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1. Introduction  

Copper alloys are well known for their electrical and thermal conductivity, good resistance 
to corrosion, ease of fabrication and good strength and fatigue resistance. These properties 
make copper alloys suitable for several electrical and heat-conduction industrial 
applications. However, many of these industrial processes deal with hydrogen, and the 
interaction of this gas with copper alloys may affect to their mechanical features. Hydrogen 
dissolves in all metals to some extent. The dissolved hydrogen in the bulk of the material 
may change its mechanical properties assisting in its fracture, for example, and leading the 
material to the so-called hydrogen embrittlement. Therefore, it becomes important to 
characterise the transport properties of hydrogen in copper alloys as well as their ability to 
migrate by diffusion through structural walls by interstitial dissolution and trapping. This 
characterisation allows the improvement of the aforementioned industrial applications. 

Lately, copper alloys are being considered as a technical option to construct a pipeline to 
transport any gaseous fuel including those of high hydrogen content or even pure 
hydrogen. In relation to this matter, the evaluation of hydrogen migration through the wall 
of the pipeline and the definition of related fundamental physics are key-issues when 
performing any risk evaluation because of hydrogen leak capacity. Apart from this question, 
it is well known the ability of hydrogen to damage copper alloys at high temperatures when 
they contain oxygen, this problem being directly connected to the ability of hydrogen to 
migrate through the solid material. 

The research in nuclear fusion technology is also highly interested in copper materials. In 
fact, copper alloys have been selected as structural/heat sink materials that may be used in 
future fusion reactors like ITER because of their high thermal conductivity, good mechanical 
properties, thermal stability at high temperature and good resistance to irradiation-induced 
embrittlement and swelling. In this research area, heat sink/structural materials are 
subjected to high heat flux and, therefore, must possess a combination of high thermal 
conductivity and high mechanical strength. Apart from the previous properties, the 
interaction of hydrogen isotopes with copper alloys that could be part of the in-vessel 
components of a fusion reactor is of primary importance because it affects to the fuel 
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economy, the plasma stability and the radiological safety of the facility. There are various 
examples of predictive works trying to establish the time dependant evolution of migration 
fluxes and fuel inventory within fusion reactor components (Esteban et al., 2004; Meyder et 
al., 2006) by means of numerical simulation codes that use the hydrogen transport and 
trapping properties as the main input parameters. Trapping is the process by which 
dissolved hydrogen atoms remain bound to some specific centres known as “traps” (e.g. 
inclusions, dislocations, grain boundaries and precipitates). Hence, hydrogen isotopes may 
be dissolved in trapping or lattice sites of the material. The effect of trapping on hydrogen 
transport affects to the transport parameters and also to the physical and mechanical 
properties of the copper alloys involved. 

Two of the most promising copper alloys at the present time in several specialised research 

areas are oxide dispersion strengthened (DS) copper alloys and precipitation hardened (PH) 

copper alloys (Barabash et al., 2007; Fabritsiev & Pokrovsky, 2005; ITER, 2001; Lorenzetto et 

al., 2006; Zinkle & Fabritsiev, 1994). This chapter will analyse and compare the experimental 

hydrogen transport parameters of diffusivity, permeability and Sieverts’ constant for the 

diffusive regime of these kinds of copper alloys. Results can then be extrapolated as general 

behaviour for similar copper alloys. Trapping properties will also be discussed. Data shown 

in the chapter will refer to real experimental values for copper alloys obtained by means of 

the gas evolution permeation technique. 

2. Experimental 

The gas evolution permeation technique is widely used to characterize the hydrogen 

transport in metallic materials and, therefore, it turns out to be a suitable technique for the 

analysis of hydrogen transport in specimens made of different copper alloys. Oxide 

dispersion strengthened (DS) copper alloys and precipitation hardened (PH) copper alloys 

have been characterized by means of this experimental method. More precisely, 

experimental hydrogen transport data are available for a DS copper alloy named GlidCop® 

Al25 and for a PH-CuCrZr copper alloy named ELBRODUR®. 

2.1 Dispersion strengthened and precipitation hardened copper alloys 

The GlidCop® Al25 copper alloy is produced by OMG America and contains wt. 0.25 % Al 

in the form of Al2O3 particles. The material is manufactured by means of powder metallurgy 

using Cu-Al alloy and copper oxide powders. These are mixed and heated to form alumina 

and then consolidated by hot extrusion. This fabrication method derives in a high density of 

homogeneously distributed Al2O3 nanometric particles within the elongated grain 

substructure of the material, which are thermally stable and resistant to coarsening so that 

the grain substructure is resistant to thermal annealing effects (Esteban et al., 2009). 

The ELBRODUR® copper alloy is produced by KME-Germany AG. The alloy composition is 

wt. 0.65 % Cr, wt. 0.05 % Zr and the rest Cu. The fabrication process and the heat treatment 

consisting of solution annealing (1253 K, 1 h), water quenching and aging (748 K, 2 h) makes 

possible the presence of nanometric Guinier-Preston zones and incoherent pure Cr particles 

that provide the material with the high mechanical strength by dislocation motion 

inhibition. An image of the CuCrZr microstructure is shown in Figure 1. 
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Fig. 1. CuCrZr microstructure. 

