

Pérez, J., Pazos, R.A., Vélez, L. Rodríguez, G. (2002). Automatic Generation of Control
Parameters for the Threshold Accepting Algorithm. Lectures Notes in Computer
Science, Vol. 2313, pp. 119-127

Quiroz, M. (2009). Caracterización de Factores de Desempeño de Algoritmos de Solución de BPP.
Master´s thesis, Instituto Tecnológico de Cd. Madero, Tamaulipas, México

Reeves, C. (1993). Modern heuristic techniques for combinatorial problems. John Wiley & Sons,
ISBN: 0-470-22079-1, New York, USA

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, Vol. 15, pp. 65-118
Rice, J.R. (1968). On the Construction of Poly-algorithms for Automatic Numerical Analysis.

Interactive System for Experimental Applied Mathematics, M. Klerer & J. Reinfelds,
(Ed.) Academic Press, Burlington, MA, pp. 301-313

Ruiz-Vanoye, J. A., Pérez, J., Pazos, R. A., Zarate, J. A., Díaz-Parra, O., & Zavala-Díaz, J. C.
(2009). Statistical Complexity Indicators Applied to the Vehicle Routing Problem
with Time Windows for Discriminate Appropriately the Best Algorithm, Journal of
Computer Science and Software Technology, Vol. 2, No. 2, ISSN: 0974-3898

Samulowitz, H. & Memisevic, R. (2007). Learning to solve QBF. In: AAAI-07, pp. 255-260,
retrieved from: https://www.aaai.org/Papers/AAAI/2007/AAAI07-039.pdf

Schiavinotto, T. & Stützle, T. (2007). A review of metrics on permutations for search
landscape analysis. Computers & Operations Research, Vol. 34, No. 10, (October 2007),
pp. 3143-3153

Silverthorn, B. & Miikkulainen, R. (2010). Latent Class Models for Algorithm Portfolio
Methods. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence

Smith-Miles, K. & Lopes, L. (2012). Measuring instance difficulty for combinatorial
optimization problems. Computers & Operations Research, in press (accepted 6/7/11)

Smith-Miles, K.; James, R.; Giffin, J. & Tu, Y. (2009). Understanding the relationship between
scheduling problem structure and heuristic performance using knowledge
discovery. In: Learning and Intelligent Optimization, LION-3, Vol. 3, Available from:
lion.disi.unitn.it/intelligent-optimization/LION3/online_proceedings/35.pdf

Soares, C. & Pinto, J. (2003). Ranking Learning Algorithms: Using IBL and Meta-Learning on
Accuracy and Time Results. Machine Learning, Vol. 50, No. 3, pp. 251-277

Streeter, M; Golovin, D. & Smith, S. F. (2007). Combining multiple heuristics online. In:
AAAI 2007, Proceedings of the 22nd national conference on Artificial intelligence, Vol. 22,
Anthony Cohn, pp. 1197-1203, AAAI Press, Retrieved from:

 http://www.aaai.org/Papers/AAAI/2007/AAAI07-190.pdf
Wolpert, D. H. & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 67–82
Xu, L.; Hutter, F.; Hoos, H. & Leyton-Brown, K. (2009). SATzilla2009: An automatic

algorithm portfolio for SAT. In: Solver description, 2009 SAT Competition

www.intechopen.com

Intelligent Systems

Edited by Prof. Vladimir M. Koleshko

ISBN 978-953-51-0054-6

Hard cover, 366 pages

Publisher InTech

Published online 02, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is dedicated to intelligent systems of broad-spectrum application, such as personal and social

biosafety or use of intelligent sensory micro-nanosystems such as "e-nose", "e-tongue" and "e-eye". In

addition to that, effective acquiring information, knowledge management and improved knowledge transfer in

any media, as well as modeling its information content using meta-and hyper heuristics and semantic

reasoning all benefit from the systems covered in this book. Intelligent systems can also be applied in

education and generating the intelligent distributed eLearning architecture, as well as in a large number of

technical fields, such as industrial design, manufacturing and utilization, e.g., in precision agriculture,

cartography, electric power distribution systems, intelligent building management systems, drilling operations

etc. Furthermore, decision making using fuzzy logic models, computational recognition of comprehension

uncertainty and the joint synthesis of goals and means of intelligent behavior biosystems, as well as diagnostic

and human support in the healthcare environment have also been made easier.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Laura Cruz-Reyes, Claudia Gómez-Santillán, Joaquín Pérez-Ortega, Vanesa Landero, Marcela Quiroz and

Alberto Ochoa (2012). Algorithm Selection: From Meta-Learning to Hyper-Heuristics, Intelligent Systems, Prof.

Vladimir M. Koleshko (Ed.), ISBN: 978-953-51-0054-6, InTech, Available from:

http://www.intechopen.com/books/intelligent-systems/algorithm-selection-from-meta-learning-to-hyper-

heuristics

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

