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The Basics of Linear  
Principal Components Analysis 

Yaya Keho 
Ecole Nationale Supérieure de Statistique et d’Economie Appliquée (ENSEA), Abidjan 

Côte d’Ivoire 

1. Introduction 

When you have obtained measures on a large number of variables, there may exist 
redundancy in those variables. Redundancy means that some of the variables are correlated 
with one another, possibly because they are measuring the same “thing”. Because of this 
redundancy, it should be possible to reduce the observed variables into a smaller number of 
variables. For example, if a group of variables are strongly correlated with one another, you do 
not need all of them in your analysis, but only one since you can predict the evolution of all the 
variables from that of one. This opens the central issue of how to select or build the 
representative variables of each group of correlated variables. The simplest way to do this is to 
keep one variable and discard all others, but this is not reasonable. Another alternative is to 
combine the variables in some way by taking perhaps a weighted average, as in the line of the 
well-known Human Development Indicator published by UNDP. However, such an approach 
calls the basic question of how to set the appropriate weights. If one has sufficient insight into 
the nature and magnitude of the interrelations among the variables, one might choose weights 
using one's individual judgment. Obviously, this introduces a certain amount of subjectivity 
into the analysis and may be questioned by practitioners. To overcome this shortcoming, 
another method is to let the data set uncover itself the relevant weights of variables. Principal 
Components Analysis (PCA) is a variable reduction method that can be used to achieve this 
goal. Technically this method delivers a relatively small set of synthetic variables called 
principal components that account for most of the variance in the original dataset.  

Introduced by Pearson (1901) and Hotelling (1933), Principal Components Analysis has 

become a popular data-processing and dimension-reduction technique, with numerous 

applications in engineering, biology, economy and social science. Today, PCA can be 

implemented through statistical software by students and professionals but it is often poorly 

understood. The goal of this Chapter is to dispel the magic behind this statistical tool. The 

Chapter presents the basic intuitions for how and why principal component analysis works, 

and provides guidelines regarding the interpretation of the results. The mathematics aspects 

will be limited. At the end of this Chapter, readers of all levels will be able to gain a better 

understanding of PCA as well as the when, the why and the how of applying this technique. 

They will be able to determine the number of meaningful components to retain from PCA, 

create factor scores and interpret the components. More emphasis will be placed on 

examples explaining in detail the steps of implementation of PCA in practice. 
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We think that the well understanding of this Chapter will facilitate that of the following 
chapters and novel extensions of PCA proposed in this book (sparse PCA, Kernel PCA, 
Multilinear PCA, …). 

2. The basic prerequisite – Variance and correlation 

PCA is useful when you have data on a large number of quantitative variables and wish to 

collapse them into a smaller number of artificial variables that will account for most of the 

variance in the data. The method is mainly concerned with identifying variances and 

correlations in the data. Let us focus our attention to the meaning of these concepts. Consider 

the dataset given in Table 1. This dataset will serve to illustrate how PCA works in practice. 

 

ID X1 X2 X3 X4 X5 

1 24 21.5 5 2 14 

2 16.7 21.4 6 2.5 17 

3 16.78 23 7 2.2 15 

4 17.6 22 8.7 3 20 

5 22 25.7 6.4 2 14.2 

6 15.3 16 8.7 2.21 15.3 

7 10.2 19 4.3 2.2 15.3 

8 11.9 17.1 4.5 2 14 

9 14.3 19.1 6 2.2 15 

10 8.7 14.3 4.1 2.24 15.5 

11 6.7 10 3.8 2.23 16 

12 7.1 13 2.8 2.01 12 

13 10.3 16 4 2 14.5 

14 7.1 13 3.9 2.4 16.4 

15 7.9 13.6 4 3.1 20.2 

16 3 8 3.4 2.1 14.7 

17 3 9 3.3 3 20.2 

18 1 7.5 3 2 14 

19 0.8 7 2.8 2 15.8 

20 1 4 3.1 2.2 15.3 

Table 1. Example dataset, 5 variables obtained for 20 observations. 

The variance of a given variable x is defined as the average of the squared differences from 
the mean: 

  
2

2

1

1 n

x i
i

x x
n




   (1) 

The square root of the variance is the standard deviation and is symbolized by the small 

Greek sigma x . It is a measure of how spread out numbers are.  
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The variance and the standard deviation are important in data analysis because of their 
relationships to correlation and the normal curve.  Correlation between a pair of variables 
measures to what extent their values co-vary. The term covariance is undoubtedly 
associatively prompted immediately. There are numerous models for describing the 
behavioral nature of a simultaneous change in values, such as linear, exponential and more. 
The linear correlation is used in PCA. The linear correlation coefficient for two variables x 
and y is given by: 

 
  

1

1

( , )

n

i i
i

x y

x x y y
n

x y
 



 



 (2) 

where x and y  denote the standard deviation of x and y, respectively. This definition is 

the most widely-used type of correlation coefficient in statistics and is also called Pearson 
correlation or product-moment correlation. Correlation coefficients lie between -1.00 and 
+1.00. The value of -1.00 represents a perfect negative correlation while a value of +1.00 
represents a perfect positive correlation. A value of 0.00 represents a lack of correlation. 
Correlation coefficients are used to assess the degree of collinearity or redundancy among 
variables. Notice that the value of correlation coefficient does not depend on the specific 
measurement units used.  

When correlations among several variables are computed, they are typically summarized in 
the form of a correlation matrix. For the five variables in Table 1, we obtain the results 
reported in Table 2. 

 

 X1 X2 X3 X4 X5 

X1 1.00 0.94 0.77 -0.03 -0.08 
X2  1.00 0.74 0.02 -0.04 
X3   1.00 0.21 0.19 
X4    1.00 0.95 
X5     1.00 

Table 2. Correlations among variables 

In this Table a given row and column intersect shows the correlation between the two 
corresponding variables. For example, the correlation between variables X1 and X2 is 0.94. 

As can be seen from the correlations, the five variables seem to hang together in two distinct 
groups.  First, notice that variables X1, X2 and X3 show relatively strong correlations with 
one another. This could be because they are measuring the same “thing”.  In the same way, 
variables X4 and X5 correlate strongly with each another, a possible indication that they 
measure the same “thing” as well. Notice that those two variables show very weak 
correlations with the rest of the variables.   

Given that the 5 variables contain some "redundant" information, it is likely that they are not 
really measuring five different independent constructs, but two constructs or underlying 
factors. What are these factors? To what extent does each variable measure each of these 
factors? The purpose of PCA is to provide answers to these questions. Before presenting the 
mathematics of the method, let’s see how PCA works with the data in Table 1. 
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In linear PCA each of the two artificial variables is computed as the linear combination of 
the original variables.  

 1 1 2 2 5 5...Z X X X       (3) 

where j is the weight for variable j in creating the component Z. The value of Z for a subject 

represents the subject’s score on the principal component. 

Using our dataset, we have:  

 1 1 2 3 4 50.579 0.577 0.554 0.126 0.098Z X X X X X      (4) 

 2 1 2 3 4 50.172 0.14 0.046 0.685 0.693Z X X X X X       (5) 

Notice that different coefficients were assigned to the original variables in computing 

subject scores on the two components.  X1, X2 and X3 are assigned relatively large weights 

that range from 0.554 to 0.579, while variables X4 and X5 are assigned very small weights 

ranging from 0.098 to 0.126. As a result, component Z1 should account for much of the 

variability in the first three variables. In creating subject scores on the second component, 

much weight is given to X4 and X5, while little weight is given to X1, X2 and X3. Subject 

scores on each component are computed by adding together weighted scores on the 

observed variables. For example, the value of a subject along the first component Z1 is 0.579 

times the standardized value of X1 plus 0.577 times the standardized value of X2 plus 0.554 

times the standardized value of X3 plus 0.126 times the standardized value of X4 plus 0.098 

times the standardized value of X5.  

