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1. Introduction  

Peer to peer (P2P) content distribution network like BitTorrent (BT) is one of most popular 
Internet applications today. Its success heavily lies on the ability to share the capacity of all 
the individuals as a whole. As the first deployed prototype on the real Internet, 
CoolStreaming (Zhang et al., 2005) for the first time manifests what a great application 
potential and huge business opportunity it can reach if the content is delivered not only in 
large scale but also on real-time. Along the way to the large-scale Along the way to such as 
system, people (Vlavianos et al., 2006) find there is no natural connection between the 
abilities of mass data delivering and real-time distributing in any protocol. This discovery 
stimulates people to study how to modify protocols like BT to meet the real-time demand. 
Since 2004, a series of large-scale systems like PPLive and PPStream have been deployed in 
China and all over the world, and become the world-class popular platforms. Many research 
reports on them also mark their success.  

However, most existing works are descriptive. They tell about how such a system works 
and how to measure it, but do not pay much effort to explain why. In this chapter, we take a 
different route. We seek to better understand the operation and dynamics of P2P systems at 
a deeper level of detail. We split our understanding objective into the following sub-
objectives 1) understand the working principle through the communication protocol crack, 
2) comprehend the streaming content-delivery principle, 3) locate the measurable 
parameters which can be used to evaluate the system performance; 4) understand the P2P 
network through the models of startup process and user behavior, and analyze the 
engineering design objectives. The requirements for reaching those goals are as follows. 1) 
the research must be driven by mass measured data of real network. 2) for us, the measuring 
platform must be suitable to the normal access situation like the home line. 3) datasets must 
be available in terms of scalability, quality and correctness of information. 4) the process of 
reversing engineering should be well designed with ease to set up the analysis, ease to 
interpret the results and ease to draw conclusions from the presented results. 

However, the road towards reaching our research goals is full of challenges. On this road, 
many new findings are reported, many original problems are presented, and many design 
philosophies are discussed for the first time. Because all P2P streaming systems so far are 
proprietary without any public technical documentation available, the fundamental “entry 
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point” of the analysis is to crack the system protocol, and then develop measurement 
platform to access to the system legally; next, based on the mass raw data, we investigate 
and study the user/peer behaviors, especially the startup behaviors which are believed to 
involve much more systematic problems rather than stable stage; at last, the system’s 
performance, scalability and stability are discussed and the design models and philosophy 
are revealed based on the peer behavior models. The research steps outlined previously in 
this paragraph are detailed in Sections 3 to 5. In addition, Section 2 presents related work.  

2. Related works 

Since the deployment of CoolStreaming, many measurement based studies are published. 
Some useful measurable parameters such as buffer width, playable video and peer offset are 
defined in (Ali et al., 2006; Hei et al., 2007a, 2007b; Vu et al., 2006), and startup performance is 
addressed in user perceptive (Zhou et al., 2007). In fact, nearly all the reports assume a small 
buffer system, which is far from the real one like PPLive that adopts much large buffer to resist 
network fluctuant. For a system like PPLive, one can no longer simply assume the same 
situation for both stable and startup peers. Studies on a mixed system of CDN server and 
peers can help our study. It is shown in (Lou at el., 2007; Small at el.,2006; Tu at el., 2005; Xu at 
el., 2003) that, there is a phase-transition point C(t) at time t in the mixed network, any chunks 
below C(t) is easy to fetch. The issue like C(t) in P2P steaming media system has never been 
studied. Besides, data fetching strategies are theoretically discussed in many reports. The 
algorithms of rarest first and greedy (Zhou at el., 2007) are two extreme strategies arise from 
BT and a mixed strategy of them is proposed in (Vlavianos at el., 2006; Zhou at el., 2007), while 
what is the suitable fetch strategy in P2P streaming media system needs to be answered. On 
VoD system aspect, very few studies (Cheng, 2007; Huang, 2007) based on so-called P2P VoD 
system were ever seen in 2008, however the target network is far from we discussed at all. The 
server-based VoD users’ behavior is studied in (Yu et al., 2006; Zheng et al., 2005) based on 
core server’s log file, but it is questionable whether P2P user has the same feature. Besides, 
intuitionally, data-sharing environment and user behavior will influence each other in P2P 
VoD system unlike in server based VoD system, however no relative research reports that. 

3. Signalling crack and network measurement 

Reverse-engineering-based protocol crack is the first step. It helps understand the working 
mechanism in depth, but also makes our large-scale measuring possible by developing 
network crawler. To the best of our knowledge, the work presented here and in related 
papers by the same authors and colleagues is the first in the world who succeeded in 
cracking and measuring all the top popular P2P streaming media systems in large scale.  

3.1 Brief description of P2P VoD system  

Referring to Fig.1, a typical P2P media streaming system uses few servers to serve large 
number of audiences (named as peer) with both live and VoD programs (Ali et al., 2006; Hei, 
et al., 2007a; Zhang, et al., 2005). There are significant different design concerns about P2P 
VoD system and live system: i). VoD peer uses much more storage space to cache nearly the 
whole video in long term than live peer to cache very few latest contents temporarily. 
Besides, VoD peer may share all the cached contents even if he is in a different channel. (b) 
P2P live system is of source-driven such that seeder controls the content feeding rate, while 
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P2P VoD system is of receiver-driven and each peer controls playback rate by himself. 
Unlike live peer, VoD user has more flexibility to choose different playback patterns, such as 
skipping, fast forwards and fast backwards.  

