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1. Introduction 

Several marine invertebrate species live in symbiosis with phototrophic organisms, mostly 
cyanobacteria and dinoflagellate algae. Such symbioses occur among different animal phyla, 
such as Porifera, Cnidaria, Mollusca and Plathyhelminthes (Venn et al. 2008). Animal host 
and phototrophic symbiont together are usually referred to as holobiont. Many of these 
holobionts act as net primary producers when growing in shallow waters (Wilkinson 1983; 
Falkowski et al. 1984) and thus have an important role in element cycling in marine 
ecosystems (Muscatine 1990). In addition, symbiont photosynthesis is often very important 
for the energy budget of the host animal (Davies 1984; Falkowski et al. 1984; Edmunds & 
Davies 1986; Anthony & Fabricius 2000). Hence, both from an ecological and a physiological 
point of view, it is important to have accurate, quantitative estimations of photosynthesis in 
symbiotic animals. In this chapter, we will provide an overview of methods to characterize 
photosynthesis in these animals, highlight important data obtained with these methods and 
present conceptual frameworks that describe how photosynthesis is controlled in marine 
symbiotic invertebrates. Hereby, we will be particularly focusing on zooxanthellate 
Scleractinia (stony corals, Fig. 1), a symbiosis that will be described in the next section.  

2. The phototrophic symbiosis in stony corals 

The fact that light affects the growth of many stony corals has been described already in the 
first half of the previous century (Vaughan 1919). The discovery that unicellular algae reside 
in the living tissue of corals (Fig. 2) even dates back further, to the late nineteenth century. 
The algae were termed zooxanthellae and the symbiosis was extensively studied in the first 
half of the twentieth century (e.g. Boschma 1925; Yonge & Nicholls 1931a,b). More recent 
works have established that all zooxanthellae found in scleractinian corals are 
dinoflagellates belonging to the genus Symbiodinium (see reviews by Baker 2003 and Stat et 
al. 2006). Symbiodinium is subdivided in several phylotypes (clades), termed A, B, C, D, E, F, 
G and H, which all have different properties in terms of pigmentation and heat tolerance, 
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thus providing their coral hosts with flexibility with regards to differences in light and 
temperature regimes, an aspect that will be further outlined in Section 4. Symbiodinium has 
also been found in other taxa (e.g. other cnidarian groups, Molluscs). In sponges, the 
photosynthetic microsymbionts are usually cyanobacteria (Venn et al. 2008). 
The photosynthetic processes taking place in zooxanthellae inside coral cells in principle do 
not differ largely from photosynthetic processes in other plants. The main difference is the 
constraints impeded by the animal cell environment on the zooxanthellate cell. All supplies 
that are needed to perform photosynthesis have to cross several additional cell membranes 
(cell membranes of the different coral cell layers and the symbiosome). Therefore, the host 
cell can modify the surrounding environment and control the activity of the symbiont. 
 

 

Fig. 1. Branch tips of the branching zooxanthellate stony coral Stylophora pistillata. The white 
tips of the branches, where the most active accretion of new calcium carbonate skeleton 
takes place, do not contain zooxanthellae. Photography by Tim Wijgerde. 

 

Fig. 2. Zooxanthellae in hospite in Porites asteroides. Photography by M. en C. Alejandro 
Martínez Mena, Laboratorio de Microcine, Facultad de Ciencias, UNAM.  
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Coral-zooxanthellae associations are regarded as mutualistic symbioses, implying that there 

are benefits for both components. The coral host provides a sheltered environment for the 

symbiont and provides the algae with essential nutrients such as nitrogen and phosphorus, 

whereas the coral receives carbohydrate fuel and amino acids for protein synthesis 

(Dubinsky & Jokiel 1994). Initially, it was believed that the coral host would mainly acquire 

nutrients from the algae by digesting them (Boschma 1925; Goreau & Goreau 1960). 

Muscatine & Cernichiari (1969) were the first to demonstrate in hospite that photosynthesis 

products were actively translocated from the zooxanthellae to the host cells. Later, it became 

apparent that this process of translocation represents the main carbon flux between 

symbiont and host, and that zooxanthellae digestion is quantitatively of minor importance 

(Muscatine et al. 1984). The translocation of photoassimilates between symbiont and host is 

a host-controlled process. Muscatine (1967) discovered that host homogenates were able to 

release organic molecules from zooxanthellae suspensions, glycerol being the main 

constituent of the excreted materials. Later, Ritchie et al. (1993) added 14C labelled glycerol 

to isolated zooxanthellae in suspension and found that glycerol was metabolized rapidly by 

zooxanthellae. It was concluded from this study that the hitherto unidentified host factor 

induces changes in the metabolism of the zooxanthellae rather than altering membrane 

permeability, as had previously been suggested. Studies on isolated zooxanthellae may not 

always reflect their behaviour in hospite, as was demonstrated by Ishikura et al. (1999). The 

composition of the translocated carbon in the intact host-symbiont association may vary 

among species and comprises sugars, glycerol, amino acids, fatty acids and other organic 

acids (see overview by Venn et al. 2008). 

In zooxanthellate stony corals, photosynthesis is closely coupled to calcification (Gattuso et 

al 1999; Moya et al. 2006). The mechanism responsible for this coupling, which is also 

termed Light Enhanced Calcification (LEC) has been debated since its early discovery by 

Kawaguti & Sakamoto (1948). Most likely, calcification is stimulated in the light due to the 

simultaneous supply of oxygen and metabolic energy through photosynthesis (Rinkevich & 

Loya 1983; Colombo-Palotta et al. 2010), herein aided by the concurrent increase in pH in the 

calicoblastic fluid layer (Al Horani et al. 2003), which facilitates the deposition of calcium 

carbonate. 

3. Measurement of photosynthetic processes in corals 

The following sections provide descriptions of methods that are commonly used to 
characterize photosynthesis-related parameters in symbiotic marine invertebrates, including 
critical reflections on the use of these methods. 

3.1 Relating photosynthesis to light 
Measurements on photosynthetic processes are usually related to a quantification of the 
light field under which the photosynthesis takes place. Albert Einstein introduced the 
concept of photons, universal minimal quantities of light, comparable to molecules of mass. 
As such, light can be quantified in mole photons or mole quanta, also termed Einsteins (E). 
To describe the light field on a projected surface area, it is recommended to use the 
parameter Quantum Irradiance (E), to be expressed in µmole quanta m-2 s-1 (often written as 
μE m-2 s-1). Quantum Irradiance is often referred to as Photon Flux Density (PFD) or light 
intensity.  
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Fig. 3. Example of a curve that relates net photosynthesis to irradiance, showing the 
compensation point Ec, the Talling Index Ek, α and Pnmax. 

Only photons with a wavelength between approximately 400 to 700 nm can be used in 

photosynthesis. This part of the light spectrum is termed photosynthetic active radiation 

(PAR) or photosynthetic usable radiation (PUR) if the available light spectrum is corrected 

for the spectrally variable capacity of the organism to absorb light (PAR x Absorptance). 

Throughout this text, the term quantum irradiance will be used to denominate the flux of 

photons within the PAR spectrum per m2 per s, a parameter that is often referred to as 

Photosynthetic Photon Flux density (PPFD). Each photon carries a level of energy that is 

determined by its wavelength. Despite the energetic differences among photons, each 

photon within the PAR range is able to promote one photochemical excitation event. The 

energy that is in excess of the energy required for excitation transfer is dissipated as heat. 

For a more detailed list of quantities and units relating to light, we refer to a mini-review by 

Osinga et al. (2008).  