At this stage of our analysis, it is reasonable to wonder how the weights from the preceding 

equations are determined. Are they optimal in the sense that no other set of weights could 

produce components that best account for variance in the dataset? How principal 

components are computed?  

3. Heterogeneity and standardization of data 

3.1 Graphs and distances among points 

Our dataset in Table 1 can be represented into two graphs: one representing the subjects, 

and the other the variables. In the first, we consider each subject (individual) as a vector 

with coordinates given by the 5 observations of the variables. Clearly, the cloud of points 

belongs to a R5 space. In the second one each variable is regarded as a vector belonging to a 

R20 space. 

We can calculate the centroide of the cloud of points which coordinates are the 5 means of 

the variables, that is 1 5( ,...., )g X X . Again, we can compute the overall variance of the 

points by summing the variance of each variable: 

  2
2 2

1 1 1 1

1 1
( , )

p pn n

ij j i j
i j i j

I X X d s g
n n


   

       (6) 
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This quantity measures how spread out the points are around the centroid. We will need 
this quantity when determining principal components.  

We define the distance between subjects si and si’ using the Euclidian distance as follows: 

 
5

22 2
' ' '

1

( , ) ( )
p

i i i i ij i j
j

d s s s s X X




     (7) 

Two subjects are close one to another when they take similar values for all variables. We can 
use this distance to measure the overall dispersion of the data around the centroid or to 
cluster the points as in classification methods.  

3.2 How work when data are in different units? 

There are different problems when variables are measured in different units. The first 
problem is the meaning of the variance: how to sum quantities with different measurement 
units? The second problem is that the distance between points can be greatly influenced. To 
illustrate this point, let us consider the distances between subjects 7, 8 and 9. Applying 
Eq.(7), we obtain the following results: 

 2 2 2 2
7 8( , ) (10.2 11.9) (19 17.1) .... (15.3 14) 8.27d s s          (8) 

 2 2 2 2
7 9( , ) (10.2 14.3) (19 19.1) .... (15.3 15) 19.8d s s          (9) 

Subject 7 is closer to subject 8 than to subject 9. Multiplying the values of variable X5 by 10 
yields: 

 2 2 2 2
7 8( , ) (10.2 11.9) (19 17.1) .... (153 140) 175.58d s s          (10) 

 2 2 2 2
7 9( , ) (10.2 14.3) (19 19.1) .... (153 150) 28.71d s s          (11) 

Now we observe that subject 7 is closer to subject 9 than to subject 8. It is hard to accept how 
the measurement units of the variables can change greatly the comparison results among 
subjects. Indeed, we could by this way render a tall man as shorter as we want! 

As seen, PCA is sensitive to scale. If you multiply one variable by a scalar you get different 

results. In particular, the principal components are dependent on the units used to measure 

the original variables as well as on the range of values they assume (variance). This makes 

comparison very difficult. It is for these reasons we should often standardize the variables 

prior to using PCA. A common standardization method is to subtract the mean and divide 

by the standard deviation. This yields the following: 

 * i
i

x

X X
X




  (12) 

where X and x  are the mean and standard deviation of X, respectively. 

Thus, the new variables all have zero mean and unit standard deviation. Therefore the total 
variance of the data set is the number of observed variables being analyzed.  
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Throughout, we assume that the data have been centered and standardized. Graphically, 
this implies that the centroid or center of gravity of the whole dataset is at the origin. In this 
case, the PCA is called normalized principal component analysis, and will be based on the 
correlation matrix (and not on variance-covariance matrix). The variables will lie on the unit 
sphere; their projection on the subspace spanned by the principal components is the 
"correlation circle". Standardization allows the use of variables which are not measured in 
the same units (e.g. temperature, weight, distance, size, etc.). Also, as we will see later, 
working with standardized data makes interpretation easier. 

4. The mathematics of PCA: An eigenvalue problem  

Now we have understood the intuitions of PCA, we present the mathematics behind the 
method by considering a general case. More details on technical aspects can be found in 
Cooley & Lohnes (1971), Stevens (1986), Lebart, Morineau & Piron (1995), Cadima & Jolliffe 
(1995), Hyvarinen, Karhunen & Oja (2001), and Jolliffe (2002). 

Consider a dataset consisting of p variables observed on n subjects. Variables are denoted 

by 1 2( , ,..., )px x x . In general, data are in a table with the rows representing the subjects 

(individuals) and the columns the variables. The dataset can also be viewed as a 

n p rectangular matrix X. Note that variables are such that their means make sense. The 

variables are also standardized.   

We can represent these data in two graphs: on the one hand, in a subject graph where we try to 

find similarities or differences between subjects, on the other, in a variable graph where we try 

to find correlations between variables. Subjects graph belongs to an p-dimensional space, i.e. to 

Rp, while variables graph belongs to an n-dimensional space, i.e. to Rn. We have two clouds of 

points in high-dimensional spaces, too large for us to plot and see something in them. We 

cannot see beyond a three-dimensional space! The PCA will give us a subspace of reasonable 

dimension so that the projection onto this subspace retains "as much as possible" of the 

information present in the dataset, i.e., so that the projected clouds of points be as "dispersed" 

as possible. In other words, the goal of PCA is to compute another basis that best re-express 

the dataset. The hope is that this new basis will filter out the noise and reveal hidden structure.  
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with q p  (13) 

Dimensionality reduction implies information loss. How to represent the data in a lower-
dimensional form without losing too much information? Preserve as much information as 
possible is the objective of the mathematics behind the PCA procedure. 

We first of all assume that we want to project the data points on a 1-dimensional space. The 
principal component corresponding to this axis is a linear combination of the original 
variables and can be expressed as follows: 

www.intechopen.com



 
The Basics of Linear Principal Components Analysis 

 

187 

 1 11 1 12 2 1 1... p pz x x x Xu        (14) 

where 1 11 12 1( , ,... )'pu     is a column vector of weights. The principal component z1 is 

determined such that the overall variance of the resulting points is as large as possible. Of 

course, one could make the variance of z1 as large as possible by choosing large values for 

the weights 11 12 1, ,..., p   .  To prevent this, weights are calculated with the constraint that 

their sum of squares is one, that is 1u  is a unit vector subject to the constraint: 

 
22 2 2

11 12 1 1... 1p u        (15) 

Eq.(14) is also the projections of the n subjects on the first component. PCA finds  1u  so that 

 
22

1 1 1 1 1
1

1 1 1
( ) ' '

n

i
i

Var z z z u X Xu
n n n

    is maximal (16) 

The matrix 
1

'C X X
n

  is the correlation matrix of the variables. The optimization problem 

is: 

 
1

2
1

1 1

1

'
u

u

Max u Cu



 (17) 

This program means that we search for a unit vector 1u so as to maximize the variance of the 

projection on the first component. The technique for solving such optimization problems 

(linearly constrained) involves a construction of a Lagrangian function. 