2.2 Gas evolution permeation technique 

A schematic view of a permeation facility is shown in Figure 2. The physical principle of the 

experimental technique entails the gas flux recording that passes through a thin membrane 

of the material of interest from a high gas pressure region to a low-pressure region at initial 

vacuum conditions. 

The hydrogen migration through the specimen is measured by recording the pressure 

increase with time in the low-pressure region with two capacitance manometers (Baratron 

MKS Instr.-USA) P1 and P2 with full scale range of 1000 Pa and 13.33 Pa respectively. An 

electrical resistance furnace (F) regulated by a PID controller allows to establish the sample 

temperature within a +/- 1 K precision. The temperature of the specimen is measured by a 

Ni-Cr/Ni thermocouple inserted into a well drilled in one of the two flanges where the 

specimen is mounted. The pressure controller (PC) allows the instant exposure of the high-

pressure face of the specimen to any desired gas driving pressure, which is measured by 

means of a high-pressure transducer (HPT). 

Before any experimental test is performed with high purity hydrogen (99.9999%), ultra-

high vacuum state is reached inside the experimental volumes (up to 10-7 Pa) in order to 

assure the absence of any deleterious species (such as oxygen or water vapour) that may 

provoke surface oxidation of the specimen (S). There are three ultra-high vacuum 

pumping units, UHV, composed by a hybrid turbomolecular pump and a primary pump; 

they pump down the inner volumes of the rig to the desired vacuum level with the help 

of heating tapes. The vacuum state is checked with three Penning gauges PG in different 

zones of the facility. A quadrupole mass spectrometer (QMS) is available to check the 

purity of the gas before and after any experimental test and as an alternative means of 

testing the quality of the vacuum. 
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Fig. 2. Schematic view of the permeation facility. PG – Penning gauge; F – furnace; PC – 
pressure controller; HPT – high-pressure transducer; QMS – quadrupole mass spectrometer; 
S – specimen; T1, T2 – nickel/chromium-nickel thermocouples; P1, P2 – capacitance 
manometers; UHV – ultra-high vacuum pumping units, V1 – calibrated volume. 

In an individual experimental test, the high driving pressure starts forcing permeation 

through the high-pressure face of the specimen towards the low-pressure region, where the 

hydrogen permeation flux rises progressively with time until a steady-state permeation flux 

is reached. After every experimental permeation run, an expansion of the gas in the low-

pressure region is performed to a calibrated volume (V1) in order to convert pressure values 

into permeated gas amount, or alternatively, the speed of pressure increase into permeation 

flux. The modelling of the pressure increase p(t) due to the gas permeation towards the low-

pressure region (a typical experimental permeation curve is shown in Figure 3) makes 

possible to obtain the hydrogen transport properties of the copper alloy: permeability (Φ), 

diffusivity (D) and Sieverts´ constant (KS). 

The permeated flux under diffusive regime for every temperature depends on the thickness 

of the sample, the values of the loading pressure and the permeability of the gas (Φ). This 

transport parameter defines the gas-material interaction. Diffusion is a physical property 

that allows the flux of a gas through the bulk of a solid material due to, in this case, a 

concentration gradient of the dissolved hydrogen. The gas flux in the bulk of the material 

depends on the concentration gradient and on the temperature. The proportionality 
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between the flux and the concentration gradient is called diffusivity (D) and is directly 

related to the kinetics of the system in order to reach the equilibrium by means of diffusion. 

Finally, Sieverts´ constant (KS) is directly related to the solubility of the gas in the solid and 

can be derived from the values of diffusivity and permeability. 

 

Fig. 3. Experimental permeation curve: transitory permeation regime and steady-state 
permeation regime. Definition of the time-lag. 

3. Theory 

Typical bulk parameters for the study of hydrogen transport in metal lattices are the 

diffusivity (D), the Sieverts´ constant, (KS), and the permeability (Φ) (Alberici & Tominetti, 

1995). The diffusivity is related to the diffusing flux in a metallic matrix, J, and the gradient 

of the gas concentration in the matrix, c , by the first Fick’s law: 

 J D c    (1) 

where is easy to see that D is linked to the migration velocity of the gas in the material. 

In this equation, taking into account a homogeneous bulk, D will be supposed to be uniform 

and constant throughout the material volume and it only depends on the absolute 

temperature, T, by an Arrhenius relationship: 
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 0 dexp( /R )D D E T     (2) 

where Ed is the diffusion activation energy, which is always positive. 