Many studies on coral photosynthesis show photosynthesis rates under different 

irradiances, resulting in curves such as presented in Fig 3. Curves of this type are generally 

referred to as photosynthesis/irradiance curve, or shortly: P/E curve. It should be noted 

here that P/E curves obtained in the field (see for example the data obtained by Anthony & 

Hoegh-Guldberg 2003) reflect the actual photosynthetic response of corals to a natural light 

field (PAR) and daily light cycle, whereas P/E curves measured on aquarium corals (e.g. 

Goiran et al. 1996; Houlbrèque et al. 2004; Schutter et al. 2008) under laboratory conditions 

usually reflect the photosynthetic potential of the coral, since most aquarium corals are 

grown under a fixed quantum irradiance. Several descriptors can be derived from the P/E 

curves: 1) the compensation point (Ec), which is the irradiance at which photosynthesis 

equals respiration; 2) the maximal photosynthesis (Pmax); 3) the photosynthetic efficiency (α), 

which is the slope of the linear increase in the photosynthetic rates as irradiance increases, 

and 4) the onset of saturation or Talling index (Ek), which is the point on the X-axis of the 
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curve where the initial, linear slope of the curve intersects with the horizontal asymptote 

resembling Pmax.  
The Talling index is often used as a measure to characterize the acclimation of a 
photosynthetic organism to its light regime (Steeman-Nielsen 1975). The most commonly 
used model to describe P/E curves and to estimate Pmax and Ek is the hyperbolic tangent 
function (Chalker & Taylor 1978): 

 P = Pmax x tanh(E/Ek) (1) 

where P is the actual rate of photosynthesis measured at a given irradiance, Pmax is the 
maximal photosynthetic capacity and Ek is the Talling Index.  
Although this model provides accurate estimations of Pmax and Ek, its assumption that 
photosynthesis increases with irradiance up till a horizontal asymptote is false: at high 
quantum irradiance levels, photosynthesis will decrease due to damage of the photosystems 
by excess light. An alternative (and probably better) approach is to use independent 
estimations of these parameters to allow better comparison between determinations 
obtained from the use of different equations (i.e., quadratic, exponential, etc.). A linear 
regression is required to determine α, paying attention that the incubations at low light 
levels need to be in the linear phase of the photosynthetic increment with irradiance. A 
minimum of four determinations are needed for a confident determination of α. Assessment 
of Pmax requires at least three consecutive measurement points at saturating irradiance. Ek 
and Ec can then be derived from those determinations as follows: 

 Ek = Pmax/α (2) 

and 

 Ec = Rd/α (3) 

where Rd is the dark respiration. 

3.2 Relating photosynthesis to size 
When determining photosynthetic rates, it is necessary to relate the data to a size parameter. 
Several methods have been developed to assess the size of sedentary organisms such as 
corals. Selection of an appropriate method depends on the species (sensitive or robust, small 
or large, plate, boulder or branched), the circumstances (aquarium, in situ, is the colony 
fixed or can it be taken out of its environment) and the desired precision.  
Two approaches to quantify coral size can be distinguished: estimating biomass (i.e. volume 
and weight-related parameters) and estimating surface area (see overview of related 
techniques in Table 1). The major difference between both approaches is that biomass 
measurements document mostly added coral skeleton, which does not contribute to 
biological activity, whereas surface-area measurements mainly reflect the amount of live 
coral tissues. As such, the surface area parameters serve as prime descriptors for 
standardization and quantification of physiological and biochemical parameters allowing 
comparative work of different experimental conditions, in particular work that relates to 
photosynthesis. When determining P/E curves, rates should always be related to surface 
parameters. Nevertheless, measurement of corals’ surface area can be restricted by 
morphological variation and highly complex architectural structures that reduce accuracy. 
In addition, in complex structures such as branching corals, the light field within the colony 
varies largely. Hence, overall colony photosynthesis is an average rate reflecting  
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Size 
parameter 

method description applications advantages limitations 

Surface 
area 

2D 
photometry 

Top view pictures of corals are 
taken and analysed either by 
hand or by software to estimate 
the projected 2D surface area.  
A reference object of defined 
length (usually used is a ruler) 
must be included on the 
pictures to normalize the 
surface to values in square 
meters. 

Encrusting and plate-
shaped species with a 
regular shape  
(such as 
hemispherical 
boulders); 
assessment of %  
coverage; crude  
assessment of coral  
biomass on natural 
reefs. 

Accurate for 
species with a flat 
surface or a 
simple, regular 
shape; applicable 
everywhere; non-
destructive; no 
impact on 
organisms. 

Not easily applicable to 
branching species and 
species with complex 
morphologies; the 2D 
projection of 3D 
organisms may lead to 
underestimations of the 
real surface area. 

Volume 3D 
photometry1 

Stereo-photography (3D) with 
two underwater cameras 
mounted on a fixed frame. The 
pictures are analysed using 
specific software. 

Measurements of in 
situ growth rates of 
irregularly shaped 
species. 

Very accurate, 
applicable 
everywhere, non-
destructive, no 
impact on 
organisms. 

Expensive, time-
consuming technique. 

Volume replacement The coral is positioned in a 
beaker glass (or similar) after 
filling this beaker up to an 
indicated level. Due to the 
incoming coral, the water level 
in the beaker will rise. The 
volume of the coral is now 
determined by siphoning off the 
excess water above the indicator 
level with a syringe (or similar) 
and by measuring the volume of 
the water in the syringe, which 
is equal to the coral volume. 

Estimation of the 
volume of corals for 
incubation studies; a 
biomass estimate for 
branching and plate-
shaped corals that 
can be related to a 
biological activity. 

A quick, low-cost, 
non-destructive 
method with a 
reasonable 
precision. 

The method can only be 
applied to corals that 
can be removed from 
their environment; the 
corals have to be taken 
out of the water to 
remove water that is 
attached to the coral 
surface – this step 
causes variability in the 
results and may inflict 
stress to the corals. 

Volume ecological 

volume2 

A coral colony is converted to a 

cylindrical shape using 2D 

photography of coral colonies 

(one picture taken from the side, 

another from the top of the 

colony). A reference object of 

defined length must be included 

on the pictures to assess the 

height and the width of the 

colony. Image analysis 

(assessment of height and width) 

is done using simple software 

(note: height and width can also 

be measured directly by hand 

using a ruler). Biological volume 

is defined as V = πr2h, in which V 

is the ecological volume, r is the 

radius (calculated by dividing the 

average width of the colony by 2) 

and h is the height of the colony. 

“Quick and dirty” 

measurements of (in 

situ and ex situ) 

growth rates and/or 

standing stocks. May 

be used as an 

efficient and 

comparative 

estimator for the total 

volume in the 

aquarium that is 

occupied by resident 

corals. 

Relatively simple 

method using 

commonly 

available non-

specialist 

materials; 

applicable 

everywhere, non-

destructive, no 

impact on 

organisms. 

Not a true size estimate: 

colonies having the 

same ecological volume 

may differ considerably 

in volume, weight, 

surface area and polyps 

numbers; slightly 

interpretation sensitive 

(comparative 

measurements should 

preferably done by the 

same person). 

Weight (drip dry)  

wet weight 

Direct weighing of corals that 

are taken out of the water and 

have been shaken until no more 

drops fall off. 

Measurements of in 

situ growth rates of 

irregularly shaped 

species. 

Quick and easy, 

non-destructive 

method. 