 1 1 1 1 1 1' ( ' 1)u Cu u u     (18) 

Taking the partial derivative 1 1 1 1 1/ u Cu u     and solving the equation 1 1/ 0u    

yields: 

 1 1 1Cu u  (19) 

By premultiplying each side of this condition by 1'u and using the condition 1 1' 1u u   we 

get: 

 1 1 1 1 1 1' 'u Cu u u    (20) 

It is known from matrix algebra that the parameters 1u  and 1 that satisfy conditions (19) 

and (20) are the maximum eigenvalue and the corresponding eigenvector of the correlation 

matrix C. Thus the optimum coefficients of the original variables generating the first 

principal component z1 are the elements of the eigenvector corresponding to the largest 

eigenvalue of the correlation matrix. These elements are also known as loadings. 

The second principal component is calculated in the same way, with the condition that it is 
uncorrelated (orthogonal) with the first principal component and that it accounts for the 
largest part of the remaining variance.  
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 2 21 1 22 2 2 2... p pz x x x Xu        (21) 

where 2 21 22 2( , ,... )'pu     is the direction of the component. This axis is constrained to be 

orthogonal to the first one. Thus, the second component is subject to the constraints: 

 
22 2 2

21 22 2 2 1 2... 1 , ' 0p u u u         (22) 

The optimization problem is therefore: 

 
2

2
2

1 2

2 2

1
' 0

'
u

u
u u

Max u Cu




 (23) 

Using the technique of Lagrangian function the following conditions: 

 2 2 2Cu u  (24) 

 2 2 2'u Cu   (25) 

are obtained again. So once more the second vector comes to be the eignevector 
corresponding to the second highest eigenvalue of the correlation matrix. 

Using induction, it can be proven that PCA is a procedure of eigenvalue decomposition of 

the correlation matrix.  The coefficients generating the linear combinations that transform 

the original variables into uncorrelated variables are the eigenvectors of the correlation 

matrix. This is a good new, because finding eigenvectors is something which can be done 

rapidly using many statistical packages (SAS, Stata, R, SPSS, SPAD…), and because 

eigenvectors have many nice mathematical properties. Note that rather than maximizing 

variance, it might sound more plausible to look for the projection with the smallest average 

(mean-squared) distance between the original points and their projections on the principal 

components. This turns out to be equivalent to maximizing the variance (Pythagorean 

Theorem). 

An interesting property of the principal components is that they are all uncorrelated 
(orthogonal) to one another. This is because matrix C is a real symmetric matrix and then 
linear algebra tells us that it is diagonalizable and the eigenvectors are orthogonal to one 
another. Again because C is a covariance matrix, it is a positive matrix in the sense that 

' 0u Cu  for any vector u . This tells us that the eigenvalues of C are all non-negative.  
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 (26) 

The eigenvectors are the “preferential directions” of the data set. The principal components 
are derived in decreasing order of importance; and have a variance equal to their 
corresponding eigenvalue. The first principal component is the direction along which the 
data have the most variance. The second principal component is the direction orthogonal to 
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the first component with the most variance. It is clear that all components explain together 
100% of the variability in the data.  This is why we say that PCA works like a change of 
basis. Analyzing the original data in the canonical space yields the same results than 
examining it in the components space. However, PCA allows us to obtain a linear projection 
of our data, originally in Rp, onto Rq, where q < p. The variance of the projections on to the 
first q principal components is the sum of the eigenvalues corresponding to these 
components. If the data fall near a q-dimensional subspace, then p-q of the eigenvalues will 
be nearly zero. 

Summarizing the computational steps of PCA  

Suppose 1 2, ,..., px x x are 1p  vectors collected from n subjects. The computational steps that 

need to be accomplished in order to obtain the results of PCA are the following: 

Step 1.  Compute mean:
1

1 n

i
i

x x
n 

   

Step 2.  Standardize the data: i
i

x

x x




   

Step 3.  Form the matrix 1 2, ,..., pA        ( p n  matrix), then compute: 

1

1
'

n

i i
i

C
n 

    

Step 4.  Compute the eigenvalues of C: 1 2 ... p      

Step 5.  Compute the eigenvectors of C: 1 2, ,..., pu u u  

Step 6.  Proceed to the linear tranformation Rp ->Rq that performs the dimensionality 
reduction. 

Notice that, in this analysis, we gave the same weight to each subject. We could have give 
more weight to some subjects, to reflect their representativity in the population.  

5. Criteria for determining the number of meaningful components to retain  

In principal component analysis the number of components extracted is equal to the number 

of variables being analyzed (under the general condition n p ). This means that an analysis 

of our 5 variables would actually result in 5 components, not two. However, since PCA aims 

at reducing dimensionality, only the first few components will be important enough to be 

retained for interpretation and used to present the data. It is therefore reasonable to wonder 

how many independent components are necessary to best describe the data.  

Eigenvalues are thought of as quantitative assessment of how much a component represents 
the data. The higher the eigenvalues of a component, the more representative it is of the data. 
Eigenvalues are therefore used to determine the meaningfulness of components. Table 3 
provides the eigenvalues from the PCA applied to our dataset. In the column headed 
“Eignenvalue”, the eigenvalue for each component is presented. Each raw in the table presents 
information about one of the 5 components: the raw “1” provides information about the first 
component (PCA1) extracted, the raw “2” provides information about the second component 
(PCA2) extracted, and so forth. Eigenvalues are ranked from the highest to the lowest.  
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It can be seen that the eigenvalue for component 1 is 2.653, while the eigenvalue for 
component 2 is 1.98. This means that the first component accounts for 2.653 units of total 
variance while the second component accounts for 1.98 units. The third component accounts 
for about 0.27 unit of variance. Note that the sum of the eigenvalues is 5, which is also the 
number of variables. How do we determine how many components are worth interpreting? 

 

Component Eigenvalue % of variance Cumulative % 

1 2.653 53.057 53.057 

2 1.980 39.597 92.653 

3 0.269 5.375 98.028 

4 0.055 1.095 99.123 

5 0.044 0.877 100.000 

Table 3. Eigenvalues from PCA 

Several criteria have been proposed for determining how many meaningful components 

should be retained for interpretation. This section will describe three criteria: the Kaiser 

eigenvalue-one criterion, the Cattell Scree test, and the cumulative percent of variance 

accounted for. 

5.1 Kaiser method 

The Kaiser (1960) method provides a handy rule of thumb that can be used to retain 
meaningful components. This rule suggests keeping only components with eigenvalues 
greater than 1. This method is also known as the eigenvalue-one criterion. The rationale 
for this criterion is straightforward. Each observed variable contributes one unit of 
variance to the total variance in the data set. Any component that displays an eigenvalue 
greater than 1 is accounts for a greater amount of variance than does any single variable. 
Such a component is therefore accounting for a meaningful amount of variance, and is 
worthy of being retained. On the other hand, a component with an eigenvalue of less than 
1 accounts for less variance than does one variable. The purpose of principal component 
analysis is to reduce variables into a relatively smaller number of components; this cannot 
be effectively achieved if we retain components that account for less variance than do 
individual variables. For this reason, components with eigenvalues less than 1 are of little 
use and are not retained. When a covariance matrix is used, this criterion retains 
components whose eigenvalue is greater than the average variance of the data (Kaiser-
Guttman criterion). 

However, this method can lead to retaining the wrong number of components under 
circumstances that are often encountered in research. The thoughtless application of this 
rule can lead to errors of interpretation when differences in the eigenvalues of successive 
components are trivial. For example, if component 2 displays an eigenvalue of 1.01 and 
component 3 displays an eigenvalue of 0.99, then component 2 will be retained but 
component 3 will not; this may mislead us into believing that the third component is 
meaningless when, in fact, it accounts for almost exactly the same amount of variance as the 
second component. It is possible to use statistical tests to test for difference between 
successive eigenvalues. In fact, the Kaiser criterion ignores error associated with each 
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eigenvalue due to sampling. Lambert, Wildt and Durand (1990) proposed a bootstrapped 
version of the Kaiser approach to determine the interpretability of eigenvalues.  