 

Fig. 1. The system structure 

3.2 The communication protocol cracking 

In general, the protocol crack is a cycling procedure including following steps:  

Network sniffer/measurement: In the first step, performed using a client sniffer, we capture 
the interactive packets between the local peer and others. We get to know the important 
protocol messages must be there such as shake hand message, buffer map message (BM), and 
peer list message (peerlist), based on existing research reports and our experience. By 
connecting those types of message to the sniffer trace, it is not difficult to distinguish all 
kinds of message, even though some messages’ functions are unknown.  

Protocol message guess: Next, we observe each message in different dimensions, including 
the dimensions of time, channel and peer. For facilitating observation, we use a small 
software (developed by us) to extract the wanted messages with some query conditions, 
such as source IP/port, destination IP/port and message type, from the traces. From the 
extracted records, we can see many regular patterns which help parse the detailed format of 
each message. Of course, this way doesn’t always work well, for the minority of messages 
can’t be explained. So, we don’t neglect any available reference information, e.g., we have 
ever found the fields of total upload/download count and upload/download speed per 
peer contained in BM based on the information displayed in PPStream client window. In 
general, we crack more than 80% messages for PPLive, PPStream and UUSee.  

Test and Confirmation: In this stage, we analyze and validate the interactive sequences of 
messages. We guess and try different interactive sequences until the normal peer or tracker 
gives the right response. At last, nearly all the guesses are confirmed by our successfully and 
legally access to the real network. 

 

Fig. 2. Buffer and buffer map 
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Though the crack process, we get to know some principle of the system. In the P2P system, 

the video streaming is split into many blocks called chunks, each of which has a unique ID. 

In general, chunk ID is sequentially assigned in ascending order, i.e. the earlier played chunk 

has smaller ID as Fig.2 shown. A seeder injects chunks one by one into the network and each 

peer caches the received chunks in a buffer. Live peer only caches a small fraction of the 

whole video, while VoD peer caches almost the whole video. A peer buffer is usually 

partially filled. The downloaded chunks -- the shadow square in Fig.2 are shared, while the 

empty areas need to be filled by downloading from others. For enabling the key sharing 

principle between P2P users, a message BM is introduced to exchange the buffer 

information between peers. Referring to Fig.2, for a peer p, its BM contains two parts, an 

offset fp and a bitmap. The offset fp is the oldest chunk ID, i.e., the smallest chunk ID in a 

buffer. The bitmap is a {0,1} sequence, which length indicates the buffer width Wp. In the 

bitmap, a value of 1, respectively 0 at the ith position start from left to right means that the 

peer has, respectively has not the chunk with IDoffset+i-1. Since a peer constantly fetches new 

chunk to fill its buffer and shifts the expired chunk out of the buffer, the chunk IDs at both 

ends of the buffer will go forward with time, we name the BM offset time sequences of as 

offset curve fp(t) and the largest chunk ID time sequence in the peer’s BM as scope curve p(t). 

Obviously, the difference between them is the peer’s buffer width Wp(t)=p(t)-fp(t). Usually, 

Wp(t) fluctuates with time. In addition, we get a very useful finding in tracker peerlist 

message: Different from the peerlist of a peer, the tracker peerlist has two important extra 

fields, TkOffMin and TkOffMax, corresponding to the buffer head (called seeder offset ftk) and 

buffer tail (called seeder scope tk) of the seeder, respectively. Obviously, the seeder’s buffer 

width is Wtk=tk-ftk. The finding can be proved in next section.  

3.3 Network measurement and dataset 

Using the cracked protocols, we succeeded for the first time to develop crawlers that 

measure different P2P streaming media systems in a large scale. The crawler first reads a 

channel’s index file. Then it starts to collect BMs and peerlist messages returned by 

tracker or peers into a log file as the raw trace for our offline studies, meanwhile we insert 

a local timestamp into each message. The crawler runs on a PC server (512 kbps ADSL 

home line, window XP, 2.4 GHz CPU, and 1 GB memory). The VoD crawler trace used in 

this chart is captured from PPLive on October 26, 2007, and lasts for about 90 min. The 

live crawler trace is also captured from PPLive during the time period from Apr. 2 to Jul. 

15, 2007. With the crawlers, nearly all peers in any given channel can be detected, so that 

much more properties can be found. However, crawler is incapable of detecting a peer 

within its very beginning stage because the startup peer doesn’t emit any signaling 

messages to a normal peer/crawler. Thus, a live sniffer trace, which is captured on July 3, 

11, 12 and 15, 2007 by using a sniffer tool, is used to analyze the startup progress. We call 

it an experiment for each client sniffing and the trace totally contains about 2500 

experiments. 

4. Reverse engineering analysis from a peer's viewpoint  

Like the BT system, live peer may play roles of leecher(watcher) or seeder. A seeder has the 

complete video, while a leecher hasn’t. In a P2P live streaming media system, all peers are 
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watchers and a few content servers are seeders. On the other hand, a P2P VoD system also 

contains two roles. However, they are not classified based on whether a peer has a 

complete file or not. Although most VoD peers do not own a complete video, he can share 

it once he is online regardless of the viewing channel. In a channel, we name a peer never 

downloading from others as a contributor, and a peer downloading from others as a 

watcher. VoD watcher is just like live watcher in many aspects, while VoD contributor may 

not necessarily have a complete file. As a contributor, the VoD peer may upload one movie 

while watching another. A significant difference of a VoD system from a live system is 

that contributors largely outnumber watchers. Our measurement shows that about two-

thirds peers are contributors.  

4.1 Live peer behavior in P2P streaming media system 

Nearly all existing studies simply assume a stable playback rate. Thus we start with the 

problem of video playback rate measurement to launch our analysis. Then, we raised the 

questions of how a peer reaches its stable playback state, and whether and how a peer can 

keep in good shape. 