The method can only be 

applied to corals that can 

be removed from their 

environment; the corals 

have to be taken out of 

the water to remove 

water that is attached to 

the coral surface – this 

step causes variability in 

the results and stresses 

the corals. 
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Size 
parameter 

method description applications advantages limitations 

Weight Buoyant 
weight3 

Corals are weighed underwater, 
using a balance with an under-
weighing device; a ring which is 
positioned on the bottom side of 
the balance to which a hook can 
be attached. The balance is 
positioned above an aquarium, 
bucket or anything that can hold 
a volume of water. The coral is 
hung onto the under-weighing 
ring-device using fishing line 
and two metal hooks. 

Measurements of 
growth rates and/or 
standing stocks in 
aquaria. 

Reasonably 
precise, easy, 
non-destructive 
method with low 
impact on 
organisms (that 
can be kept 
underwater; 
hence, water 
attached to the 
surface of the 
coral is also no 
issue here). 

The method can only be 
applied to corals that 
can be removed from 
their environment; 
buoyant weight is a 
relative measure 
(although it can be 
converted into dry 
weight if the specific 
density of the coral 
material is known). 

Weight Dry weight Corals are oven-dried (130 °C; 
incubation time varies 
depending on the size of the 
sample and the type of coral, 
but is usually around 24 h) and 
weighed regularly until they do 
not decrease in weight anymore.
 

Determination of 
biomass without 
water; first step to 
determine the 
separated weights of 
organic, living tissue 
and skeleton. 

Very accurate. Destructive, the coral 
has to be sacrificed. 

Weight Ash-free dry 
weight 

Second step to determine 
separated weights of organic, 
living tissue and skeleton. Dried 
corals are ashed in a muffle 
furnace at 550 °C. By 
subtracting the weight of the 
remaining ashes (skeletal 
weight) from the previously 
obtained dry weight (skeleton + 
organic tissue), the dry weight 
of the organic fraction is 
obtained. 
 

Comparative studies 
on growth, reference 
value for biological 
processes. 

Very accurate; 
discriminates 
between organic 
tissue and 
skeletal weight 

Destructive, the coral 
has to be sacrificed. 

Table 1. Overview of methods to determine coral size. 

photosynthetic activity under a wide range of quantum irradiance levels. P/E curves 
obtained for larger branching colonies as reported in the literature should be considered as 
the relation between colony photosynthesis and the ambient light field and should be 
termed differently. 

3.3 Oxygen evolution techniques 
Oxygen evolution techniques estimate net photosynthesis and dark respiration from 

changes in the oxygen concentration in an enclosure holding the targeted primary producer 

(Fig 4). When incubated in darkness, respiration rates can be assessed from the measured 

decrease in oxygen concentration. Incubation in light provides estimates on net 

photosynthesis (Pn): the observed change in the concentration of oxygen is the sum of 

production of oxygen due to photosynthesis and concurrent consumption of oxygen due to 

respiration by the algal population and the host. Determinations of respiration require 

distinction between respiration rates of dark-adapted samples (dark respiration, Rdark) and 

respiration rates of previously illuminated samples (light respiration Rlight).  

Incubations for oxygen evolution measurements should always be run concurrent with a 

blank control to correct for background activity in the water surrounding the targeted 

organism. In the case of corals, we found that the actual background in the water 
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surrounding the coral is prone to change after one hour of incubation (Fig. 5). Production of 

mucus by the corals may stimulate bacterial activity in the surrounding water, thus 

increasing the actual background activity when compared to the blank control. Therefore, 

we recommend a regular (hourly) exchange of incubation water when performing oxygen 

evolution measurements on corals.  

When related to an appropriate size measure (see Section 3.2), oxygen evolution 

measurements are currently the best method available to obtain quantitative data on net 

primary production in corals. Oxygen evolution can also be used to estimate gross 

primary production (Pg). To calculate Pg, it is necessary to add values for respiration 

losses during illumination (Rlight) to values for Pn. This is due to the fact that light 

respiration is usually higher than dark respiration as photosynthesis stimulates both algal 

and host respiration. Light respiration is highly variable in corals and can be six times 

higher than dark respiration (Kuhl et al. 1995). Hence, in order to asses Pg from oxygen 

evolution measurements, an adequate measurement of light respiration is required. A 

suitable approach is to measure respiration immediately upon darkening at the end of the 

incubation under the highest irradiance level, which is termed Post-illumination 

respiration (RpI). The average between Rd and RpI is used to calculate gross-photosynthesis 

from net photosynthesis determinations. Section 3.4 deals with alternative techniques to 

assess Pg. 

 

 

Fig. 4. Measurement of oxygen evolution. A coral colony is held in an enclosure equipped 
with an oxygen sensor, a paddle wheel, and a water jacket for temperature control. Light is 
supplied from the top. 

 

 

Fig. 5. Real-life example of increasing background respiration: the arrow indicates when the 
background sample was replaced with water in which a coral had been incubated for 1 
hour. 
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When oxygen evolution is applied to generate P/E curves, the curve will show the relation 
between net photosynthesis and irradiance. The following modification of the hyperbolic 
tangent function (Equation 1) can be used to describe the data (Barnes & Chalker 1990): 

 Pn = Rdark + Pgmax x tanh(E/Ek) (4) 

where Pn is the net rate of photosynthesis, Rdark is the rate of respiration measured in 
darkness and Pgmax is the maximum gross photosynthetic rate (defined as Pnmax – Rdark, i.e. 
maximum net photosynthetic rate minus dark respiration). This equation also allows for 
calculation of the compensation point, at which Pn equals zero. 

3.4 Measuring light respiration and gross photosynthesis 
The rate of light respiration can be assessed either through the use of oxygen microsensors 

or by applying methods based on stable isotopes of oxygen. Oxygen microsensors can be 

applied to characterize the oxygen profile within biologically active layers that either 

produce or consume oxygen, such as sediments, microbial mats and living tissue (Revsbech 

& Jorgensen 1983). Oxygen production and consumption are deduced from the oxygen 

profiles using Fick’s first law of diffusion: 

 J(x) = -D0 (δC(x)/ δx) (5) 

where J(x) is the diffusive flux of oxygen at depth x, D0 is the temperature- and salinity-
dependent molecular diffusion coefficient for oxygen in water, and δC(x)/ δx is the slope of 
the oxygen profile at depth x. 
Light respiration can be assessed using the so-called light/dark shift method (Revsbech & 
Jørgensen 1983), hereby measuring the depletion of oxygen immediately after an abrupt 
switch from ambient light to full darkness. During the first few seconds to minutes (the time 
depending on the thickness of the tissue layer involved) after the onset of darkness, the 
respiration rate will shift from a stable light respiration value to a stable dark respiration 
value. Hence, the initial rate of oxygen depletion will closely resemble the preceding rate of 
light respiration (Fig 6). Oxygen microsensors were used by Kuhl et al. (1995) to assess 
 

 

Fig. 6. Measuring light respiration using the light/dark shift method. The dashed line 
indicates the rate of light respiration. 
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photosynthetic parameters in Acropora sp. and Favia sp., hereby including measurements of 
the light respiration using the light/dark shift method. Their results show that the often 
used approach to take the dark respiration value for calculation of Pg may lead to a 
considerable underestimation of Pg and hence, provide an incorrect view on coral 
energetics, a consideration that had already been made several decades earlier in plant 
sciences. 
Kana (1990) established an alternative technique where O18 labelled oxygen is used to assess 

respiration independently from oxygen production through photosynthesis. The technique 

is based upon two principles: 1) photosynthetic oxygen is produced from water through the 

Hill reaction (not from CO2), and 2) during respiration, oxygen is used to produce CO2 (and 

not water). Therefore, the O18 label is not likely to re-appear rapidly as photosynthetic 

oxygen. Using these principles, Mass et al. (2010) measured light respiration in colonies of 

Favia veroni by online membrane inlet mass spectrometry as the decline in O18 after a small 

spike of O18 labelled oxygen to the incubation chamber.  