Experimentally it is found that hydrogen dissolves atomically in metal lattices; the 

proportionality between the atomic gas concentration in the bulk volume, c, and the square 

root of the equilibrium gas pressure outside the bulk, p1/2, is known as the Sieverts´ 

constant: 

 S /K c p  (3) 

It is interesting to note that Sieverts´ constant also shows an Arrhenius dependence on the 

temperature: 

 S S,0 sexp( /R )K K E T     (4) 

where ES is the activation energy for solution, which can be either positive or negative. 

Permeability (Φ) is given by means of Richardson’s law that states a linear relation between 

D and KS: 

 SK D    (5) 

From Eq. 5, it is obvious that permeability also follows an Arrhenius behaviour like D and 

KS, with an activation energy of permeation which is the sum of Ed and Es: 

 0 d sexp( ( ) /R )E E T       (6) 

All the processes involved in the interaction between hydrogen and the metallic material, 
either on the surface or in the bulk, may be explained by the analysis of the different 
potential energy levels acquired by the hydrogen atom/molecule in the immediacy of, 
and within the metal (Esteban et al., 1999). These energy levels are summarised in Figure 4 
(Möller, 1984). Out of the material, hydrogen is in the molecular form: the solid line refers 
to atomic hydrogen and the broken line to molecular hydrogen. All the energy increments 
and decrements depicted in Figure 4 define the hydrogen behaviour within, and in the 
vicinity of the solid metal and explain observed physical processes. The dissociation 
energy, Edi, is the amount of energy needed for splitting a hydrogen molecule into two 
atoms. The chemisorption energy, Ech, refers to the chemical binding established between 
atomic hydrogen and metallic atoms. The adsorption energy, Ead, is the energy barrier 
hydrogen has to surmount in order to access to a chemisorption site and it depends on the 
surface condition. The solution energy, Es, is the energy difference between a free atom 
and a dissolved one and depending on the sign of this energy the material is characterised 
as endothermic, Es > 0, or exothermic, Es < 0. The diffusion energy, Ed, is the barrier the 
diffusing atom has to surmount in order to pass, within the lattice, from one solution site 
to another. The trapping energy, Et, is the potential well to which a hydrogen atom 
remains bound when interacting with the potential trapping sites. ∆E states for the energy 
difference between a normal solution site and a trapping site, (Es – Et). Finally, Ec states 
for the energy difference when comparing potential barriers between normal solution 
sites and a trapping site. 
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Fig. 4. Potential energy distribution in a metal (Möller, 1984). 

Hydrogen isotope transport through material may be limited either by gas interstitial 
diffusion through the bulk (diffusion-limited regime) or by the physical-chemical reactions 
of adsorptive dissociation and desorptive recombination occurring on the surface of the 
solid material (surface-limited regime). The objective of this experimental task is usually to 
characterize the diffusion-limited regime instead of the surface-limited regime, the second 
one being only relevant when any kind of impurities or oxides are present on the surface of 
the material. 

“Trapping” is the process by which dissolved hydrogen atoms remain bound to some 
specific centres known as “traps” (e.g. inclusions, dislocations, grain boundaries and 
precipitates). Hence, hydrogen isotopes may be dissolved in trapping or lattice sites of the 
material. The effect of trapping on hydrogen transport is, on the one hand, the increase in 
the gas absorbed inventory, i.e. the increase in the effective Sieverts’ constant (KS,eff) with 
respect to the aforementioned lattice Sieverts’ constant (KS). On the other hand, the 
dynamics of transport becomes slower, i.e. the decrease of the effective diffusivity (Deff) with 
respect to the aforementioned lattice diffusivity (D). As a result, the Arrhenius temperature 
dependence of the parameters remains modified as follows, according to Eqs. (2) and (4) for 
diluted solutions (Oriani R.A., 1970): 

 
eff

t
t

l

1 exp( /R )

D
D

N
E T

N

 
 

    (7) 

 t
S,eff S t

l

1 exp( /R )
N

K K E T
N

 
    

 
 (8) 
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D0 and KS,0 being the pre-exponential lattice diffusivity and pre-exponential lattice Sieverts’ 
constant, and Ed, Es the diffusion and solution energies, respectively. Nt (m–3) is the trap sites 
concentration, Nl (m–3) is the lattice dissolution sites concentration and Et the trapping energy. 

When the individual effective parameters for each experimental temperature have been 
obtained, another fitting routine is separately run with Eqs. (2), (4), (7) and (8) for the lattice 
parameters D0, Ed, KS,0 and Es and trapping parameters Et and Nt over the correspondent 

temperature range of influence. The value of 8.5  1028 m–3 is taken for the density of solution 
sites into the lattice Nl, assuming that the copper alloy is close to a fcc structure where 
hydrogen occupies only the octahedral interstitial positions (Vykhodets et al., 1972). 

The effective transport parameters of diffusivity (Deff) and permeability (Φ) are evaluated 
for each temperature by modelling the experimental permeation curves obtained for every 
individual test. The Sieverts’ constant (KS,eff) is derived from the definition of permeability 
that states the relationship amongst the three transport parameters: 

 
eff S,effΦ D K   (9) 

A subsequent analysis of the Arrhenius dependence of these transport parameters with 
temperature enables the obtaining of the characteristic transport parameters of trapping 
energy (Et) and density of traps (Nt). 