4.1.1 Playback rate and service curve 

Intuitively, the forward BM offset with time t in peer p, noted as fp(t), is connected to its 

playback rate. According to our experience, small rate changes are hidden if we were to 

visualize fp(t) directly as a time sequence. Instead, a curve of rtfp(t) with proper value of 

playback rate r can make the changes obviously. However, to check every peer’s playback 

rate is a hard job. In practice, each peer has its own playback rate which roughly equals to 

the system playback rate, otherwise video continuity cannot be ensured. Thus, a system 

playback rate should be found as a common reference for observing peer offset progress. 

We describe the system playback process by a service curve s(t). It is reasonable to use the 
system maximal chunk ID at any time t as s(t), and then playback rate is r(t) =ds(t)/dt. For a 
channel with playback rate variations, the playback rate vs. time should be a piecewise 
linear function.  

The procedure of finding the rate change is similar to the method in estimating the clock 

skew in network delay measurements. In (Zhang, 2002), people presented “Convex_Hull_L” 

algorithm and a segmented algorithm, which are denoted as CHU and SCHU respectively 

in our research, to calculate the network delay. However, referring to Fig.3, the convex 

envelope (dash line) calculated by CHU fails to reflect the rate changes in medium time 

scale in our trace 070502. Through slightly modifying SCHU algorithm, we get a new 

method called Piecewise Line Envelop Approximation (PLEA) (Li & Chen, 2009). The rate 

reset time {tk} and reset rate {rk} is simply the turn point and slope of each segment in the 

piecewise line calculated by PLEA respectively. The key of PLEA is to take convex hull only 

in small time scale and follow the rate variation in medium time scale. Thus, a parameter 

named as follow-up time  is introduced. An observed point will be kept if the time difference 

between this point and previously saved point is larger than . Unlike SCHU, our 

segmentation is automatically adjusted during the calculation procedure without pre-

assigned or fixed. The square marked line in Fig.3 shows the result of PLEA with =1500s. It 
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fits the envelope of trace quite well. Comparing PLEA to SCHU in Fig.3, the result of PLEA 

is much smoother. 

 

Fig. 3. PLEA v.s. others algorithms 

 

Fig. 4. Comparison of our algorithms 

Besides PLEA, we have an occasional but very useful finding during reverse engineering. In 
PPLive, the seeder’s buffer width Wtr(t) reported by tracker, which is the difference of 
seeder’s scope minus its offset, is always equals to the product of 120 and current playback 
rate r, i.e., Wtr(t)=120r(t). For validation, we draw all the rate curves calculated from PLEA of 
tracker scope tr(t) and peers max scope max(t), i.e., RPLEA(tr(t)) and RPLEA(max(t)), as well as 
Wtr(t)/120 in the same trace in Fig.4. All rate curves match well except some individual 
points. Thus we have following observations: For any PPLive channel, the instantaneous 
rates deduced from both tracker scope and peer maximal scope equal each other, and they 
are about 1/120 of the seeder’s buffer width, i.e., RPLEA(tr(t))=RPLEA(max(t))=Wtr(t)/120.  

Then new questions are naturally raised. Whether has the system took the rate variations 
into account in design? When rate change occurs, can that lead a peer to restart? All such 
questions involve a primary problem, what is operating mechanism of a peer, especially in 
its early stage. 
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4.1.2 The observation of a peer based on key events 

By sniffing many single clients, the typical events in peer startup progress are revealed in 
Fig.5. For simplicity, we call a startup peer as host. The first event is the registration message 
a host sends to the tracker after selecting a channel. We take the registration time as the 
reference time 0. After certain tracker response time Ttk the host gets a peerlist response from the 
tracker, which contains a list of online peer addresses and the seeder buffer information 
(TkOffMin and TkOffMax). Next, the host connects to the peers known from the peerlist. Shortly 
after, the host receives its first BM at peer response time Tp, and the sender of the first BM is 
correspondingly called the first neighbor p. After that, the host chooses an initial chunk as its 
start point and begins to fetch chunks after that chunk. We denote the time when a host 
sends its first chunk request as the chunk request time Tchk. After a while, the host starts 
periodically advertising its BM to the neighbors. The time when a host sends its first BM is 
named as the host advertising time Tad. This time breaks the whole start process into two 
phases: the silent phase and the advertising phase. Only in the advertising phase, a host can be 
sensed by an outside crawler. We find that, in a short time period after Tad, host reports an 
invariant BMs’ offsets, which indicates a host is busy in building his buffer so that it’s not 
the time to start to play video. At the time called offset initial time Toff when the host begins to 
move the BM offset forward, we think the host begins to drain data out from its buffer for 

playback. By the way, an oftenly-used offset setup time s is defined as the time duration 
between Tp and Toff, i.e. s= Toff–Tp. Time points of Ttk, Tp, and Tchk are all in the silent phase 
and can only be detected by client sniffer. While after Tad, time points of Tad and Toff can be 
collected by either our crawler or a sniffer. We use both two platforms to measure peer’s 
startup process and use Tad as the common reference to connect both platforms.  
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Fig. 5. Events and their occurring time in PPLive 

 

Fig. 6. PDF of s’ 
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Firstly, we measure the events in the silent phase. Statistic based on our 2502 client sniffing 

experiments shows that the Tad is a multiple of 5s and in most of cases Tad 5s. Most trackers 
return their responses within 0.02 seconds. Tp has an evenly distribution in the time interval 
[0.9s 2s]. Among Ttk, Tp, Tchk and Tad, no time points are tightly dependent. The average 
values of Ttk, Tp and Tchk are 0.058s, 1.419s and 2.566s respectively.  