3.5 Measuring light respiration and gross photosynthesis 
Pulsed Amplitude modulated (PAM) fluorometry has become one of the standards for the 

research on photosynthesis. The technique is based upon measuring the chlorophyll a 

fluorescence emission by Photosystem II of short, saturating pulses of light emitted onto 

photosynthetic active surfaces in relation to the fluorescence signal of continuously emitted 

light (Schreiber et al. 1986; Van Kooten & Snel 1990). PAM fluorometry is nowadays 

routinely applied to estimate a series of photosynthesis-related parameters, such as the 

maximum and effective photochemical efficiency (Fv/Fm and ΔF/Fm’) of photosystem II 

(PSII), non-photochemical quenching (the amount of excess excitation energy dissipated as 

heat), sustained quenching of fluorescence (qI) and the proportion of PSII that remain 

temporally or permanently closed and fail to reduce QB, the second quinone electron 

acceptor. PAM fluorometry has also become increasingly popular among coral scientists. 

Since the first application of this technique to corals in the late nineties of the previous 

century, a plethora of papers has been published on this topic.  

The principles of PAM fluorometry and its suitability for application on marine organisms 
were reviewed recently in the book by Sugget et al. (2010). In this book, Enríquez & 
Borowitzka (2010), provide a thorough analysis of PAM fluorometry, which is briefly 
summarized below. 
The principle of PAM measurements is depicted in Fig. 7. First, background fluorescence 
(F0) is measured by supplying a moderated quantity of background light that is insufficient 
to induce photochemistry (all photosystems are open). Then, a saturated pulse is given, 
leading to a peak that represents maximal fluorescence (Fm; all photosystems are closed). 
The ratio between the observed increase in fluorescence over the background level (Variable 
fluorescence, Fv = Fm – F0) and the maximal fluorescence (Fm) is a proxy for the probability 
for a photochemical event to occur (photochemical efficiency, Fv/Fm). If this parameter is 
determined after the sample was maintained under dark conditions and all the non-
photochemical quenching activity has been relaxed, Fv/Fm represents the maximum 
photochemical efficiency of PSII. If this descriptor is determined under steady-state 
illuminated conditions, it represents the effective photochemical efficiency of PSII for this 
specific irradiance (ΔF/Fm’). A decrease in the maximum Fv/Fm over time implies that the 
rate of photodamage is exceeding the rate of repair of the damaged PSII. Photosynthetic 
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organisms exposed to light usually show a decrease in ΔF/Fm’ associated with the 
increment in light exposure and a recovery after the peak of irradiance at noon. The initial 
maximum of the day Fv/Fm can be reached at the end of the light period or incomplete 
recovery or higher values can be observed depending on the amount of light in excess 
absorbed during the day: higher values lead to incomplete recovery and the accumulation of 
photodamage, but lower values allow better recovery and lead to higher initial Fv/Fm 
values. A recent study by Schutter et al. (2011b) shows that corals are exposed to continuous 
light (i.e. 24 hours per day) bleached and died after 7 weeks.  
Under a range of assumptions, PAM can also be applied to estimate rates of electron 

transport (ETR), which is a proxy for gross photosynthesis under subsaturating light 

conditions (Genty et al. 1989). The apparent quantum yield is converted to ETR by 

multiplying it by the quantum irradiance, the absorptance (i.e. the fraction of the quantum 

irradiance absorbed by the photosynthetic apparatus) and the fraction of the corresponding 

energy delivered to PSII or the absorbed light that is utilized by PSII. Absorptance can be 

assessed through reflection measurements (Shibata 1969; Enríquez et al. 2005; see next 

subsection). The fraction of light energy delivered to by PSII is generally assumed to be 50%, 

based on an assumed balanced condition between PSII and PSI. ETR can simply be 

converted into oxygen evolution rates by assuming that four electrons are needed to 

produce one molecule of oxygen from water. Whereas this approach might work under non-

saturating quantum irradiance levels, ETR values may overestimate oxygen evolution rates 

under saturating light due to an increasing proportion of non-photochemical quenching as a 

sink for excitation energy. In addition, since a PAM measurement represents only a small 

fraction of the total surface of an organism, many measurements will be needed to 

accurately quantify gross photosynthesis at the level of the whole organism if the colony has 

a large variation in tissue condition. Such an analysis should also take into account that the 

light field and tissue photoacclimatory condition will be highly variable in colonies with a 

complex architecture. 

 

Fig. 7. Principle of PAM fluorometry. Arrow and AL indicate the moment when the actinic 
light is switched on. See text for further explanation. 
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As a more qualitative measure, indicative for changes in photosynthetic activity (i.e. to 

generate P/E curves), Beer et al. (2001) introduced the relative ETR (rETR). The use of this 

approach is limited and not recommended if the absorption cross-section of coral tissue 

changes among organisms, treatments or during the experimental approach. As the amount 

of light absorbed by a photosynthetic tissue is highly variable in most marine organisms the 

lack of control of this source of variation over ΔF/Fm’ changes does not allow the 

comparison of relative changes in ETR. The use of this approach is limited and not 

recommended, because adsorptance is highly variable in most marine organisms. Acquiring 

rETR values through the making of rapid light curves (RLC, Ralph & Gademann 2005) is not 

recommended in particular, because the time needed for a photosynthetic organism to reach 

photosynthetic steady-state is much longer than the time intervals applied in the RLC 

method (Enríquez & Borowitzka 2009).  

3.6 Measuring light respiration and gross photosynthesis 
Reflection of light falling onto photosynthetic active biological surfaces can be quantified 

using a spectrometer and a small waveguide detector attached to it to collect the reflected 

light (Enríquez 2005, Enríquez et al. 2005, Terán et al 2010). It is hereby important to relate 

the measurement to a standard representing 100% reflection, for example white reference 

materials such as Teflon or a high reflecting materials supplied by manufacturers of light 

meters and spectrometers. Reflection measurements can provide information to quantify the 

light dose absorbed by a coral surface from absorptance determinations. Absorptance (A) is 

defined as the fraction of incident light absorbed by a surface and can be quantified from 

reflectance (R) measurements assuming that coral skeleton has minimal transmission 

(Enríquez et al. 2005) as A = 1 - R. In addition measurement of the percentage of light 

reflected can serve to quantify coral acclimation, coral paling and adaptive coral bleaching, 

and potentially, to indicate the onset of non-adaptive coral bleaching. 

4. Rates and mechanisms: What controls coral photosynthesis? 

Many researchers have carried out experiments to unravel how photosynthesis is controlled 

in stony corals. Limiting factors include the photon flux density and the availability of 

inorganic nutrients such as dissolved inorganic carbon (DIC), nitrogen (DIN), phosphorous 

(DIP) and iron. Additional factors that have been reported to influence coral photosynthesis 

are temperature, water flow, pH and oxygen. Table 2 summarizes photosynthetic rates that 

have been measured in stony corals in situ and ex situ in aquaria under a large variety of 

conditions. Using the data and experiments listed in Table 2, we will outline the 

mechanisms by which the different factors influence photosynthesis rates in stony corals. 