The obtaining of the theoretical expression for the pressure increase with time in the  
low-pressure region as a function of the previous transport parameters is briefly explained 
hereafter. 

The specimens are thin discs with a very high ratio of the circular surface exposed to the gas 
in relation to the length of the diffusion path through the bulk of material. This is the reason 
why the problem can be modelled by an infinite slab with gas diffusion occurring in the 
direction perpendicular to the surface of the specimen. 

 

Fig. 5. Scheme of the permeation process through a 1-D slab. ph – high-pressure; pl – low-
pressure; d – thickness of the slab; Jd (x,t) – diffusive flux; c(x,t) – gas concentration. 
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A scheme of the gas transport through a sheet of material with a certain thickness (d) is 

shown in Figure 5. That specimen is exposed on one side to a certain gas driving pressure 

(ph), whereas the other side is left under vacuum conditions (i.e. very low pressure pl). 

The hydrogen concentration (c(x,t)) at each position (x coordinate) and each time (t) may be 
determined by solving the second Fick’s law in the one dimension slab: 

 
2

2

( , ) ( , )
eff

c x t c x t
D

t x

 


 
 (10) 

The boundary conditions being the following: 

 1st condition: h( 0, )c x t c  , from the beginning, in the region closest to the surface, the 

gas concentration acquires the final equilibrium value in the saturation state given by 
Sieverts’ law,  

 0.5
h S,eff hc K p    (11) 

 2nd condition: ( , ) 0c x d t  , the gas concentration in the low-pressure side is negligible 

in comparison to ch; i.e. pl negligible in comparison to ph, 

 
0.5

0 S,eff lc K p   (12) 

The initial condition is ( 0, 0) 0c x t   ; at the beginning of the test, the specimen is under 

vacuum conditions without any amount of hydrogen dissolved into the material. 

The analytical solution of the Eq. (10) with the previous boundary and initial conditions is 

(Carslaw & Jaeger, 1959): 

  
2 2

h
eff 2

1

2 1 π π
, 1 sin exp

πh
n

x c n x n
c x t c D t

d n d d





                    
  (13) 

The resultant flux to the low-pressure region can be evaluated as: 

      
0.5 2 2

eff S,eff h

2
1

, π
, 1 2 1 exp

n

nx d

D K pc x t n
J x d t D D t

t d d





    
             

  (14) 

The total gas inventory (I(t)) permeated to the low-pressure region is evaluated by 

accounting for all the gas flux released during the considered time period (t) and taking into 

account the surface area of the specimen (As): 

 

   
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 h h

s s s 0
eff
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h
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eff 1
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Φ p Φ p d
I t A J d t dt A t A
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Φ p d n
A D t

D n d





  
    



    
    




 (15) 
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Taking into account the ideal gas approximation, pressure increment with time in the low-
pressure region due to this amount of gas is: 

    0.5 0.5 0.5 2 2
h h h

s eff2 2
eff eff 1

R 12 π
exp

6 6

n
eff

s s
eff n

T Φ p Φ p d Φ p d n
p t A t A A D t

V d D D n d





                    
 (16) 

Where the Veff is the effective volume where the permeated gas is retained, Teff is the 

temperature of the volume and R is the ideal gas constant (8.314 J  K–1  mol–1). The volume 
Veff is precisely measured in each experimental permeation test by performing gas 
expansion to a calibrated volume. 

When imposing a very large period of time ( t  ) in the previous expression the evolution 

of pressure with time for the steady-state permeation regime is obtained: 

  
0.5 0.5
h heff

eff eff

R

6
s s

Φ p Φ p dT
p t A t A

V d D


   
     

 (17) 

This expression corresponds to the steady-state flux, 

 
0.5
hΦ p

J
d




  (18) 

obtained from Eq. (17); this is the linear tendency shown in Figure 3 on the right-hand side. 
When the straight line is extended down to cross the abscise axis in the time co-ordinate a 
characteristic time known as time-lag is obtained: 

 
2

L
eff6

d

D
 


 (19) 

The value of permeability (Φ) can be derived from the slope of the straight line in steady-

state permeation regime (Eq. (17)) and the effective diffusivity (Deff) can be derived from the 

value of the time-lag. Nevertheless, a non-linear least-squares fitting to all the experimental 

points of each single test has been preferred with the general expression (Eq. (16)) in both 

the steady-state region and the transitory region by considering the permeability (Φ) and the 

diffusivity (Deff) as the fitting parameters. 