Secondly, we measure the events in advertising phase. The sniffer method is not used 
because it can only detect limited hosts which are under our control. With our crawler, 
nearly all the peers in any given channel can be detected, so that much more properties can 
be found. For each peer p, we get the offset fp(t) at each discrete time of {tp,i}. Not every peer 
caught by our crawler is a host since many peers have already been there before the crawler 
inquiries them. A principle is used to extract the hosts from our trace, i.e., a host should 
have an invariable offset in its early BMs and then increase the offsets later. Two problems 
are involved in inferring the exact value of Toff from BM records. First, Tad is often missed out 
in BM records. In the most cases, a host has been in progress for uncertain time before our 
crawler queries him. Second, we can’t get the exact time when a host starts to drain data 
from his buffer because the time span between Tad and Toff may last for several tens of 
seconds. We take following measures. Buffer fill Uh(t), which is the number of all 
downloaded chunks in the buffer, i.e., the number of 1s in a BM at time t for a given host h, 
is used to solve the first problem. We only choose the peer meeting the condition Uh(t) ≤ 
certain threshold as a host, and take the timestamp of its first BM as its advertising time Tad. 
For checking if the threshold introduces biases, we try different thresholds. For the second 
problem, we take two different methods to estimate that time when a host changes its offset. 

Let t1 and t2 be the timestamps of the earliest two BMs with different offsets f(t1)f(t2) . One is 
the simple arithmetic average (AA) Toff =(t1+t2)/2, and the other is the linear interpolation 

(LI) Toff=t2(f(t2)f(t1))/r. The relative offset set time s’ for a host is calculated as s’=ToffTad. 

The probability distribution functions (PDFs) of s’ estimated by AA and LI with different 
thresholds are plotted in Fig.6. The similarity of the results can validate above methods. 

Therefore, we get peer’s offset setup time s=s’+(Tad Tp)70s where the mean value of s’ is 

about 66s and TadTp is about 51.4193.6s measured in silent phase. Then, what is the root 
reason for that constant, why not other values? Let’s dig it more deeply. 

4.1.3 Model-based observation of peer initial offset selection 

We name the peer’s first wanted chunk as the initial offset . We reconstruct a peer startup 
model in Fig.7 to explain the importance of initial offset. Assuming a constant playback rate 
r, service curve s(t) is a global reference. Assuming a constant seeder buffer width Wtk, we 
have the seeder’s offset curve ftk(t)=s(t)-Wtk below s(t). The host’s first neighbor p’s offset 

curve and scope curve (of its largest chunk ID) are fp(t) and p(t) respectively. Since the 
number of successive chunks in a buffer indicates how long the video can be played 
continually, we follow (Hei et al., 2007b) to name that as the buffer’s playable video Vp(t), 
correspondingly the peer’s playable video vp(t)=fp(t)+ Vp(t), which is also drawn in Fig.7. The 

initial offset is very important for that, once it, saying h, is chosen at certain time th, the 
host’s offset lag Lh=s(t)-fh(t) is totally determined. As shown in Fig.7, fh(t) begins to increase 

after the s, meanwhile s(t) has increased rs. Since the host initial offset lag is L=s(th)h, its 

offset lag at last is Lh=L+rs. Lh is the playback lag, but also the possible maximum buffer 

width. It means h can affect the system sharing environment. 
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For simplicity, we assume the initial offset decision is based on the host’s first neighbor p. 
Then, host h faces two alternatives -- based on either the tracker or its first neighbor. Seeing 
Fig.7, at time th, host h gets values of s(th)=TkOffMax and ftk(th)= TkOffMin from tracker, and 

values of p(th), vp(th) and fp(th) from its first neighbor p. Then the host should choice its h 

between fp(th) and p(th), beyond which scope no chunk is available. For further explanation, 

the chunk h will shift out of the neighbor p’s buffer at time th+(hfp(th))/r. Large h lets host 

h have more time to fetch this chunk. However, as too large h will lead to a very small offset 
lag, host’s buffer width maybe not large enough for a good playback performance. So what 
are the design principles behind the initial offset selection? 

We extract the marked points shown in Fig.7 at time th from our 2502 experiments, and 
draw them as a function of sorted experiment sequence in ascending order of Wtk and Wp(t) 
in Fig.8 where we take ftk(th) as the horizontal zero reference. The red lines are the seeder’s 

buffer width Wtk=(s(th)ftk(th)). The top one is Wtk and the bottom one is Wtk. Clearly, 
PPLive mainly serves two playback rates: 10 chunks/s on the right area and 6 chunks/s on 

the left area. The black ‘.’ and green ‘x’ stand for pftk and fpftk respectively, the distance 

between which marks in each experiment is peer p’s buffer width Wp=pfp. Similarly, the 

vertical distance between top red ‘-’ and green ‘x’ is peer p’s offset lag Lp=sfp. Thus, Fig.8 
confirms that PPLive takes certain variable buffer width scheme. Furthermore, seeder has a 

larger buffer than normal peer. The blue ‘’ is hosts relative initial offset lag hftk. Obviously, 

PPLive doesn’t adopt a fixed initial offset lag scheme, or else all blue ‘’ would keep flat. 

Actually the blue ‘’ and green ‘x’ have a similar shape, which means that initial offset may 
adapt to first neighbor p’s buffer condition.  