4.1 Light 
Light is the primary factor distinguishing photosynthesis from other assimilatory metabolic 

processes. Light is harvested by antenna molecules that are part of large light harvesting 

complexes termed Photosystem I (PSI) and Photosystem II (PSII), which are present on the 

thylakoid membranes of the chloroplasts residing in photosynthetically active cells. In the 

antenna molecules, an electron is excited by a photon to a higher energetic state. Through a 

cascade of events that take place in the thylakoid membrane and will not be discussed in  
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Species conditions Rdark P and/or Pmax* Ik (μE m-2 s-1) reference 

Goniastrea 
retiformis 

Shaded, incubated with filtered seawater 25.9  
(μg O2 cm-2 h-1) 

127.6*  
(μg O2 cm-2 h-1) 

263.4 Anthony & 
Fabricius 2000 

 Shaded, incubated with high loads of 
suspended matter 

29.4  137.6*  
(μg O2 cm-2 h-1) 

261.4  

 Unshaded, incubated with filtered seawater 25.1  105.7*  310.6  

 Unshaded, incubated with high loads of 
suspended matter 

22.3  104.1*  321.2  

Porites 
cylindrica 

Shaded, incubated with filtered seawater 22.3  141.4*  350.3  

 Shaded, incubated with high loads of 
suspended matter 

21.1  130.6*  306.8  

 Unshaded, incubated with filtered seawater 21.4  130.0*  390.7  

 Unshaded, incubated with high loads of 
suspended matter 

23.0    92.2*  334.0  

Montipora 
monasteriata 

Open water corals, simulated natural light 
cycle 

1.33  
(μmol O2 cm-2 h-1)

3.92*  
(μmol O2 cm-2 h-1) 

211 Anthony & 
Hoegh-
Guldberg 2003 

 Corals growing under overhang, simulated 
natural light cycle 

0.70 3.24* 127  

 Corals from cave, simulated natural light 

cycle 

0.43 2.94* 80.8  

Porites 
porites 

Branch tips obtained from 10 m depth 11.91  

(μl O2 cm-2 h-1) 

82.34  

(μl O2 cm-2 h-1) 

456 Edmunds & 

Davies 1986 

 Constant PPFD of 500 μE m-2 s-1, 0.5 mM 

HCO3- 

 12  

(nmol O2 mg chl a-1 

h-1) 

 Herfort  

et al. 2008 

 Constant PPFD of 500 μE m-2 s-1, 1.0 mM 

HCO3- 

 24   

 Constant PPFD of 500 μE m-2 s-1, 2.0 mM 

HCO3- 

 43.5   

 Constant PPFD of 500 μE m-2 s-1, 4.0 mM 

HCO3- 

 52.5   

 Constant PPFD of 500 μE m-2 s-1, 6.0 mM 

HCO3- 

 61.5   

 Constant PPFD of 500 μE m-2 s-1, 8.0 mM 

HCO3- 

 56   

Acropora 

sp. 

Constant PPFD of 500 μE m-2 s-1, 1.0 mM 

HCO3- 

 5   

 Constant PPFD of 500 μE m-2 s-1, 2.0 mM 

HCO3- 

 8   

 Constant PPFD of 500 μE m-2 s-1, 4.0 mM 

HCO3- 

 12   

 Constant PPFD of 500 μE m-2 s-1, 6.0 mM 

HCO3- 

 15   

 Constant PPFD of 500 μE m-2 s-1, 8.0 mM 

HCO3- 

 12   

Stylophora 

pistillata 
Constant PPFD of 350 μE m-2 s-1, low 

feeding, low flow (0.6-1 cm s-1), measured 

after 3 weeks 

0.44  

(μmol O2 cm-2 h-1)

0.57*  

(μmol O2 cm-2 h-1) 

403 Houlbrèque  

et al. 2004 

 Identical as above, high feeding 0.43 0.20* 203  

 Constant PPFD of 300 μE m-2 s-1, low 

feeding, low flow (0.6-1 cm s-1), measured 

after 9 weeks 

0.229 0.30  Houlbrèque  

et al. 2003 

 Constant PPFD of 300 μE m-2 s-1, high 

feeding 

0.495 1.20   

 Constant PPFD of 200 μE m-2 s-1, low feeding 0.134 0.22   

 Constant PPFD of 200 μE m-2 s-1, high 

feeding 

0.449 0.70   

 Constant PPFD of 80 μE m-2 s-1, low feeding 0.186 0.15   

 Constant PPFD of 80 μE m-2 s-1, high feeding 0.438 0.20   
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Species conditions Rdark P and/or Pmax* Ik (μE m-2 s-1) reference 

Coral 
assemblage 

Mesocosm experiment, high flow  
(20 cm s-1), natural solar cycle,  
peak PPFD ~ 1200, ambient CO2 

 37 (mmol O2 m-2 h-

1) 
586 Langdon & 

Atkinson 2005 

 Mesocosm experiment, high flow  
(20 cm s-1), natural solar cycle,  
peak PPFD ~ 1200, 1.7 x ambient CO2 

 36   

 Mesocosm experiment, high flow  
(20 cm s-1), natural solar cycle,  
peak PPFD ~ 700, ambient CO2 

 23   

 Mesocosm experiment, high flow  
(20 cm s-1), natural solar cycle,  
peak PPFD ~ 700, 1.3 x ambient CO2 

 31   

 Mesocosm experiment, high flow  
(20 cm s-1), natural solar cycle,  
peak PPFD ~ 700, 2 x ambient CO2 

 21   

 Mesocosm experiment, high flow  
(20 cm s-1), natural solar cycle, peak  
PPFD ~ 700, enriched with DIN & DIP,  
0.6-1.9 x ambient CO2 

 29-34   

Montastrea 
annularis 

Constant PPFD of 250 μE m-2 s-1,  
natural oligotrophic seawater 

14.8  
(μl O2 cm-2 h-1) 

39.5*  
(μl O2 cm-2 h-1) 

119 Marubini & 
Davies 1996 

 Constant PPFD of 250 μE m-2 s-1,  
seawater + 1 μM NO3 

13.6 37.9* 111  

 Constant PPFD of 250 μE m-2 s-1,  
seawater + 5 μM NO3 

14.4 46.4* 88  

 Constant PPFD of 250 μE m-2 s-1,  
seawater + 20 μM NO3 

15.0 49.5* 104  

Porites 
porites 

Constant PPFD of 250 μE m-2 s-1,  
natural oligotrophic seawater 

10.9 44.2* 215  

 Constant PPFD of 250 μE m-2 s-1,  
seawater + 1 μM NO3 

10.2 45.8* 232  

 Constant PPFD of 250 μE m-2 s-1,  
seawater + 5 μM NO3 

9.6 58.6* 304  

 Constant PPFD of 250 μE m-2 s-1,  
seawater + 20 μM NO3 

8.5 61.8* 382  

Stylophora 
pistillata 

Constant PPFD of 300 μE m-2 s-1, 
pH = 7.6, 2 mM HCO3- 

 38  
(μmol O2 g-1 
buoyant weight d-1)

 Marubini  
et al. 2008 

 Constant PPFD of 300 μE m-2 s-1,  
pH = 8.0, 2 mM HCO3- 

 47   

 Constant PPFD of 300 μE m-2 s-1,  
pH = 8.2, 2 mM HCO3- 

 38   

 Constant PPFD of 300 μE m-2 s-1,  
pH = 7.6, 4 mM HCO3- 

 66   

 Constant PPFD of 300 μE m-2 s-1,  
pH = 8.0, 4 mM HCO3- 

 66   

 Constant PPFD of 300 μE m-2 s-1,  
pH = 8.2, 4 mM HCO3- 

 80   

 In situ, 5 m depth, winter 0.25  
(μmol O2 cm-2 h-1)

0.87*  
(μmol O2 cm-2 h-1) 