Table 3 shows that the first component has an eigenvalue substantially greater than 1. It 

therefore explains more variance than a single variable, in fact 2.653 times as much. The 

second component displays an eigenvalue of 1.98, which is substantially greater than 1, and 

the third component displays an eigenvalue of 0.269, which is clearly lower than 1. The 

application of the Kaiser criterion leads us to retain unambiguously the first two principal 

components.  

5.2 Cattell scree test 

The scree test is another device for determining the appropriate number of components to 
retain. First, it graphs the eigenvalues against the component number. As eigenvalues are 
constrained to decrease monotonically from the first principal component to the last, the 
scree plot shows the decreasing rate at which variance is explained by additional principal 
components. To choose the number of meaningful components, we next look at the scree 
plot and stop at the point it begins to level off (Cattell, 1966; Horn, 1965).  The components 
that appear before the “break” are assumed to be meaningful and are retained for 
interpretation; those appearing after the break are assumed to be unimportant and are not 
retained. Between the components before and after the break lies a scree. 

The scree plot of eigenvalues derived from Table 3 is displayed in Figure 1.  The 
component numbers are listed on the horizontal axis, while eigenvalues are listed on the 
vertical axis. The Figure shows a relatively large break appearing between components 2 
and 3, meaning the each successive component is accounting for smaller and smaller 
amounts of the total variance. This agrees with the preceding conclusion that two 
principal components provide a reasonable summary of the data, accounting for about 
93% of the total variance. 

Sometimes a scree plot will display a pattern such that it is difficult to determine exactly 

where a break exists. When encountered, the use of the scree plot must be supplemented 

with additional criteria, such as the Kaiser method or the cumulative percent of variance 

accounted for criterion. 

5.3 Cumulative percent of total variance accounted for 

When determining the number of meaningful components, remember that the subspace of 

components retained must account for a reasonable amount of variance in the data. It is 

usually typical to express the eigenvalues as a percentage of the total. The fraction of an 

eigenvalue out of the sum of all eigenvalues represents the amount of variance accounted by 

the corresponding principal component. The cumulative percent of variance explained by 

the first q components is calculated with the formula: 

 1
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Fig. 1. Scree plot of eigenvalues 

How many principal components we should use depends on how big an qr  we need. This 
criterion involves retaining all components up to a total percent variance (Lebart, Morineau 
& Piron, 1995; Jolliffe, 2002). It is recommended that the components retained account for at 
least 60% of the variance. The principal components that offer little increase in the total 
variance explained are ignored; those components are considered to be noise. When PCA 
works well, the first two eigenvalues usually account for more than 60% of the total 
variation in the data. 

In our current example, the percentage of variance accounted for by each component and 
the cumulative percent variance appear in Table 3. From this Table we can see that the first 
component alone accounts for 53.057% of the total variance and the second component alone 
accounts for 39.597% of the total variance. Adding these percentages together results in a 
sum of 92.65%. This means that the cumulative percent of variance accounted for by the first 
two components is about 93%. This provides a reasonable summary of the data. Thus we 
can keep the first two components and “throw away” the other components.  

A number of other criteria have been proposed to select the number of components in PCA 
and factorial analysis. Users can read Lawley (1956), Horn (1965), Humphreys and 
Montanelli (1975), Horn and Engstrom (1979), Zwick and Velicer (1986), Hubbard and Allen 
(1987) and Jackson (1993), among others. 
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6. Interpretation of principal components 

Running a PCA has become easy with statistical software. However, interpreting the results 
can be a difficult task. Here are a few guidelines that should help practitioners through the 
analysis.  

6.1 The visual approach of correlation  

Once the analysis is complete, we wish to assign a name to each retained component that 

describes its content. To do this, we need to know what variables explain the components. 

Correlations of the variables with the principal components are useful tools that can help 

interpreting the meaning of components. The correlations between each variable and each 

principal component are given in Table 4.  

 

Variables PCA 1 PCA 2 

X1 0.943 -0.241 

X2 0.939 -0.196 

X3 0.902 0.064 

X4 0.206 0.963 

X5 0.159 0.975 

Notes : PCA1 and PCA2 denote the first and second principal component, respectively. 

Table 4. Correlation variable-component  

Those correlations are also known as component loadings. A coefficient greater than 0.4 in 

absolute value is considered as significant (see, Stevens (1986) for a discussion). We can 

interpret PCA1 as being highly positively correlated with variables X1, X2 and X3, and 

weakly positively correlated to variables X4 and X5. So X1, X2 and X3 are the most important 

variables in the first principal component. PCA2, on the other hand, is highly positively 

correlated with X4 and X5, and weakly negatively related to X1 and X2. So X4 and X5 are most 

important in explaining the second principal component. Therefore, the name of the first 

component comes from variables X1, X2 and X3 while that of the second component comes 

from X4 and X5. 

It can be shown that the coordinate of a variable on a component is the correlation 
coefficient between that variable and the principal component. This allows us to plot  
the reduced dimension representation of variables in the plane constructed from the  
first two components. Variables highly correlated with a component show a small angle. 
Figure 2 represents this graph for our dataset. For each variable we have plotted on the 
horizontal dimension its loading on component 1, on the vertical dimension its loading on 
component 2. 

The graph also presents a visual aspect of correlation patterns among variables. The cosine 

of the angle θ between two vectors x and y is computed as: 

 , cos( , )x y x y x y   (28) 
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Fig. 2. Circle of Correlation 

Replacing x and y with our transformed vectors yields: 
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Eq.(29) shows the connection between the cosine measurement and the numerical 
measurement of correlation: the cosine of the angle between two variables is interpreted in 
terms of correlation. Variables highly positively correlated with each another show a small 
angle, while those are negatively correlated are directed in opposite sense, i.e. they form a 
flat angle. From Figure 2 we can see that the five variables hang together in two distinct 
groups. Variables X1, X2 and X3 are positively correlated with each other, and form the first 
group. Variables X4 and X5 also correlate strongly with each other, and form the second 
group. Those two groups are weakly correlated. In fact, Figure 2 gives a reduced dimension 
representation of the correlation matrix given in Table 2.  

It is extremely important, however, to notice that the angle between variables is interpreted 

in terms of correlation only when variables are well-represented, that is they are close to the 

border of the circle of correlation. Remember that the goal of PCA is to explain multiple 

variables by a lesser number of components, and keep in mind that graphs obtained from 

that reduction method are projections that optimize global criterion (i.e. the total variance). 

As such some relationships between variables may be greatly altered. Correlations between 

variables and components supply insights about variables that are not well-represented. In a 

subspace of components, the quality of representation of a variable is assessed by the sum-

of-squared component loadings across components. This is called the communality of the 
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variable. It measures the proportion of the variance of a variable accounted for by the 

components. For example, in our example, the communality of the variable X1 is 

0.9432+0.2412=0.948. This means that the first two components explain about 95% of the 

variance of the variable X1. This is quite substantial to enable us fully interpreting the 

variability in this variable as well as its relationship with the other variables. Communality 

can be used as a measure of goodness-of-fit of the projection. The communalities of the 5 

variables of our data are displayed in Table 5. As shown by this Table, the first two 

components explain more than 80% of variance in each variable. This is enough to reveal the 

structure of correlation among the variables. Do not interpret as correlation the angle 

between two variables when at least one of them has a low communality. Using 

communality prevent potential biases that may arise by directly interpreting numerical and 

graphical results yielded by the PCA.    