 

Fig. 7. The startup model 

We think certain kind of Proportional Placement (PP) strategy (Li & Chen, 2008a) can be 
introduced to make the decision of initial offset. Referring to Fig.8, the distance of the 
initial offset to its first received BM’s offset is somehow proportional to the first 

neighbor’s buffer width Wp=pf p or the first neighbor’s offset lag Lp=sf p.  Thus, we guess 

PPLive chooses the initial offset either by h=fp+WWp or h=fp+LLp, where the W and L 

are the scale coefficients. Based our measurement, both PDFs of W=(hfp)/Wp and 
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L=(hfp)/Lp have the very high peaks at the same coefficient 0.34. The scaled errors of 

100(W0.34) is shown with the cyan color in Fig.8. It seems that PPLive more likely uses a 

scheme based on the first neighbor’s buffer width since W has a more sharp distribution. 

To check whether the selected initial offset  is easy to download, as well as to evaluate 
whether PPLive has been designed to make host set its initial offset at the most suitable 
point locally or globally, we have studied the chunk availability. As a result, a host 
usually receives BMs from 4.69 peers before fetching any chunks. In more than 70% 

experiments, host can fetch chunks around  from at least 3 neighbors. It indicates a good 
initial downloading performance.  

 

Fig. 8. The measured initial parameters 

4.1.4 Model-based peer observation in the startup stage 

Once the initial offset is chosen, the host begins to download chunks. We use a simple 
model to help understand the data fetching process. For any given peer p, the model 
contains two parts. One is buffer filling process, expressed by curves of buffer width Wp(t), 
playable video in buffer Vp(t), and buffer fill Up(t) which is the number of all downloaded 
chunks in the buffer at time t. They reflect a buffer’s local conditions, but can’t tell the status 
of peer process in a global sense. The other is peer evolutionary process depicted by curves of 

offset fp(t), scope p(t), peer playable video vp(t), download up(t)=fp(t)+Up(t) and the reference s(t). 
Ideally, for a CBR video, all evolutionary process curves should have the same slope equals 
to the playback rate r. One real progresses of the model can refer to Fig.9. The top line is s(t) 
as the reference line, the black line at the bottom shows the offset curve fp(t), and the cyan 
curve close to s(t) is up(t); the solid red curve with mark ‘x’ is Wp(t), the green curve with 
mark ‘*’ is Up(t), and the blue curve with mark ‘+’ is the Vp(t).  

Obviously, the downloading procedure contains two kinds of strategies. In Fig.9, both Wp(t) 

and Vp(t) have a same switch point at (sch≈40s, Csch≈900). We guess, before time sch, a peer 
sequentially fetches chunks from small to large ID, which can be confirmed by the fact of the 

closeness of Wp(t), Vp(t) and Up(t) before sch. Ideally, the three curves should be the same. 
However, in real networks, some wanted chunks may not exist in its neighbors or a chunk 

request maybe rejected by its neighbor. At the switch time point sch, the big jump of Wp(t) 

indicates a fetch strategy change. Therefore, we name sch as the scheduling switch time. Before 
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and after sch, we call the downloading strategies used by a peer as strategy I and strategy II 
respectively. A peer fetches chunks sequentially in strategy I, while in strategy II it may 
always fetch the latest chunk first. At the switch point to strategy II, the chunk ID’s sudden 
increase leads to an enlarged buffer width.  

 

Fig. 9. A PPLive peer’s evolution 

We believe the downloading strategies switch may be base on certain ratio threshold of 

buffer filling, and a closer observation can support this guess. As shown Fig.9, BM offset fp(t) 

keeps flat in the early 65s. Then, the peer starts to shift the offset forward. Let’s see the flat 

playable video Vp(t) curve duration time [40s, 80s]. We can infer the first flat part in period 

of [40s, 65s] is for that the peer is downloading the latest chunks according to strategy II. If 

with the same strategy, the curve of the rest part in period of [65s,80s] should have had 

sloped downwards. Thus it must have changed the fetch strategy again from strategy II to I, 

which let peer fetches the most urgent chunks first so as to keep the Vp(t) at certain 

threshold.  

At last, all curves of Wp(t), Vp(t) and Up(t) converge after a time around 80s, which is named 

as convergence time cvg. A sudden big jump in Vp(t) at this time indicates that the last wanted 

chunk within the buffer are fetched. It proves that the latest chunk is fetched firstly by 

strategy II in most of the period of [sch, cvg].  

The whole progress can be approximated by a set of piecewise linear functions by a 

threshold bipolar (TB) protocol, which is very simple in its implementation and design 

philosophy. For a host, when the current Vp ≤ a threshold, the urgent task is to download the 

most wanted chunks, while if Vp > the threshold, the job is switched to help spread the latest 

or rarest chunks over the network. We have ever observed some other peers’ startup 

procedures in our trace, and all of them can be interpreted easily by the TB protocol.  

By further observation, the piecewise line model involves six structure parameters 

including video playback rate r, peer initial download rate rp, fetching strategy switch 

threshold Csch, offset setup time s, the initial offset p relative to the first neighbor’s offset and 

the offset lag W*. Among them, r and rp cannot be designed and the rest four can. 

Assuming a constant r and a constant rp, based on the superposition principle at the key 
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points among the piecewise lines, it is not difficult to calculate other key time points, 

including scheduling turnover time sch and convergence time cvg, and then we can draw the 

piecewise lines. (Li & Chen, 2008b).  

We are next interested to better understand the parameters design in PPLive. In order to 

generalize our discussion we consider all the relative parameters, including Csch, p, W*, 

and nearly all buffer progress parameters, to be normalized by playback rate r, and for 

simplicity, we use the same names for most of the normalized parameters as their 

originals.  