In any individual permeation test, the gas is on contact with a solid surface and the 

hydrogen concentration profile through the sample thickness rises, becoming linear and 

stable after certain period of time. In that final permeation process the relationship between 

steady-state flux (J∞) and the loading pressure (ph) will be different depending whether the 

transport regime is diffusion-limited or surface-limited (Esteban et al., 2002): 

 0.5
h

Φ
J p

d
   (diffusion-limited) (20) 

 1 h

1
 

2
J k p    (surface-limited) (21) 
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where ǔk1 is the adsorption rate constant. The experimental confirmation of one of these 
relationships is a method to decide the type of transport regime for modelling the 
experimental tests. 

4. Results and discussion 

This section reviews the available data in literature for oxide dispersion strengthened (DS) 

copper alloys and precipitation hardened (PH) copper alloys. Results regarding interaction 

of these alloys with hydrogen are compared in relation to base material, Cu. Punctual 

experimental values are shown only for the ELBRODUR® alloy (not published), whereas 

Arrhenius regressions of the transport parameters are compiled for all the alloys.  

Individual permeation tests have been carried out for the aforementioned copper alloys, 

GlidCop® Al25 (Esteban et al., 2009) and ELBRODUR®, with temperatures ranging from 573 

K to 793 K and using loading pressures ranging from 103 Pa to 1.0  105 Pa. Additionally, 

data for base material, Cu, (Reiter et al., 1993) and for a similar PH-CuCrZr alloy (Serra & 

Perujo, 1998) named ELBRODUR-II hereafter to distinguish from the material analysed, are 

also available. These results for the hydrogen transport parameters in copper alloys are 

summarised and discussed in the next paragraphs. 

In relation to the permeation tests carried out for GlidCop® Al25 and ELBRODUR® copper 

alloys, the evaluation of the diffusive transport parameters has been assured because no 

surface effect has become relevant within the whole group of individual tests. This fact has 

been proved by studying the evolution of the experimental steady-state flux (J∞) with 

driving pressure (ph) at the same temperature. 

In the case of the ELBRODUR® copper alloy, a set of 9 permeation tests has been performed 
at the same temperature (688 K) with different loading pressures (ph) in order to study the 
type of hydrogen transport regime. These results are shown in Figure 6. The exponential 
relationship between the steady-state hydrogen flux (J∞) and the loading pressure (ph) has a 
power of n = 0.52, which is close to 0.5 (pure diffusion-limited regime) and far from 1.0 
(pure surface-limited regime) (Eqs. (20) and (21), respectively). 

Individual transport parameters of effective diffusivity (Deff), permeability (Φ) and effective 

Sieverts’ constant (KS,eff) have been obtained at different temperatures by modelling the 

corresponding individual permeation tests, both for GlidCop® Al25 (Esteban et al., 2009) 

and ELBRODUR®. 

The dependence of the transport parameters on temperature for the ELBRODUR® copper 

alloy is shown in Figure 7 (permeability), Figure 8 (diffusivity) and Figure 9 (Sieverts´ 

constant), together with the results obtained for the aforementioned reference copper alloys 

(Esteban et al., 2009; Reiter et al., 1993; Serra & Perujo, 1998). The Arrhenius parameters are 

obtained by fitting the individual experimental values to the tendencies given by Eqs. (2), 

(4), (7) and (8), resulting: 

-1 -0.5 -1 7 -1 (mol m Pa s ) 2.38 10 exp( 73.9 (kJ mol ) /R )Φ T          

2 -1 5 1(m s ) 3.55 10 exp( 65.5 (kJ mol ) /R )D T         
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-3 -0.5 3 -1
S (mol m Pa ) 6.71 10 exp( 8.4 (kJ mol ) /R )K T         

The trapping parameters are Nt = 3.7  1024 m–3 and Et = 51.2 kJ mol–1. 
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Fig. 6. Experimental hydrogen permeation steady-state flux in PH-CuCrZr alloy 

(ELBRODUR®) at 688 K and different driving pressures ranging from 103 to 1.5  105 Pa. 

The Arrhenius pre-exponentials and the activation energies of hydrogen transport 
parameters together with the trapping parameters that have been plotted in Figs. 7-9 are 
shown in Table 1. 
 

Material (curve) Φ0 EΦ D0 Ed KS0 ES Nt Et T 

ELBRODUR (1) 2.3810-7 73.9 3.5510-5 65.5 6.7110-3 8.4 3.71024 51.2 593-773 

GlidCop® Al-25 (2)
(Esteban et al., 2009)

5.8710-7 80.6 5.7010-5 76.8 0.006 3.7 3.11022 75.4 573-793 

ELBRODUR-II (3)
(Serra & Perujo, 1998)

5.1310-7 79.8 5.7010-7 41.2 0.90 38.6 - - 553-773 

Cu (4) 
(Reiter et al, 1993)

6.6010-6 92.6 6.6010-7 37.4 5.19 55.2 - - 470-1200 

Table 1. Experimental hydrogen transport parameters for reference copper alloys; Φ0 in 

molm–1Pa –0.5s–1, EΦ, Ed, Es and Et in kJ mol–1, D0 in m2s–1, KS0 in mol m–3Pa–0,5, Nt in m–3 
and T in K. 
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There exists a marked difference between the transport parameters obtained in the PH-
CuCrZr alloy (ELBRODUR®) in relation to the corresponding ones for the base material (Cu) 
(Reiter et al, 1993), DS copper alloy GlidCop® Al25 (Esteban et al., 2009), and a similar PH-
CuCrZr alloy (Serra & Perujo, 1998) named ELBRODUR-II. There is a different metallurgical 
composition in the Zr content and a slight difference in the thermal treatment of both the 
ELBRODUR alloys. Moreover, in the work performed with ELBRODUR-II (Serra & Perujo, 
1998) the effect of hydrogen trapping was not envisaged. 