659.5 Mass  
et al. 2007 

 In situ, 65 m depth, winter 0.04 0.15* 5.8  

 In situ, 5 m depth, summer 0.41 1.19* 1084.5  

 In situ, 65 m depth, summer 0.08 0.42* 108.9  

 Constant PPFD of 380 μE m-2 s-1, 450 μatm 
CO2, T = 25.3 ºC 

0.34  
(μmol O2 mg 
protein-1 h-1) 

0.24  
(μmol O2 mg  
 protein-1 h-1) 

 Reynaud  
et al. 2003 

 Constant PPFD of 380 μE m-2 s-1, 470 μatm 
CO2, T = 28.2 ºC 

0.39 0.41   

 Constant PPFD of 380 μE m-2 s-1, 734 μatm 
CO2, T = 25.1 ºC 

0.39 0.20   

 Constant PPFD of 380 μE m-2 s-1, 798 μatm 
CO2, T = 28.3 ºC 

0.44 0.27   
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Species conditions Rdark P and/or Pmax* Ik (μE m-2 s-1) reference 

Galaxea 
fascicularis 

Constant PPFD of 90 μE m-2 s-1,  
flow = 10 cm s-1 

9.0  
(nmol O2 cm-2  
min-1) 

11.7  
(nmol O2 cm-2 min-1)

 Schutter  
et al. 2010 

 Constant PPFD of 90 μE m-2 s-1,  
flow = 20 cm s-1 

10.0 10.4   

 Constant PPFD of 90 μE m-2 s-1,  
flow = 25 cm s-1 

10.4 8.2   

 Constant PPFD of 280 μE m-2 s-1,  
flow = 5 cm s-1 

 49  Schutter  
et al. 2011 

 Constant PPFD of 560 μE m-2 s-1,  
flow = 20 cm s-1 

 42   

 Constant PPFD of 280 μE m-2 s-1,  
flow = 5 cm s-1 

 30   

 Constant PPFD of 560 μE m-2 s-1,  
flow = 20 cm s-1 

 57   

Table 2. Overview of photosynthetic rates measured in zooxanthellate stony corals. 

detail here, the excitation energy is converted to metabolic energy (ATP) and reducing 

power (NADPH), which enables the conversion of CO2 to organic carbon and the release of 

oxygen. Eight photochemical events, four per reaction centre in each photosystem, are 

needed to release one molecule of oxygen (i.e. eight photons), hence the maximal theoretical 

yield (also termed maximal quantum yield) of photosynthetic oxygen production from light 

energy is 12.5% (the evolution of 1 oxygen molecule requires 8 photons). 

In the sea, the availability of light for photosynthesis depends largely on depth. In clear 

tropical waters, at a depth of 100 m, the PFD is only 2% of the PFD at the surface (Lesser et 

al. 2009). Zooxanthellate corals have been found up till depths exceeding 150 m. According 

to Lesser et al (2009), the deepest living photosynthetic coral specimen ever found so far 

being a colony of Leptoseris hawaiiensis growing at a depth of 165 m at Johnston Atoll 

(Maragos & Jokiel 1986). In order to cope with these highly variable light conditions, corals 

and their symbionts have developed a myriad of adaptation mechanisms (generally referred 

to as photoadaptation mechanisms), such as variation in the level of pigmentation, the 

number of zooxanthellae, pigmentation per cell, antenna size, coral morphology (Tissue and 

skeleton), polyp size and polyp behaviour (Dustan 1982, Iglesias-Prieto & Trench 1994; 

1997a,b; Titlyanov et al. 2001; Levy et al. 2003; 2006; Hennige et al. 2008). When a coral is 

transferred to another location, the symbiotic population will respond to this change by 

modifying its photosynthetic apparatus to the new light conditions (Titlyanov et al. 2001). 

Changes in photosynthetic activity and the underlying photophysiology induced by diverse 

adjusting mechanisms upon changes in the light regime are generally referred to as 

photoacclimation processes. For example, in specimen of Stylophora pistillata, both the 

number of zooxanthellae per cm2 coral surface and the amount of chlorophyll a per 

zooxanthellate cell doubled within 40 days upon translocation from an area exposed to 95% 

of the ambient surface irradiance to an area exposed to 30% of surface irradiance. The same 

response was observed upon translocation of corals from 30% surface irradiance to 0.8% 

surface irradiance (Titlyanov et al. 2001). 

Under high light, down-regulation mechanisms are needed to prevent that the excess light 

causes large levels of damage to the photosynthetic apparatus. Several mechanisms for 

photoprotection have evolved in photosynthetic organisms (see mini-review by Niyogi 

1999). Among these are pathways to safely dissipate the excess of energy absorbed as heat 

(non-photochemical quenching) or that allow to maintain the flow of electrons through both 
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photosystems under Ferredoxin sinks limitation such as the cyclic electron flow and the 

water-water cycle (Asada 2000). The water-water cycle acts as a sink for electrons through a 

cyclic series of reactions involving superoxide dismutase and ascorbate. Photorespiration, 

which is basically the oxigenase instead of the carboxilase activity of the enzyme Rubisco, 

can also be considered as an alternative photoprotective mechanism that enables the 

maintenance of Rubisco activity under carbon limitation conditions (Niyogi 1999). These 

general photoprotective mechanisms also exist in zooxanthellate corals (e.g. Jones et al. 2001; 

Gorbunov et al. 2001), and will not be explained in detail here. Other adaptive mechanisms 

to high light include the synthesis of antioxidant molecules and host pigments that protect 

the symbiont photosynthetic membranes (Dove et al. 2008), efficient systems to repair 

photodamage, and the controlled expelling of zooxanthellae, which is also termed adaptive 

bleaching (Fautin & Buddemaier 2004). 

Anthony & Hoegh-Guldberg (2003) studied photoacclimation by measuring photosynthesis 

and respiration in specimen of Montipora monasteriata from different habitats, hereby 

comparing corals growing in an open area (peak irradiance > 600 μmole quanta m-2 s-1) to 

corals growing in caves (peak irradiance < 50 μmole quanta m-2 s-1). Shade-adapted corals 

had a lower compensation point and a lower Pnmax than their light-adapted conspecifics, but 

a higher photosynthetic efficiency (Fig 8). In contrast to the study by Titlyanov et al. (2001), 

Anthony & Hoegh-Guldberg (2003) did not find an increase in the number of zooxanthellae 

per unit of coral surface, and no increase in the amount of chlorophyll a per cell at lower 

irradiances. However, the shade-adapted coral had a thinner tissue layer, and may thus 

have had a higher density of zooxanthellae per unit of tissue volume. Not hampered by 

secondary effects of high light such as photorespiration, formation of reactive oxygen 

species, and non-photochemical quenching, low light corals may be optimally adapted to 

perform photosynthesis with a very high efficiency. Indeed, the quantum yield of nearly 

10% estimated by Anthony & Hoegh-Guldberg (2003) in shade-adapted corals is close to the 

theoretical maximum of 12.5%. In addition, the shape of the corresponding P/E curve 

closely resembled a solely light-limited process, Pnmax already being reached at a quantum 

irradiance of approximately 100 μmole quanta m-2 s-1. The first quantification of the 

minimum quanta requirements of photosynthesis (1/Φmax) for intact corals, using a correct 

methodology for the determination of coral absorptance and the amount of energy absorbed 

by the coral surface was reported by Rodríguez-Román et al. (2006), who quantified an 

average value of 15.4 ± 2.3 quanta absorbed per O2 molecule evolved. This represents a 

quantum efficiency of 6.5% (Φmax = 0.065) for the species Montastraea faveolata. 