We have known the offset setup time s70s in subsection 4.1.2. For Csch, we use switch 

threshold factor β=Csch/r instead of Csch. The calculation of Csch is a litter fussy, referring to 

Fig.9: i). let Csch=Wp(t) just before the first jump of Wp(t); ii). Let Csch=Vp(t) just after the first 

big change in dVp(t)/dt; iii). let Csch =mean of Vp(t) on its flat part; iv). let Csch=Vp(t) just before 

the jump of Vp(t). The results of all above methods are plotted in Fig.10, and we have β=90s. 

Next, W* is deduced from our crawler trace. Based on the statistics over total 15,831 peers 

lasting for at least 5 minutes since they entered stable state, we get a similar result for both 

normalized buffer width and offset lag relative to s(t). At last, the relative initial offset is 

figured out from sniffer trace. The distribution of W* and p are shown in Fig.11. Based on 

our measurement, we have W*=210s and p = 70s. 

Corresponding to the different sort orders of s, sch and cvg, i.e. s<sch<cvg, sch<s<cvg and 

sch<cvg<s, after computation with these design parameters of PPLive, we get three groups 

of the buffer process, Г0={p: <p≤1.286}, Г1={ p: 1.286< p≤3} and Г2={p: p>3}, where p is the 

normalized download rate p=rp/r. Peers in group Г0 face a very poor startup condition. They 

take very long time to converge and the convergence time spans from 490s (about 8min) to 

infinite (p=1, never converge). According to our measured p, less than 10%peers belong to 

this group, while more than 70% peers belong to group Г1. Hence Г1 is the normal startup 

situation, and the convergence time is between 490s and 70s. Peers (more than 20%) in Г2 are 

so fast that they have converged before playing the video.  

 

Fig. 10. Probability distribution function of β 
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Fig. 11. Probability distribution function of buffer progress (normalized) 

In summary, we have described how to approximate peer evolutionary progress based on 
the six parameters and the so-called design parameters in PPLive. In general, PPLive client 
has a good startup performance. In next section, we will reveal the systematic concerns 
behind the parameters design in PPLive. 

4.2 VoD user behavior in P2P streaming media systems 

In general, A VoD peer can be classified as contributor or watcher based on whether the 
number of ones never increases in bitmap of the peer’s BM or not during our observation. In 
our trace, most peers belong to either contributor or watcher. Less than 6% peers even 
advertised the abnormal all-zero BMs, the bitmap contained nothing. We guess such 
disordered behavior ascribed to software bugs, e.g. a user deletes his cache file suddenly. 
We name such those peers as Zpeer. Fig.12 draws the fractions of different peer groups in 
our measured channel 1. In fact, the rest two measured channel have the similar results. 
Those curves confirm that contributors always significantly outnumber watchers, and a 
stationary process can approximate the fractions. 

Further, two types of watching modes have been identified. People either watch a movie 
smoothly until his exit, or see a movie by jumping from one scene to another. We named the 
former as smooth watching mode and such viewer as smoother, and the latter as the 
jumping watching mode and that viewer as jumper. Obviously, smoother has continuous 1s 
in its BM, while jumper has discrete 1s. Table 1 lists the statistics on our trace. We find the 
majority are smoothers, while the jumpers cannot be ignored. It is different from that “most 
users always perform some random seeking” (Zheng et al., 2005). 

 

Fig. 12. role ratios in channel 1. 
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Table 1. Number of smoothers and jumpers 

4.2.1 Measureable parameter watching index in user behavior 

For quantitative analysis, we introduce watching index (WI) to name the position of the last 

“1” in a BM, which explains how many chunks a smoother has ever watched. Different 

from definition in (Yu et al., 2006), we use WI to emphasize the aspects of both time and 

space. As most peers are smoothers, a movie with a larger WI or longer tail in WI 

distribution in smoothers is usually considered to be more attractive. It means that people 

watched this movie longer or more people watch the movie. We use probability pWI() to 

represent the PDF of WI, which is the fraction of peers whose last “1” in their BMs are at 

the position . Fig.13(a) shows Cumulative Distribution Function (CDF) FWI()=∑k≤ pWI(k). 

Obviously, channel 3 and channel 2 were the most and the least attractive respectively. 

Besides, online time is defined as how long a peer stays in a channel, and Fig.13(b) shows 

its CDF. Obviously, distributions of WI over all channels are significantly different but 

their online times are very similar. It indicates that WI is strongly related to the video 

content, while the contributor’s online time is nearly independent of what he is currently 

contributing. 

 

Fig. 13. CDF of WI and online time of contributors 

 

Fig. 14. BM occupancies of contributors 
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4.2.2 User behavior understanding in terms of watching index  

WI help us in better understanding user behavior. Fig.14 shows the CDF of WI for 
smoothers and jumpers in contributors. The x-axis of each subfigure is the chunk ID or bit 
positions in the BM. The y-axis is the fraction of the peers. The top curve and bottom curve 
are of smoother and jumper respectively. The middle curve is the fraction of jumper who 
has value 1s in its BM at a given bit position. As a peer frequently advertise its BM to others, 
those subfigures can also be interpreted as the sharing map among VoD peers. Based on this 
interpretation, we can draw the following conclusions: i). although most users are smoother, 
it may not be good for file-sharing. As lots of people only watch a few chunks, it may lead to 
overprovision around the initial chunks while under provision for the rest chunks; ii). 
Jumper promotes file-sharing. In each subfigure, the middle curve is significantly below the 
top curve line. It indicates a jumper contributes more chunks than a smoother. Furthermore, 
the bottom curve indicates jumpers contribute those chunks with large IDs which smoothers 
are incapable of sharing; iii). Even if jumpers contribute fewer chunks as a whole, their 
existence is still valuable, as the unbalanced provision resulted from smoothers can be 
compensated to certain degree by jumpers. 