 

Variables Value

X1 0.948 

X2 0.920 

X3 0.817 

X4 0.970 

X5 0.976 

Table 5. Communalities of variables 

All these interesting results show that outcomes from normalized PCA can be easily 
interpreted without additional complicated calculations. From a visual inspection of the 
graph, we can see the groups of variables that are correlated, interpret the principal 
components and name them.  

6.2 Factor scores and their use in multivariate models 

A useful by product of PCA is factor scores. Factor scores are coordinates of subjects 

(individuals) on each component. They indicate where a subject stands on the retained 

component. Factor scores are computed as weighted values on the observed variables. 

Results for our dataset are reported in Table 6. 

Factor scores can be used to plot a reduced representation of subjects. This is displayed by 
Figure 3.  

How do we interpret the position of points on this diagram? Recall that this graph is a 

projection. As such some distances could be spurious. To distinguish wrong projections 

from real ones and better interpret the plot, we need to use that is called “the quality of 

representation” of subjects. This is computed as the squared of the cosine of the angle 

between a subject is  and a component z , following the formula:  
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ID PCA1 PCA2 Cos21 Cos22 QL12= Cos21+ Cos22 CTR1 CTR2 

1 1.701 -1.610 0.436 0.390 0.826 5.458 6.547 
2 1.701 0.575 0.869 0.099 0.969 5.455 0.837 
3 1.972 -0.686 0.862 0.104 0.966 7.333 1.191 
4 3.000 2.581 0.563 0.417 0.981 16.974 16.832 
5 2.382 -1.556 0.687 0.293 0.980 10.700 6.116 
6 1.717 -0.323 0.522 0.018 0.541 5.558 0.264 
7 0.193 -0.397 0.062 0.263 0.325 0.070 0.400 
8 0.084 -1.213 0.004 0.972 0.977 0.013 3.718 
9 1.071 -0.558 0.765 0.208 0.974 2.162 0.787 
10 -0.427 -0.110 0.822 0.054 0.877 0.344 0.030 
11 -1.088 0.176 0.093 0.024 0.933 2.232 0.078 
12 -1.341 -1.673 0.344 0.536 0.881 3.393 7.075 
13 -0.291 -0.996 0.071 0.835 0.906 0.160 2.507 
14 -0.652 0.567 0.543 0.411 0.955 0.801 0.812 
15 -0.062 3.166 0.000 0.957 0.957 0.007 25.325 
16 -1.830 -0.375 0.929 0.039 0.968 6.318 0.356 
17 -1.181 3.182 0.119 0.868 0.988 2.630 25.572 
18 -2.244 -0.751 0.877 0.098 0.976 9.493 1.424 
19 -2.288 -0.150 0.933 0.004 0.937 9.874 0.057 
20 -2.417 0.155 0.938 0.003 0.942 11.019 0.060 

Notes: Columns PCA1 and PCA2 display the factor scores on the first and second components, 
respectively. Cos21 and Cos22 indicate the quality of representation of subjects on the first and second 
components, respectively. QL12= Cos21+ Cos22 measures the quality of representation of subjects on the 
plane formed by the first two components. CTR1and CTR2 are the contribution of subjects on 
component 1 and component 2, respectively. 

Table 6. Factor Scores of Subjects, Contributions and Quality of Representation 

 

Fig. 3. Scatterplot of subjects in the first two factors 
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Cos2 is interpreted as a measure of goodness-of-fit of the projection of a subject on a given 
component. Notice that in Eq. (30), 

2

is is the distance of subject is  from the origin.  It 
measures how far the subject is from the center. So if cos2=1 the component extracted is 
reproducing a great amount of the original behavior of the subject. Since the components are 
orthogonal, the quality of representation of a subject in a given subspace of components is 
the sum of the associated cos2. This notion is similar to the concept of communality 
previously defined for variables. 

In Table 6 we also reported these statistics. As can be seen, the two components retained 
explain more than 80% of the behavior of subjects, except for subjects 6 and 7.  Now we are 
confident that almost all the subjects are well-represented, we can interpret the graph. Thus, 
we can tell that subjects located in the right side and having larger coordinates on the first 
component, i.e.1, 9, 6, 3 and 5, have values of X1, X2 and X3 greater than the average. Those 
located in the left side and having smaller coordinates on the first axis, i.e. 20, 19, 18, 16, 12, 
11 and 10, record lesser values for these variables. On the other hand, subjects 15 and 17 are 
characterized by highest values for variables X4 and X5, while subjects 8 and 13 record 
lowest values for these variables.  

Very often a small number of subjects can determine the direction of principal components. 
This is because PCA uses the notions of mean, variance and correlation; and it is well known 
that these statistics are influenced by outliers or atypical observations in the data. To detect 
what are these atypical subjects we define the notion of “contribution” that measures how 
much a subject contributes to the variance of a component. Contributions (CTR) are 
computed following: 

 
2

( , ) 100i
i j

i

z
CTR s z

n
   (31) 

Contributions are reported in the last two columns of Table 6. Subject 4 contributes greatly 
to the first component with a contribution of 16.97%. This indicates that subject 4 explains 
alone 16.97% of the variance of the first component. Therefore, this subject takes higher 
values for X1, X2 and X3. This can be easily verified from the original Table 1. Regarding the 
second component, over 25% of the variance of the data accounted for by this component is 
explained by subjects 15 and 17. These subjects exhibit high values for variables X4 and X5. 

The principal components obtained from PCA could be used in subsequent analyses 
(regressions, poverty analysis, classification…). For example, in linear regression models, 
the presence of correlated variables poses the econometric well-known problem of 
multicolinearity that makes instable regression coefficients. This problem is avoided when 
using the principal components that are orthogonal with one another. At the end of the 
analysis you can re-express the model with the original variables using the equations 
defining principal components. If there are variables that are not correlated with the other 
variables, you can delete them prior to the PCA, and reintroduce them in your model once 
the model is estimated. 

7. A Case study with illustration using SPSS  

We collected data on 10 socio-demographic variables for a sample of 132 countries. We use 
these data to illustrate how performing PCA using the SPSS software package. By following 
the indications provided here, user can try to reproduce himself the results obtained. 
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To perform a principal components analysis with SPSS, follow these steps:  

1. Select Analyze/Data Reduction/ Factor  
2. Highlight all of the quantitative variables and Click on the Variables button. The 

character variable Country is an identifier variable and should not be included in the 
Variables list. 

3. Click on the Descriptives button to select Univariate Descriptives, Initial Solution, 
KMO and Bartlett’s test of Sphericity. 

4. Click on the Extraction button, and select Method=Principal Components, Display 

Unrotated factor solution, Scree Plot. Select Extract Eigenvalue over 1 (by default). 
5. Click on the Rotation button, and select Display Loading Plot(s). 
6. Click on Scores and select Save as variables, Method=Regression. Select the case 

below. 
7. Click on Options, and select Exclude Cases Listwise (option by default).  

In what follows, we review and comment on the main outputs. 