In the case of the transport property of permeability (Figure 7) the result obtained for the 
PHCuCrZr alloy ELBRODUR® is congruent with the results obtained in other reference Cu 
alloys. The permeation energy, 73.9 kJ/mol, preserves a similar value to those of the other 
Cu alloys (80.6 kJ/mol in GlidCop® Al25 and 79.8 kJ/mol in ELBRODUR-II) and it is slightly 
lower than that of the pure Cu (92.6 kJ/mol). 

The aforementioned similar results in the four different materials are reasonable because 
permeability is a property describing the steady-state hydrogen migration through lattice 
with no influence of the trapping effect and the particular microstructural defects of each 
material; i.e. when enough period of time passes, hydrogen concentration dependence on 
depth adopts the final linear profile (see Figure 5) when trapping and detrapping (the 
inverse process) have reached equal equilibrium rates that cancel each other. 
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Fig. 7. Hydrogen permeability in PH-CuCrZr ELBRODUR® alloy compared with reference 
copper alloys: (1) ELBRODUR®, (2)  GlidCop® Al25, (3) ELBRODUR-II, (4) pure Cu. 
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The influence of microstructural defects of the material acting as strong trapping sites for 
hydrogen absorption, can be observed in transport properties such as diffusivity (Deff) and 
Sieverts’ constant (KS,eff). The dependence of the hydrogen diffusivity in PH-CuCrZr 
ELBRODUR® alloy and DS-GlidCop® Al25 alloy with temperature (shown in Figure 8) 
evidences the influence of trapping that provokes a general decrease in the diffusivity; i.e. 
the kinetics of migration becomes slower because trapping and detrapping processes 
impede the free flow of interstitial atoms through lattice solution sites. This effect becomes 
more pronounced as the temperature is lower (the vibration state of the hydrogen atom is 
weaker and the high trapping energy well is more effective for hydrogen trapping). At high 
temperatures, the diffusivity tends to approximate asymptotically to the behaviour of the 
base material Cu (curve 4) when the trapping effect becomes negligible. The alloys exhibit 
high values of diffusion energy (65.5 kJ/mol and 76,8 kJ/mol) and a marked influence of the 
trapping phenomenon with high values of trapping energies (51.2 kJ/mol and 75.4 kJ/mol). 
In the case of the in PH-CuCrZr ELBRODUR® alloy, the abundant hydrogen trapping sites 
in this material may be identified with the nanometric Guinier-Preston zones, incoherent 
pure Cr particles or extensive precipitates like Cu4Zr characteristic of this kind of alloy 
(Edwards et al., 2007). This behaviour is analogous to the trapping phenomena described in 
Gildcop Al25 (Esteban et al, 2009), where the presence of nanometric Al2O3 provoked a 
massive hydrogen trapping phenomenon even more effective than in the PH-CuCrZr alloy. 
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Fig. 8. Hydrogen diffusivity in PH-CuCrZr ELBRODUR® alloy compared with reference 
copper alloys: (1) ELBRODUR®, (2) GlidCop® Al25, (3) ELBRODUR-II, (4) pure Cu. 
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The hydrogen Sieverts’ constants for the PH-CuCrZr ELBRODUR® alloy and the DS-
GlidCop® Al25 alloy are shown in Figure 9 in comparison to the base material, Cu. All over 
again, a marked trapping effect in hydrogen Sieverts’ constant (i.e. solubility) has been 

observed throughout the whole temperature range for both alloys (curves 1 and 2). At low 
temperatures, hydrogen remains trapped into the defects of material exceeding the 
prediction made by the consideration of normal interstitial lattice sites of the base material 
Cu (curve 4). The interstitial lattice dissolution remains endothermic but with a low value of 

the dissolution energy for both alloys (8.4 kJ/mol and 3.7 kJ/mol). The trapped hydrogen 
specie becomes so important at low temperature that the effective Sieverts’ constant behaves 
as an effective endothermic tendency. 
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Fig. 9. Hydrogen Sieverts´ constant in PH-CuCrZr ELBRODUR® alloy compared with 
reference copper alloys: (1) ELBRODUR®, (2) GlidCop® Al25, (3) ELBRODUR-II, (4) pure Cu. 