5. Model-based analysis of PPLive at system level 

In the section we try to discuss the systematic problems and design concerns on performance, 
scalability and stability. Based on the live peer’s startup models, we will analyze PPLive's 
design goals, and how PPLive tends to reach the goals; VoD network sharing environment 
will be analyzed and the inherent connection with user behavior will be revealed. 

5.1 System stability based on different initial offset placement schemes 

We next introduce two initial offset placement schemes either based on the first neighbor’s 
offset lag or based on its buffer width. We will show how different system design goals can 
be reached under different schemes, and explain why good peer selection mechanism is 
critical to make the schemes stable.  

5.1.1 Initial offset placement based on offset lag  

The first model of initial offset placement makes a new peer (called host as before) decide its 
initial offset based on its first neighbor’s offset lag (Li & Chen, 2008a). Assume host h chooses a 

chunk ID  as the initial offset and begins to fetch chunks at time t0. After a time interval s, 
the host starts to drain chunks out of buffer to playback. Then, the offset lag of the host is, 

Lh=s(t)-fh(t) =s(t0)+r(t-t0) –r(t-t0-s)- =s(t0)+rs-. 

As a system designer, for minimizing the workload of tracker server, a person hopes that the 
wanted chunks are fetched as much as possible from other peers instead of tracker. Thus, 

the initial offset  should be chosen when at least one BM has been received for a peer p and 

 should be appropriate larger than peer p’s offset fp(t0). On the other hand, too much 
diversity among offset lags is not good for sharing environment, so a system designer 

would wish to control the offset lag, i.e., LhLp = fp(t0)+rs. 

It seems a good criterion to let the LhLp=0. We call such scheme as fixed padding (FP) 

because of =fp(t0)+rs where rs is a constant padding. However, FP has no design space. 
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One can easily find that all peers in such a system will have the same offset lag LWtk. Buffer 
width is an important design parameter involving playback performance. Larger buffer can 
improve playback continuity, but does no good to a tracker for consuming more memories. 
Thus, FP can’t fulfill two design goals at same time: large buffer of peer but small buffer of 
tracker.  

Let’s consider a more practical scheme named as proportional placement (PP) based on offset 

lag, i.e., =fp(t0)+Lp, where  is constant placement coefficient less than 1, and Lp is the first 
neighbor’s offset lag. Since the first neighbor must have been a new peer when it entered the 
system, we can refer to a very familiar formula xn+1=bxn+c, which is a contraction mapping 
when the Lipschitz condition satisfies b<1. One can easily concludes that such a system has a 

stable point L*=rs/, which is independent of any specific initial offset.  

Self-stabilizing is the most attractive property of proportional placement scheme. However, in 
certain extreme conditions, it may lead to a poor performance. For example, the first 
neighbor has an offset lag of Lp=1000 but only contains 50 chunks in his buffer. With a 

placement coefficient =0.3, the host’s h=fp(t0)+300, and the host doesn’t have any available 
chunk for download. 

5.1.2 Initial offset placement based on buffer width  

Instead of offset lag, a host can use Wp(t) for its initial offset placement, where peer p is its 
first neighbor. We name such a placement scheme as the PP scheme based on buffer width, 

i.e., =fp(t0)+Wp(t0). The advantage of this scheme is that, the initial chunk is always 
available in its neighbor peer. However, the system under this scheme may be not always 

stable, i.e., this scheme can’t guarantee a bounded offset lag Ln=s(t)fn(t) as n. In theory, 
lemmas 1,2 and 3 in (Li & Chen, 2008a) give the offset lag’s variant boundaries under certain 
assumed conditions in line with real situation. According to the lemmas, the measured 

E(W)/r=208.3, and the measured placement coefficient =0.34, then we can deduce the offset 

setup time s=70.82s. The deduced s is very close our measurement result. Hence, the 
placement scheme used in PPLive is stable.  

5.2 The system design concerns based on the TB piecewise line model 

Recall the normalized piecewise line design model (Li & Chen, 2008b) of peer startup 
progress in PPLive. Assuming each stable peer has a offset curve f(t)=t and scope curve 

(t)=s(t)=t+W* ,when peer p arrives at time 0, he has to choose an initial offset p relative to a 

neighbor’s offset equals as p=s, which has been confirmed in previous sections as both of 
them equal 70s. Besides, because the stable peer’s buffer width W* is 210s, thus we see that 

p is just equal to W*/3.  

Offset setup time s is roughly the startup latency and the buffer width W* is the playback 
lag to the seeder. Usually, people would like to use large buffers to ensure playback 

continuity. In our model, p is totally decided by s. So why do not people choose a smaller s 

for shorter startup latency? Smaller s leads to smaller p. A starting peer must ensure to 

download p within time s, otherwise, it will miss out it. Thus smaller s means larger 

download rate p requirement. In fact, for a given s, the minimal p required for fetching all 

initial B chunks (chunks ID from p to p+B-1) is about rmin=B/(s +B) since no one chunk can 
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survivor after s+B seconds. if one wants to decrease the s from 70s to 35s, the peer needs a 
faster rmin , which will impact the startup performance.  

There is a physical explanation for the turnover threshold csch(t) in PPLive. We have 

csch(t)=t+β for t≥s, which happens to be the seeder offset ftk(t) (reported by tracker) since 
ftk(t)=t+W*-120=t+90=t+β. Intuitionally, chunks below ftk(t) may can only be buffered by 
peers, but those above ftk(t) are cached by both seeder and peers. Designers would like to see 
a system where peer caches as many as useful chunks while seeder doesn’t, and make use of 
stable peers’ resources to help startup peers. Thus β has a lower limit as β≥90. 