 Correlation Matrix 

To discover the pattern of intercorrelations among variables, we examine the correlation 
matrix. That is given in Table 7:  

 

 
Life_ 
exp 

Mortality Urban Iliteracy Water Telephone Vehicles Fertility
Hosp_ 
beds 

Physici-
ans 

Life_exp 1.000 -0.956 0.732 -0.756 0.780 0.718 0.621 -0.870 0.514 0.702 

Mortality  1.000 -0.736 0.809 -0.792 -0.706 -0.596 0.895 -0.559 -0.733 

Urban   1.000 -0.648 0.692 0.697 0.599 -0.642 0.449 0.651 

Iliteracy    1.000 -0.667 -0.628 -0.536 0.818 -0.603 -0.695 

Water     1.000 0.702 0.633 -0.746 0.472 0.679 

Telephone      1.000 0.886 -0.699 0.622 0.672 

Vehicles       1.000 -0.602 0.567 0.614 

Fertility        1.000 -0.636 -0.763 

Hosp_beds         1.000 0.701 

Physicians         1.000 

Note : Figures reported in this table are correlation coefficients. 

Table 7. Correlation Matrix 

The variables can be grouped into two groups of correlated variables. We will see this later. 

 Testing for the Factorability of the Data 

Before applying PCA to the data, we need to test whether they are suitable for reduction. 

SPSS provides two tests to assist users:  
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Kaiser-Meyer-Olkin Measure of Sampling Adequacy (Kaiser, 1974): This measure varies 
between 0 and 1, and values closer to 1 are better.  A value of 0.6 is a suggested minimum 
for good PCA.   

Bartlett's Test of Sphericity (Bartlett, 1950): This tests the null hypothesis that the 
correlation matrix is an identity matrix in which all of the diagonal elements are 1 and all off 
diagonal elements are 0.  We reject the null hypothesis when the level of significance 
exceeds 0.05.  

The results reported in Table 8 suggest that the data may be grouped into smaller set of 
underlying factors.  
 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .913 

Bartlett's Test of Sphericity Approx. Chi-Square 1407.151 

df 45 

Sig. .000 

Table 8. Results of KMO and Bartlett’s Test 

 Eigenvalues and number of meaningful components 

Table 9 displays the eigenvalues, percent of variance and cumulative percent of variance 
from the observed data. Earlier it was stated that the number of components computed is 
equal to the number of variables being analyzed, necessitating that we decide how many 
components are truly meaningful and worthy of being retained for interpretation. 

Here only component 1 demonstrates an eigenvalue greater than 1.00. So the Kaiser 
eigenvalue-one criterion would lead us to retain and interpret only this component. The first 
component provides a reasonable summary of the data, accounting for about 72% of the 
total variance of the 10 variables. Subsequent components each contribute less than 8%.  
 

Component 

Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance
Cumulative 

% Total % of Variance
Cumulative 

% 

1 7.194 71.940 71.940 7.194 71.940 71.940 

2 .780 7.801 79.741 .780 7.801 79.741 

3 .667 6.675 86.416    

4 .365 3.654 90.070    

5 .302 3.022 93.092    

6 .236 2.361 95.453    

7 .216 2.162 97.615    

8 .106 1.065 98.680    

9 .095 .946 99.626    

10 .037 .374 100.000    

Table 9. Eigenvalues 
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The scree plot is displayed in Figure 4. From the second component on, we observe that the 

line is almost flat with a relatively large break following component 1. So the scree test 

would lead us to retain only the first component. The components appearing after the break 

(2-10) would be regarded as trivial (less than 10%). 

 
 

Fig. 4. Scree Plot 

In conclusion, the dimensionality of the data could be reduced to 1. Nevertheless, we shall 

add the second component for representation purpose. Plot in a plane is easier to interpret 

than a three or 10-dimensional plot. Note that by default SPSS uses the Kaiser criterion to 

extract components. It belongs to the user to specify the number of components to be 

extracted if the Kaiser-criterion under-estimate the appropriate number. Here we specified 2 

as the number of components to be extracted. 

 Component loadings 

Table 10 displays the loading matrix. The entries in this matrix are correlations between the 

variables and the components. As can be seen, all the variables load heavily on the first 

component. It is now necessary to turn to the content of the variables being analyzed in 

order to decide how this component should be named. What common construct do 

variables seem to be measuring?  

In Figure 5 we observe two opposite groups of variables. The right-side variables are 

positively correlated one with another, and deal with social status of the countries. The left-

side variables are also positively correlated one with another, and talk about another aspect 

of social life. It is therefore appropriate to name the first component the “social 

development” component. 
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 Component 

 1 2 

Life_exp .911 -.268 

Mortality -.926 .287 

Urbanisation .809 -.093 

Iliteracy -.848 .200 

Water .850 -.139 

Telephone .862 .355 

Vehicles .780 .483 

Fertility -.911 .183 

Hosp_beds .713 .396 

Physicians .850 .087 

Table 10. Component Matrix 

 

Fig. 5. Scatterplot of variables  

 Factor scores and Scatterplot of the Countries 

Since we have named the component, it is desirable to assign scores to each country to 
indicate where that country stands on the component. Here scores are indicating the level of 
social development of the countries. The values of the scores are to be interpreted paying 
attention to the signs of component loadings. From Figure 5 we say that countries with high 
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positive scores on the first component demonstrate higher level of social development 
relatively to countries with negative scores. In Figure 6 we can see that countries such as 
Burkina Faso, Niger, Sierra Leone, Tchad, Burundi, Centrafrique and Angola belong to the 
under-developed group. 

SPSS does not provide directly the scatterplot for subjects. Since factor scores have been 
created and saved as variables, we can use the Graph menu to request a scatterplot. This is 
an easy task on SPSS. The character variable Country is used as an identifier variable. Notice 
that in SPSS factor scores are standardized with a mean zero and a standard deviation of 1.   

 

Fig. 6. Scatterplot of the Countries 

A social development index is most useful to identify the groups of countries in connection 
with their level of development. The construction of this index assigns a social 
development-ranking score to each country. We rescale factor scores as follows: 

 min

max min

100i
i

F F
SI

F F


 


 (32) 

where Fmin and Fmax are the minimum and maximum values of the factor scores F. Using the 
rescaled-scores, countries are sorted in ascending.  Lower scores identify socially under-
developed countries, whereas higher scores identify socially developed countries.  
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8. Conclusion 

Principal components analysis (PCA) is widely used in statistical multivariate data analysis. 
It is extremely useful when we expect variables to be correlated to each other and want to 
reduce them to a lesser number of factors. However, we encounter situations where 
variables are non linearly related to each other. In such cases, PCA would fail to reduce the 
dimension of the variables. On the other hand, PCA suffers from the fact each principal 
component is a linear combination of all the original variables and the loadings are typically 
nonzero. This makes it often difficult to interpret the derived components. Rotation 
techniques are commonly used to help practitioners to interpret principal components, but 
we do not recommend them. 

Recently, other new methods of data analysis have been developed to generalize linear 
PCA. These include Sparse Principal Components Analysis (Tibshirani, 1996; Zou, Hastie & 
Tibshirani, 2006), Independent Component Analysis (Vasilescu & Terzopoulos, 2007), 
Kernel Principal Components Analysis (Schölkopf, Smola & Müller, 1997, 1998), and 
Multilinear Principal Components Analysis (Haiping, Plataniotis & Venetsanopoulos, 2008).  