These findings, together with the description of the optical properties of intact coral 

structures done by Enríquez et al. (2005) confirm that corals are very efficient light 

collectors and users and can rely they metabolic needs on the symbiotic relationship even 

at low irradiance values. Thanks to multiple scattering of light by the coral skeletons, 

effects of self-shading are small. Hence, photosynthesis in coral holobionts or in isolated 

zooxanthellae will exhibit saturation under relatively low levels quantum irradiance (100-

200 μmole quanta m-2 s-1, see for example Iglesias-Prieto & Trench 1994; Anthony & 

Hoegh-Guldberg 2003). Positive effects of higher quantum irradiance values on coral 

growth and photosynthesis reported for example by Schlacher et al. (2007) and Schutter et 

al. (2008) may relate to self-shading effects due to the increasing colony size of the 

growing coral (Fig. 9).  
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Fig. 8. Schematic representation of the results found by Anthony & Hoegh-Guldberg (2003) 
on photoadaptation by shade-adapted and light-adapted specimen of M. monasteriata. P/E 
curves for shade-adapted corals (blue line) and light-adapted corals (red line) are shown. 
The presumed thickness and pigmentation of the coral tissue corresponding to shade-
adapted and light-adapted P/E curves is indicated. 

 
 
 

 

Fig. 9. Schematic representation of different light fields around a shade-adapted, plate-
shaped coral (left) and a light adapted branching coral (right). 
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The strength of the light field is usually measured around the top of the coral colony, but the 

quantum irradiance at the bottom end of a colony may be tenfold lower. This may cause 

light limitation of photosynthesis in the lower parts of the colony, and hence, further 

increasing the quantum irradiance will further enhance the growth of these corals. In 

agreement to this view is the work of Schutter and coworkers on Galaxea fascicularis 

(Schutter et al. 2010, 2011). Schutter et al. (2010) found very high growth rates of 2.5% per 

day for small nubbins of G. fascicularis that were grown under a quantum irradiance of 90 

μmole quanta m-2 s-1, which corresponds to the afternoon peak irradiance at a depth of 

approximately 50 to 60 m (Mass et al. 2007). In another study, which was executed under 

much higher quantum irradiance levels (300 and 600 μmole quanta m-2 s-1), a positive 

relation between SGR and quantum irradiance was observed, although the growth rates 

obtained were lower than the 2.5% per day that had been observed for small nubbins grown 

at 90 μmole quanta m-2 s-1. 

4.2 Inorganic nutrients 
In shallow waters (on average, until a depth of nine metres), light is available in excess and 

may control coral photosynthesis through inhibitory mechanisms rather than limitation. 

Under saturating light, the availability of nutrients may as well become a limiting factor for 

coral photosynthesis. Experimental results suggest that photosynthetic rates of the 

zooxanthellae are limited by the availability of DIC, whereas the size of the symbiotic 

population and pigmentation per cell (i.e. the thickness of the coral tissue, the number of 

zooxanthellae per cm2 of coral surface and the number of zooxanthellae cells per coral cell) 

is determined by the availability of inorganic nitrogen (Falkowski et al. 1993). Addition of 

DIC (e.g. Marubini & Thake 1999; Marubini et al. 2003) enhances photosynthesis and 

calcification, by increasing the rate of photosynthesis per cell. An increased availability of 

DIN without concurrent increased supply of DIC apparently disrupts the delicate balance of 

the symbiosis: additions of ammonium and nitrate increase the biomass of the zooxanthellae 

and lead to lower rates of calcification (Stambler et al. 1991; Marubini & Davies 1996), 

whereas concurrent addition of bicarbonate restores the calcification (Marubini & Thake 

1999). Addition of planktonic food (i.e. carbon, nitrogen and phosphorous in a natural ratio) 

enhances tissue growth in corals and increases the size of the symbiotic population and 

pigmentation per cell leading to thicker tissue (cf Trench & Fisher 1983) and higher 

photosynthetic rates per unit of coral surface under increasing light than their food-limited 

conspecifics (Houlbrèque et al. 2004; Fig. 10A). This enables highly fed corals to calcify faster 

under high light than food-limited corals (Osinga et al. 2011). In contrast to these findings, 

corals exposed to increased DIN levels displayed a higher Pmax without a corresponding 

increase in calcification, despite the denser population of zooxanthellae residing in those 

corals (Marubini & Davies 1996; Fig 10B). There are two possible explanations for this 

apparent paradox. First, high DIN loadings reduce translocation of photosynthetic products 

from the algae to their host. Second, DIN-enriched corals respond to the enrichment by 

increasing the number of zooxanthellae per cm2 without a concurrent increase in coral tissue 

and calcification capacity. Hence, DIN fed corals exhibit a higher zooxanthellae to coral 

tissue ratio than DON enriched corals, in which both the thickness of the coral tissue and the 

number of zooxanthellae per cm2 increase. This implies that the algae are perhaps 

suboptimally packed in a more dense concentration in DIN-enriched corals. 
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Fig. 10. Schematic representation of the findings of Houlbrèque et al. (2004) on the effects of 
feeding on photosynthesis in Stylophora pistillata (A) and the findings of Marubini & Davies 
(1996) on the effects of DIN enrichment on photosynthesis in Montastrea annularis and Porites 
porites (B). 

4.3 The role of water flow and oxygen 
Water flow around a sessile organism regulates the rate of gas exchange between the 

organism and the surrounding water by affecting the thickness of the diffusive boundary 

layer – a thin, stagnant layer of water around the surface of the organism that determines 

the rate of mass transfer via diffusion (Patterson 1992). In flume experiments allowing a 

controlled variation in flow, Dennison & Barnes (1988) found that flow stimulated 

photosynthesis in corals, which was attributed to an improved influx of DIC, thus relieving 

DIC limitation of photosynthesis. Recent studies (Mass et al. 2010; Schutter et al. 2011) have 

related the enhancement of photosynthesis by flow to an increased efflux of oxygen. Under 

low flow, photosynthetic produced oxygen accumulates in the coral tissue (Gardella & 

Edmunds 1999; Mass et al. 2010). A concurrent flow-limited influx of DIC will lead to a high 

oxygen / DIC ratio in the zooxanthellate cell, which will induce high rates of 
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photorespiration, in particular in organisms that contain Type II Rubisco. Photorespiration 

reduces the efficiency of carbon fixation, but allows maintaining a minimum of carbon 

fixation under conditions of carbon limitation and high oxygen availability. The impact of 

photorespiration may be reduced by increasing the flow (Mass et al. 2010; Schutter et al. 

2011) or by increasing the availability of DIC, thus reducing carbon limitation of coral 

photosynthesis. Indeed, several authors reported on increased photosynthetic activity in 

corals under elevated DIC levels (e.g. Herfort et al. 2008; Marubini et al. 2008; see next 

subsection).  

Fig. 11 depicts a predicted change in P/E curve following an increase in flow. Under high 
flow, Pn will linearly increase until Pnmax has been reached, whereas under low flow, 
inhibition of net oxygen evolution due to photorespiration will increase with increasing 
irradiance, thus resulting in a lower Pnmax and a quantum yield (slope) that decreases with 
increasing irradiance. 
 

 
Fig. 11. Predicted effect of flow on photosynthesis in corals. The presumed thickness and 
pigmentation of the coral tissue corresponding to the P/E curves is equal in both conditions 
as indicated. 