The explanation of these particular tendencies may be found in the presence of high density 
nanosized defects in the materials. In the case of PH-CuCrZr ELBRODUR® alloy, the 
hydrogen interstitial atoms may remain trapped in the interface of the Guinier-Preston 
zones, incoherent Cr particles or precipitates, increasing the solubility and slowing down 
the transport through the lattice of the material (i.e. a lower effective diffusivity). In the case 
of the DS-GlidCop® Al25 alloy, the same effect can be attributed to the hydrogen inventory 
trapped in the nanosized Al2O3 particles. Furthermore, this phenomenon has been 
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experimentally identified in other kind of materials like oxide dispersion strengthened 
(ODS) reduced activation ferritic martensitic (RAFM) steels where nanoparticles of yttria 
Y2O3 provoked an analogous effect (Esteban et al., 2007). 

The effect of nanosized inclusions has an obvious successful effect in the improvement of 
thermal-mechanical properties of copper alloys. However, the effect of the increase of 
hydrogen isotope inventory retention needs to be taken into account. This effect can be 
extremely important in particular cases. In fusion reactor materials, for example, it should be 
taken into account when choosing the structural and heat-sink materials of the fusion reactor 
where the hydrogen isotope inventory has to be controlled with special attention when 
considering fuel balance economy or radiological safety issues. When choosing materials for 
pipelines that will transport gaseous fuels including those  with high hydrogen content or 
even pure hydrogen, the observed hydrogen trapping should be taken into account as long as 
it may degrade its mechanical properties. On the other hand, electrical characteristics may also 
be affected by hydrogen trapping phenomenon (Lee K. & Lee Y.K., 2000). 

5. Conclusion 

The gas permeation technique has been used in order to characterise two copper alloys 
proposed for high heat flux components: an oxide dispersion strengthened (DS) copper 
alloy named GlidCop® Al25, and a precipitation hardened (PH) copper alloy named 
ELBRODUR®. The hydrogen diffusive transport parameters have been obtained and 
discussed in relation to the particular microstructure of each copper alloy. The hydrogen 
trapping phenomenon has resulted to be present throughout the whole experimental 
temperature provoking an increase of hydrogen Sieverts’ constant and decrease of 
diffusivity. The permeability values remained close to the values of the base material, i.e. 
pure Cu, and the other reference copper alloys. The analogy of the experimental results 
obtained with other materials with nanosized inclusions, confirms the high ability of these 
kinds of material to trap hydrogen isotopes at low temperatures. This should be monitored 
with special care for applications where hydrogen trapping may modify the physical 
properties of copper alloys. 

6. Acknowledgment 

This work has been funded by the Spanish Ministry of Science and Education (Ref. 
ENE2005-03811) with an ERDF proportion. The authors would also like to thank the FEMaS 
Coordinated Action project for the support in knowledge exchange among different 
research groups. 

7. References 

Barabash V., (the ITER International Team), Peacock, A., Fabritsiev, S., Kalinin, G., Zinkle S., 
Rowcliffe, A., Rensman, J.-W., Tavassoli, A.A., Marmy, P., Karditsas P.J., Gillemot, 
F. & Akiba, M. (2007). Materials Challenges for ITER – Current Status and Future 
Activities. Journal of Nuclear Materials, Vol. 367-370, Part 1 (August 2007), pp. 31-32, 
ISSN-0022-3115 

www.intechopen.com



 
Interaction of Copper Alloys with Hydrogen 

 

47 

Carslaw, H. S. & Jaeger, J. C. (1959) Conduction of Heat in Solids, (2nd Edition), Clarendon 
Press, ISBN-0-19-853368-3, Oxford. 

Edwards, D. J., Singh B. N., & Tähtinen S. (2007). Effect of heat treatments on precipitate 
microstructure and mechanical properties of a CuCrZr alloy. Journal of Nuclear 
Materials, Vol. 367-370, Part 2 (August 2007), pp. 904-909, ISSN-0022-3115 

Esteban, G. A., Sedano, L. A., Perujo A., Douglas K., MAncinelli B., Ceroni P.l., Cueroni G.B. 
(1999). Hydrogen Transport Parameters and Trapping Effects in the Martensitic 
Steel Optifer-IVb. Report EUR 18995 EN (1999). 

Esteban, G. A., Perujo A, Sedano, L. A., Legarda, F. Mancinelli, B. & Douglas, K. (2002). 
Diffusive transport parameters and surface rate constants of deuterium in Incoloy 
800. Journal of Nuclear Materials, Vol. 300, Iss. 1 (January 2002), pp. 1-6, ISSN-0022-
3115 

Esteban, G. A., Perujo A, & Legarda, F. (2004). Tritium Management in the First-Wall 
Materials of A-DC and TAURO Blankets. Journal of Nuclear Materials, Vol. 335, Iss. 3 
(December 2004), pp. 353-358, ISSN-0022-3115 

Esteban, G. A., Peña, A., Legarda, F. & Lindau, R. (2007). Hydrogen Transport and Trapping 
in ODS-EUROFER. Fusion Engineering and Design, Vol. 82, Iss. 15-24 (October 2007), 
pp. 2634-2640, ISSN-0920-3796 