9. Appendix 

9.1 Data for the case study 

Pays Life_exp Mortality Urban Iliteracy Water Telephone Vehicles Fertility Hosp_beds Physicians 

Albanie 72.00 25.00 40.00 16.50 76.00 31.00 27.00 2.5 3.2 1.4 
Algérie 71.00 35.00 59.00 35.00 90.00 53.00 25.00 3.5 2.1 0.8 
Angola 47.00 124.00 33.00 41.00 32.00 6.00 18.00 6.7 1.3 0 

Argentine 73.00 19.00 89.00 3.00 65.00 203.00 137.00 2.6 3.3 2.7 
Arménie 74.00 15.00 69.00 2.00 99.00 157.00 0 1.3 7.6 3 
Australie 79.00 5.00 85.00 3.00 99.00 512.00 488.00 1.8 8.5 2.5 
Autriche 78.00 5.00 65.00 2.00 100.00 491.00 481.00 1.3 9.2 2.8 

Azerbeidjan 71.00 17.00 57.00 3.00 97.00 89.00 36.00 2 9.7 3.8 
Bangladesh 59.00 73.00 23.00 60.00 84.00 3.00 1.00 3.1 0.3 0.2 

Bélarus 68.00 11.00 71.00 0.5 100.00 241.00 2.00 1.3 12.2 4.3 
Belgique 78.00 6.00 97.00 2.00 100.00 500.00 435.00 1.6 7.2 3.4 

Bénin 53.00 87.00 41.00 61.50 50.00 7.00 7.00 5.7 0.2 0.1 
Bolivie 62.00 60.00 61.00 15.50 55.00 69.00 32.00 4.1 1.7 1.3 

Botswana 46.00 62.00 49.00 24.50 70.00 65.00 15.00 4.2 1.6 0.2 
Brésil 67.00 33.00 80.00 16.00 72.00 121.00 88.00 2.3 3.1 1.3 

Bulgarie 71.00 14.00 69.00 1.50 99.00 329.00 220.00 1.1 10.6 3.5 
Burkina Faso 44.00 104.00 17.00 77.50 42.00 4.00 4.00 6.7 1.4 0 

Burundi 42.00 118.00 8.00 54.00 52.00 3.00 2.00 6.2 0.7 0.1 
Cambodge 54.00 102.00 15.00 61.50 13.00 2.00 5.00 4.5 2.1 0.1 
Cameroun 54.00 77.00 47.00 26.50 41.00 5.00 7.00 5 2.6 0.1 

Canada 79.00 5.00 77.00 35.00 99.00 634.00 455.00 1.6 4.2 2.1 
Centrafrique 44.00 98.00 40.00 55.50 19.00 3.00 0 4.8 0.9 0.1 

Tchad 48.00 99.00 23.00 60.00 24.00 1.00 3.00 6.4 0.7 0 
Chili 75.00 10.00 85.00 4.50 85.00 205.00 71.00 2.2 2.7 1.1 
Chine 70.00 31.00 31.00 17.00 90.00 70.00 3.00 1.9 2.9 2 

Hong Kong 79.00 3.00 100.00 7.50 100.00 558.00 56.00 1.1 1.3 
Colombie 70.00 23.00 73.00 9.00 78.00 173.00 21.00 2.7 1.5 1.1 

Congo Démocratique 51.00 90.00 30.00 41.00 27.00 - 9.00 6.3 1.4 0.1 
Congo 48.00 90.00 61.00 21.50 47.00 8.00 14.00 6 3.4 0.3 

Costa Rica 77.00 13.00 47.00 5.00 92.00 172.00 85.00 2.6 1.9 1.4 
Cote d'Ivoire 46.00 88.00 45.00 55.50 72.00 12.00 18.00 5 0.8 0.1 

Croatie 73.00 8.00 57.00 2.00 63.00 348.00 17.00 1.5 5.9 2 
République Tchèque 75.00 5.00 75.00 3.00 97.00 364.00 358.00 1.2 9.2 2.9 
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Danemark 76.00 5.00 85.00 1.00 100.00 660.00 355.00 1.8 4.7 2.9 
Equateur 70.00 32.00 63.00 9.50 70.00 78.00 41.00 2.9 1.6 1.7 
Egypte 67.00 49.00 45.00 46.50 64.00 60.00 23.00 3.2 2 2.1 

El Salvador 69.00 31.00 46.00 22.00 55.00 80.00 30.00 3.3 1.6 1 
Erythrée 51.00 61.00 18.00 48.00 7.00 7.00 1.00 5.7 0 
Estonie 70.00 9.00 69.00 2.00 100.00 343.00 312.00 1.2 7.4 3.1 
Ethiopie 43.00 107.00 17.00 64.00 27.00 3.00 1.00 6.4 0.2 0 
Finlande 77.00 4.00 66.00 1.00 98.00 554.00 145.00 1.8 9.2 2.8 
France 78.00 5.00 75.00 1.00 100.00 570.00 442.00 1.8 8.7 2.9 
Gabon 53.00 86.00 79.00 29.00 67.00 33.00 14.00 5.1 3.2 0.2 

Gambie 53.00 76.00 31.00 65.50 76.00 21.00 8.00 5.6 0.6 0 
Géorgie 73.00 15.00 60.00 4.00 100.00 115.00 80.00 1.3 4.8 3.8 

Allemagne 77.00 5.00 87.00 1.00 100.00 567.00 506.00 1.4 9.6 3.4 
Ghana 60.00 65.00 37.00 31.00 56.00 8.00 5.00 4.8 1.5 
Grèce 78.00 6.00 60.00 3.50 100.00 522.00 238.00 1.3 5 3.9 

Guatemala 64.00 42.00 39.00 32.50 67.00 41.00 12.00 4.4 1 0.9 
Guinée 47.00 118.00 31.00 41.00 62.00 5.00 2.00 5.4 0.6 0.2 

Guinée-Bissau 44.00 128.00 23.00 63.00 53.00 7.00 6.00 5.6 1.5 0.2 
Haiti 54.00 71.00 34.00 52.00 28.00 8.00 4.00 4.3 0.7 0.2 

Honduras 69.00 36.00 51.00 27.00 65.00 38.00 7.00 4.2 1.1 0.8 
Hongrie 71.00 10.00 64.00 1.00 99.00 336.00 233.00 1.3 9.1 3.4 

Inde 63.00 70.00 28.00 45.00 81.00 22.00 5.00 3.2 0.8 0.4 
Indonésie 65.00 43.00 39.00 14.50 62.00 27.00 12.00 2.7 0.7 0.2 

Iran 71.00 26.00 61.00 25.50 83.00 112.00 26.00 2.7 1.6 0.9 
Irlande 76.00 6.00 59.00 1.00 100.00 435.00 279.00 1.9 3.7 2.1 
Israel 78.00 6.00 91.00 4.00 99.00 471.00 215.00 2.7 6 4.6 
Italie 78.00 5.00 67.00 1.50 100.00 451.00 539.00 1.2 6.5 5.5 

Jamaique 75.00 21.00 55.00 14.00 70.00 166.00 40.00 2.6 2.1 1.3 
Japon 81.00 4.00 79.00 2.00 96.00 503.00 394.00 1.4 16.2 1.8 

Jordanie 71.00 27.00 73.00 11.50 89.00 86.00 48.00 4.1 1.8 1.7 
Kazakhstan 65.00 22.00 56.00 7.00 93.00 104.00 62.00 2 8.5 3.5 

Kenya 51.00 76.00 31.00 19.50 53.00 9.00 11.00 4.6 1.6 0 
Corée du Sud 73.00 9.00 80.00 2.50 83.00 433.00 163.00 1.6 4.6 1.1 