4.4 pH and dissolved inorganic carbon 
Due to increasing atmospheric carbon dioxide concentrations, the ocean pH is decreasing. 
Almost 30% of the anthropogenic CO2 emissions have been already removed from the 
atmosphere by the oceans. An increased availability of CO2 may stimulate photosynthesis in 
DIC-limited corals (i.e. corals receiving non-limiting quantities of light), because CO2 
diffuses freely through the cell membrane and does not require carbonic anhydrase activity 
(the conversion of bicarbonate HCO3- into CO2, Langdon & Atkinson 2005). However, 
doubling the concentration of dissolved CO2 slightly reduced net photosynthesis in colonies 
of Stylophora pistillata cultured under a quantum irradiance of 380 μmole quanta m-2 s-1, even 
though the number of zooxanthellae per coral cell increased (Reynaud et al. 2003). Several 
other studies also failed to demonstrate an effect of pH on photosynthesis (Marubini et al. 
2008; Goiran et al 1996; Schneider & Erez 2006). It should be noted that these studies all 
evaluated the effect of pH on net photosynthesis. Hence, it cannot be excluded that the 
higher [CO2] simultaneously stimulated to the same extent both algal photosynthesis and 
coral respiration, so that no increase in Pn could be detected. Indeed, Langdon & Atkinson 
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(2005) found an increase in net photosynthetic carbon fixation in an experimental coral 
community upon an increase in [CO2] without a concurrent increase in the net production of 
oxygen. Several studies found that calcification was impaired by high [CO2] (Reynaud et al. 
2003; Langdon & Atkinson 2005; Marubini et al. 2008), although Reynaud et al. (2003) only 
observed such a negative response under elevated temperature. The studies by Langdon & 
Atkinson (2005), Schneider & Erez (2006 and Marubini et al. (2008) showed that 
photosynthesis and calcification are uncoupled under high CO2 availability (a higher 
photosynthetic production concurrent with a lower calcification), which raises the question 
for what alternative purpose the excess photosynthetic carbon is being utilized within the 
holobiont under high [CO2] conditions. We hypothesize that part of the excess carbon is 
being respired to provide additional energy needed to maintain a high pH in the calcifying 
fluid. 
Contrasting results have also found with respect to the effect of total [DIC] on coral 
photosynthesis. Marubini et al. (2008) found that a doubling of the ambient seawater [DIC] 
nearly doubled the rate of Pn in Stylophora pistillata. In agreement with these results, Herfort 
et al. (2008) found an optimal [DIC] of 6 mM for photosynthesis in Porites porites and 
Acropora sp. This concentration is well above the ambient seawater [DIC], which is 
approximately 2 mM. Other studies failed to show such an effect (Goiran et al. 1996; 
Schneider & Erez 2006). The contrasting findings may have been caused by differences 
between species, but also by differences in experimental approaches, such as pre-incubation 
time (Marubini et al. 2008), effects of limited mass transfer of gases due to low flow (e.g. 
Dennison & Barnes 1998; see also Section 4.3) and changes in Pg that are not reflected in Pn. 
Further studies in this field should focus on these aspects and should elucidate the relative 
importance of CO2 and HCO3- as substrates for photosynthesis in corals. 

4.5 Temperature; its role in coral bleaching 
Bleaching of zooxanthellate corals, the partial or total expelling by a coral of its 

zooxanthellae population, is beyond doubt the most intensively studied subject within coral 

science (see reviews by Lesser 2007; Weis 2008). Whereas bleaching is mainly associated 

with thermal anomalies (Hoegh-Guldberg 1999; Lesser & Farrell 2004), it must be noted here 

that with respect to coral bleaching, light and temperature act as partners in crime: they both 

induce the same type of stress (Iglesias-Prieto 2006). For example, high light and high 

temperature both have a negative effect on Photosystem II. Re-oxidation of the first quinone 

electron acceptor QA is considered as the rate limiting step in the electron transport reactions 

in PSII. Over-excitation of QA under high light can cause a double reduction of QA. This 

over-reduction induces the formation of reactive oxygen species (ROS), which can cause 

damage in PSII (Smith et al 2005). High temperature reduces the rate at which QA is re-

oxidized (Lesser & Farrell 2004; Suggett et al. 2008). Hence, by slowing down re-oxidation of 

QA, high temperature increases the probability that a QA molecule becomes over-reduced 

under high light. Moreover, both high light and high temperature cause an increase in the 

respiratory demand of a coral, which implies that the proportion of translocated 

photosynthetic carbon that can be used by the coral for tissue growth becomes smaller. The 

growing respiratory demand thus causes the coral tissue to become thinner, which makes 

the zooxanthellae more vulnerable to bleaching (Enriquez et al. 2005), so that the 

photosynthetic activity is even further reduced. In this way, the bleaching process 

accelerates rapidly, ultimately resulting in a complete loss of zooxanthellae from the tissue. 
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Some corals may survive the current era of rapid climate change. The combination of high 
light and high temperature is restricted to the upper zone of the coral reef environment. 
Corals usually remain safe from temperature-induced bleaching at depths below 10m. In 
addition, corals have the potential to adapt to chronic thermal stress, which makes them less 
vulnerable to acute thermal stress (Mumby et al. 2011). Zooxanthellae play an important role 
in the responses of corals to thermal stress (Rowan et al. 1997; Ulstrup et al. 2006), although 
symbiont identity does not fully explain the variation in coral tolerance to thermal stress 
(Fitt et al. 2009). The different phylotypes (clades) of Symbiodinium residing in corals exhibit 
strong differences in thermo-tolerance (Bhagooli & Hidaka 2003; Baker et al. 2004; Robison 
& Warner 2006; Suggett et al. 2008). Berkelmans & Van Oppen (2006) were the first to 
describe a shift in abundance of different Symbiodinium types upon transplantation of corals 
to different light/temperature habitats. Previous work had not documented such shifts in 
Symbiodinium types after coral transplantation to contrasting light environments (Iglesias-
Prieto et al. 2004). Shifts in relative abundance in Symbiodinium types have been attributed to 
changes in the relative abundance of the genetic varieties already present in the coral rather 
than to uptake of new types from the environment. It is not clear yet if corals hosting a 
mixed population of Symbiodinium would have higher potential for thermal acclimation 
than corals hosting a single type. The effect of symbiosis plasticity on symbiosis robustness 
and specifically on holobiont capacity to cope with thermal stress has not been fully 
elucidated yet. Using real-time PCR techniques, Mieog et al. (2007) found that minute 
numbers of different types were present in 78% of the samples taken from species that were 
previously believed to host only one Symbiodinium type. Coffroth et al. (2010) recently 
reported that some corals are capable of taking up Symbiodinium from the environment, thus 
increasing their potential for acclimation through symbiont shuffling. Coffroth et al. (2010) 
were also the first to note that this uptake of foreign zooxanthellae may not necessarily 
cause a stable thermo-tolerant symbiosis, and hence, may not prevent the occurrence of 
bleaching.  
Another recent study suggest that the thermo-tolerant Symbiodinium type D1a is a rather 
selfish organism that hardly translocates photosynthetic carbon to its host (Smith et al. 
2010), which puts another constraint to symbiont shuffling as a mechanism of thermo-
adaptation.  

5. Summary and conclusions 

1. Photosynthesis in corals is affected by many, often interacting factors.  
2. Zooxanthellate corals possess a myriad of mechanisms to adjust their photophysiology 

to changing environmental conditions, including symbiont shuffling. 
3. P/E curves represent a useful characterization of the photosynthetic responses of 

zooxanthellate corals, the shape and the associated parameters Pmax, α, Ec and Ek being 
good indicators for photo-acclimation. 

4. Oxygen evolution measurements are the easiest and most reliable way to obtain 
information on net photosynthesis and dark respiration.  
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