Esteban, G. A., Alberro, G., Peñalva, I., Peña, A., Legarda, F. & Riccardi, B. (2009). Hydrogen 
Transport and Trapping in the GlidCop® Al25 IG Alloy. Fusion Engineering and 
Design, Vol. 84, Iss. 2-6 (June 2009), pp. 757-761, ISSN-0920-3796 

Fabritsiev, S.A. & Pokrovsky, A.S. (2005). Effect of high doses of neutron irradiation on 
physico-mechanical properties of copper alloys for ITER applications. Fusion 
Engineering and Design, Vol. 73, Iss. 1 (April 2005), pp. 19-34, ISSN-0920-3796 

ITER Doc. (2001). ITER Materials Assessment Report (MAR), ITER Doc. G 74 MA 10 01-07-11 
W0.2 (internal project document distributed to the ITER Participants). 

Lee K. & Lee Y.K., (2000), Irreversible hydrogen effects on resistivity of sputtered copper 
films. Journal of Materials Science, Vol. 35. (May 2000), pp.6035-6040 

Lorenzetto, P., Peacock, A., Bobin-Vastra, I., Briottet L., Bucci, P., Dell’Orco, G., Ioki, K., 
Roedig, M. & Sherlock, P. (2006). EU R&D on the ITER First Wall. Fusion 
Engineering and Design, Vol. 81, Iss. 1-7 (February 2006), pp. 355-360, ISSN-0920-
3796 

Meyder, R., Boccaccini, L. V. & Bekris, N. (2006) Tritium analysis for the European HCPB 
TBM in ITER, Proceedings of IEEE/NPSS 21st Symposium on Fusion Engineering, 
ISBN- 0-4244-0150-X, pp. 267-270, Knoxville, TN USA, September 2005 

Möller W., (1984). Physics of Plasma-Wall Interaction in Controlled Fusion, NATO AISI 
series, p. 439, (1994) 

Oriani R.A. (1970). The Diffusion and Trapping of Hydrogen in Steel, Acta Metallurgica, Vol. 
18, (January 1970) , pp. 147-157 

Reiter, F., Forcey, K.S. & Gervasini, G. (1993). A Compilation of Tritium-Material Interaction 
Parameters in Fusion Reactor Materials. Report EUR 15217 EN (1993). 

Serra, E. & Perujo, A. (1998). Hydrogen and Deuterium Transport and Inventory Parameters 
in a Cu-0.65Cr-0.08Zr Alloy for Fusion Reactor Applications, Journal of Nuclear 
Materials, Vol. 258-263, Part 1 (October 1998), pp. 1028-1032, ISSN-0022-3115 

www.intechopen.com



 
Copper Alloys – Early Applications and Current Performance – Enhancing Processes 

 

48

Vykhodets, V. B., Geld, P. V., Demin, V. B. Men, A. N., Murtazin, I. A. & Fishman A. Ya. 
(1972). Isotope effect in the Solubility of Hydrogen in FCC Metals. Physica Status 
Solidi (a), Vol. 9, Iss. 1, (January 1972), pp. 289-300, ISSN-1862-6319 

Zinkle, S. J. & Fabritsiev S. A. (1994). Copper alloys for high heat flux application. Atomic and 
Plasma-Material Interaction Data for Fusion. Vol 5 (December 1994), pp. 163-191. 

www.intechopen.com



Copper Alloys - Early Applications and Current Performance -

Enhancing Processes

Edited by Dr. Luca Collini

ISBN 978-953-51-0160-4

Hard cover, 178 pages

Publisher InTech

Published online 07, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Copper has been used for thousands of years. In the centuries, both handicraft and industry have taken

advantage of its easy castability and remarkable ductility combined with good mechanical and corrosion

resistance. Although its mechanical properties are now well known, the simple f.c.c. structure still makes

copper a model material for basic studies of deformation and damage mechanism in metals. On the other

hand, its increasing use in many industrial sectors stimulates the development of high-performance and high-

efficiency copper-based alloys. After an introduction to classification and casting, this book presents modern

techniques and trends in processing copper alloys, such as the developing of lead-free alloys and the role of

severe plastic deformation in improving its tensile and fatigue strength. Finally, in a specific section,

archaeometallurgy techniques are applied to ancient copper alloys. The book is addressed to engineering

professionals, manufacturers and materials scientists.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

I. Peñalva, G. Alberro, F. Legarda,G. A. Esteban and B. Riccardi (2012). Interaction of Copper Alloys with

Hydrogen, Copper Alloys - Early Applications and Current Performance - Enhancing Processes, Dr. Luca

Collini (Ed.), ISBN: 978-953-51-0160-4, InTech, Available from: http://www.intechopen.com/books/copper-

alloys-early-applications-and-current-performance-enhancing-processes/interaction-of-copper-alloys-with-

hydrogen



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