Koweit 77.00 12.00 97.00 19.50 100.00 236.00 359.00 2.8 2.8 1.9 
Laos 54.00 96.00 22.00 54.00 39.00 6.00 3.00 5.5 2.6 0.2 
Liban 70.00 27.00 89.00 15.00 100.00 194.00 21.00 2.4 2.7 2.8 

Lesotho 55.00 93.00 26.00 18.00 52.00 10.00 6.00 4.6 0.1 
Lituanie 72.00 9.00 68.00 0.5 97.00 300.00 265.00 1.4 9.6 3.9 

Madagascar 58.00 92.00 28.00 35.00 29.00 3.00 4.00 5.7 0.9 0.3 
Malawi 42.00 134.00 22.00 41.50 45.00 3.00 2.00 6.4 1.3 0 
Malaisie 72.00 8.00 56.00 13.50 100.00 198.00 145.00 3.1 2 0.5 

Mali 50.00 117.00 29.00 61.50 37.00 3.00 3.00 6.5 0.2 0.1 
Mauritanie 54.00 90.00 55.00 58.50 64.00 6.00 8.00 5.4 0.7 0.1 
Ile Maurice 71.00 19.00 41.00 16.50 98.00 214.00 71.00 2 3.1 0.9 

Mexique 72.00 30.00 74.00 9.00 83.00 104.00 97.00 2.8 1.2 1.2 
Mongolie 66.00 50.00 62.00 38.50 45.00 37.00 16.00 2.5 11.5 2.6 

Maroc 67.00 49.00 55.00 53.00 52.00 54.00 38.00 3 1 0.5 
Mozambique 45.00 134.00 38.00 57.50 32.00 4.00 0 5.2 0.9 

Namibie 54.00 67.00 30.00 19.00 57.00 69.00 46.00 4.8 0.2 
Népal 58.00 77.00 11.00 60.50 44.00 8.00 0 4.4 0.2 0 

Pays-Bas 78.00 5.00 89.00 1.00 100.00 593.00 391.00 1.6 11.3 2.6 
Nouvelle-Zélande 77.00 5.00 86.00 2.00 97.00 479.00 470.00 1.9 6.1 2.1 

Nicaragua 68.00 36.00 55.00 30.50 81.00 31.00 18.00 3.7 1.5 0.8 
Niger 46.00 118.00 20.00 85.50 53.00 2.00 4.00 7.3 0.1 0 

Nigéria 53.00 76.00 42.00 39.00 39.00 4.00 9.00 5.3 1.7 0.2 
Norvège 78.00 4.00 75.00 1.00 100.00 660.00 402.00 1.8 15 2.5 

Oman 73.00 18.00 81.00 32.50 68.00 92.00 103.00 4.6 2.2 1.3 
Pakistan 62.00 91.00 36.00 56.50 60.00 19.00 5.00 4.9 0.7 0.6 
Panama 74.00 21.00 56.00 8.50 84.00 151.00 79.00 2.6 2.2 1.7 
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Paraguay 70.00 24.00 55.00 7.50 70.00 55.00 14.00 3.9 1.3 1.1 
Pérou 69.00 40.00 72.00 11.00 80.00 67.00 26.00 3.1 1.5 0.9 

Philippines 69.00 32.00 57.00 5.00 83.00 37.00 10.00 3.6 1.1 0.1 
Pologne 73.00 10.00 65.00 0 98.00 228.00 230.00 1.4 5.4 2.3 
Portugal 75.00 8.00 61.00 8.50 82.00 413.00 309.00 1.5 4.1 3 

Roumanie 69.00 21.00 56.00 2.00 62.00 162.00 116.00 1.3 7.6 1.8 
Russie 67.00 17.00 77.00 0.5 95.00 197.00 120.00 1.2 12.1 4.6 

Rwanda 41.00 123.00 6.00 31.00 56.00 2.00 1.00 6.1 1.7 0 
Arabie Saoudite 72.00 20.00 85.00 26.50 93.00 143.00 98.00 5.7 2.3 1.7 

Sénégal 52.00 69.00 46.00 64.50 50.00 16.00 10.00 5.5 0.4 0.1 
Sierra Leone 37.00 169.00 35.00 39.00 34.00 4.00 5.00 6 1.2 0.1 
Singapour 77.00 4.00 100.00 8.00 100.00 562.00 108.00 1.5 3.6 1.4 
Slovaquie 73.00 9.00 57.00 3.00 92.00 286.00 222.00 1.4 7.5 3 
Slovénie 75.00 5.00 50.00 0 98.00 375.00 403.00 1.2 5.7 2.1 

Afrique du Sud 63.00 51.00 53.00 15.50 70.00 115.00 85.00 2.8 0.6 
Espagne 78.00 5.00 77.00 3.00 100.00 414.00 385.00 1.2 3.9 4.2 
Sri Lanka 73.00 16.00 23.00 9.00 46.00 28.00 15.00 2.1 2.7 0.2 
Soudan 55.00 69.00 34.00 44.50 50.00 6.00 9.00 4.6 1.1 0.1 
Suède 79.00 4.00 83.00 1.00 100.00 674.00 428.00 1.5 5.6 3.1 
Suisse 79.00 4.00 68.00 1.00 100.00 675.00 477.00 1.5 20.8 3.2 
Syrie 69.00 28.00 54.00 32.50 85.00 95.00 9.00 3.9 1.5 1.4 

Tadjikistan 69.00 23.00 28.00 1.00 69.00 37.00 0 3.4 8.8 2.1 
Tanzanie 47.00 85.00 31.00 26.50 49.00 4.00 1.00 5.4 0.9 0 
Thailande 72.00 29.00 21.00 5.00 94.20 84.00 27.00 1.9 2 0.4 

Togo 49.00 78.00 32.00 45.00 63.00 7.00 19.00 5.1 1.5 0.1 
Tunisie 72.00 28.00 64.00 31.50 99.00 81.00 30.00 2.2 1.7 0.7 
Turquie 69.00 38.00 73.00 16.00 49.00 254.00 64.00 2.4 2.5 1.1 

Turkménistan 66.00 33.00 45.00 8.00 60.00 82.00 1.00 2.9 11.5 0.2 
Ouganda 42.00 101.00 14.00 35.00 34.00 3.00 2.00 6.5 0.9 0 
Ukraine 67.00 14.00 68.00 0.5 55.00 191.00 0 1.3 11.8 4.5 

Emirats Arabes Unis 75.00 8.00 85.00 25.00 98.00 389.00 11.00 3.4 2.6 1.8 
Royaume-Uni 77.00 6.00 89.00 1.00 100.00 557.00 375.00 1.7 4.5 1.6 

Etats-Unis 77.00 7.00 77.00 2.00 100.00 661.00 483.00 2 4 2.6 
Uruguay 74.00 16.00 91.00 2.50 99.00 250.00 154.00 2.4 4.4 3.7 

Ouzbékistan 69.00 22.00 38.00 12.00 57.00 65.00 0 2.8 8.3 3.3 
Vénézuela 73.00 21.00 86.00 8.00 79.00 117.00 69.00 2.9 1.5 2.4 
Vietnam 68.00 34.00 20.00 7.00 36.00 26.00 1.00 2.3 3.8 0.4 
Yémen 56.00 82.00 24.00 56.00 74.00 13.00 14.00 6.3 0.7 0.2 
Zambie 43.00 114.00 39.00 23.50 43.00 9.00 15.00 5.5 3.5 0.1 

Zimbabwe 51.00 73.00 34.00 12.50 77.00 17.00 28.00 3.7 0.5 0.1 
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