On the other side, let vq(t)=Vq(t)+t be the playable video of a neighbor peer q. All chunks 
below vq(t) are already fetched by peer q at time t, but chunk vq(t)+1 definitely is not. If we 
set csch(t)>vq(t) and assume q is the only neighbor for host p, then after peer p gets chunk vq(t), 
he has to idly wait for peer q to fetch chunk vq(t)+1 according to the TB protocol. If we 
design csch(t)<vq(t), peer p will not waste its time. Substituting model parameters into it, we 

have β<Vq(t)+t-s, for 0≤t<s. If any possible download rates are considered, the right side of 

the inequality has a minimal value Vq(t)-s. If further assuming Vq(t) for any peer q has the 
same distribution with a mean V* and stand deviation σV, then we deduced another design 

rule (Li & Chen, 2010) for the upper limit of β as β<V*-σV-s for 0≤t<s, where coefficient  
is introduced to guarantee the switch threshold is below the playable video of his neighbor 
with larger probability. Based on our measurement in PPLive, V* is about 196 and σV is 

about 18. For a threshold of 90,  is 2. Through the discussion of system design 
considerations, we hope to support the claim that PPLive is a well-engineered system. 

5.3 VoD network sharing environment  

In P2P-based file sharing systems, the number of copies is an important indication to the 

availability of data blocks. We define the number of copies of chunk  in the network at a 

given time t as availability N(,t), which equals the number of online peers having this chunk 
at this time. Our statistics shows that chunks with larger IDs have less availability. 

Moreover, if we normalize N(,t) by the total number of online peers N(t), or the total 

number of copies C(t)=Σ N(,t) at time t, then both the results of (,t)= N(,t)/ N(t)≈() 

and (,t)= N(,t)/C(t)≈(), can be observed independent of time t. We named these 

normalized availabilities as the sharing profile (SP) (), and sharing distribution (SD) (). () 

is a probability distribution as ∑ ()=1, while () is not. Both SP and SD are shown in 

Fig.15. In each subfigure there are 86 curves in light color, which correspond to(,t) or 

(,t) calculated at 1, 2, . . . ,86 minutes of our trace time. Clearly, all the light color curves in 
each subfigure are very similar. This indicates that the SP and SD are well defined in a 
practical P2P VoD system.  

The user watching behavior will affect the network sharing environment, and an inherent 
connection does exist between user behavior and VoD network sharing, i.e. the SP and SD 
can be analytically deduced from the distribution of WI. The theorems 1 and 2 in (Li & 
Chen, 2010) further verify the time-invariant property of SP and SD. yIn Fig.15, the thick 
black curve is the result theorem 1 in (Li & Chen, 2010). Clearly, the thick curves match the 
measured light color curves quite well in all subfigures. Equation 3 in theorem 1 says that 
the average number of copies is related to the second moment of WI. It indicates that the 
diversity in users’ behaviors can promote network sharing, and this provides twofold 
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insights: i). the system design should facilitate any kinds of viewing habits, such as watching 
from the middle, watching by skipping and even watching backward. ii). a movie should be 
designed to lure its viewers to present different behaviors, e.g., guiding viewers go to 
different sections by properly designed previews. In addition, the network sharing research 
based on the jumpers’ WI has a similar result. In short, a good VoD system should be well-
designed on both protocols and contents to accommodate any kind of audience.  

 

Fig. 15. Sharing profiles (SP) and sharing distributions (SD) in three channels 

6. Conclusion 

In this chapter, we presented the study of a P2P streaming media system at different levels 
of detail. The aim of the study is to illustrate different types of analyses and measurements 
which can be correlated to reverse-engineer, and further give guidelines to optimizing the 
behavior of such a system in practice. On signaling message level, we tell about our system 
crack procedure and reveal the protocol flow and message format. Following that, large-
scale measurements are carried out with our network crawlers and mass raw data is 
captured. On peer behavior level, the startup process of live peer is analyzed in two aspects 
including initial offset placement and chunk fetch strategies. We discover that the initial 
offset is the only decision factor to a peer’s offset lag (playback delay), and the initial offset 
selection follows certain proportional placement models based on first neighbor’s buffer 
width or offset lag in PPLive. Once the initial offset is determined, a peer downloads wanted 
chunks following a TB protocol, which can be depicted by a model of a bunch of piecewise 
lines. Our measurement proofs that in PPLive most live peers (more than 90%) have 
seemingly good performance. Moreover, VoD peer’s behavior is discussed in user (person) 
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behavior. With the help of measurable parameter of WI, we reveal that although majority 
peers are smoothers, jumpers tend to be the real valuable file-sharing contributor. On 
system level, the systematic problems and design concerns on performance, scalability and 
stability are discussed. Based on the live peer’s startup models (PP models and piecewise 
line model of TB protocol) driven by our trace, we analyze P2P live system’s design goals 
such as the large buffer in peer/small buffer in seeder and self-stability on offset lags, and 
confirm PPLive tends to really reach those goals. VoD network sharing environment is 
analyzed in terms of network sharing profile and sharing distribution, and we find the 
sharing environment is heavily affected by user viewing behavior.  

In addition, we will further our study on following issues. We believe live peer chooses its 
initial offset base on good neighbour, but the evaluation principle of good peer is not 
answered; The playback rate change has been found in a system designed for CBR video. It 
needs to be analyzed whether the system can keep in good health when playing a VBR 
video and how to improve the performance. Besides, we will continue to study what have 
changed in the continually updated systems. 
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